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docking analysis on Shenfu Qiangxin indicate 
mTOR is a potential target to treat heart failure
Peilin Zou1,2†, Jiajun Li3†, Yucong Zhang1, Zonghao Qian1, Hao Nie1, Ni Yang1, Le Zhang1, Li Lin4, 
Dewei Peng4* and Cuntai Zhang1* 

Abstract 

Background  Heart failure (HF) is one of the major causes of mortality worldwide with high recurrence rate and poor 
prognosis. Our study aimed to investigate potential mechanisms and drug targets of Shenfu Qiangxin (SFQX), 
a cardiotonic-diuretic traditional Chinese medicine, in treating HF.

Methods  An HF-related and SFQX-targeted gene set was established using disease-gene databases and the Tradi-
tional Chinese Medicine Systems Pharmacology database. We performed gene function and pathway enrichment 
analysis and constructed protein–protein interaction (PPI) network to investigate the potential mechanisms. We 
also performed molecular docking to analyze the interaction patterns between the active compounds and targeted 
protein.

Results  A gene set with 217 genes was identified. The gene function enrichment indicated that SFQX can regulate 
apoptotic process, inflammatory response, response to oxidative stress and cellular response to hypoxia. The pathway 
enrichment indicated that most genes were involved in PI3K–Akt pathway. Eighteen hub target genes were identified 
in PPI network and subnetworks. mTOR was the key gene among hub genes, which are involved in PI3K–Akt pathway. 
The molecular docking analysis indicated that 6 active compounds of SFQX can bind to the kinase domain of mTOR, 
which exerted potential therapeutic mechanisms of SFQX in treating HF.

Conclusions  The results of network pharmacology analysis highlight the intervention on PI3K–Akt pathway of SFQX 
in the treatment of HF. mTOR is a key drug target to help protect myocardium.
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Background
Heart failure (HF) is a series of chronic syndromes in 
which the heart muscle doesn’t pump enough blood 
because of decreased function and (or) abnormal heart 
structure [1]. The main symptoms include fatigue, fluid 
retention and dyspnea. It is a serious condition, which 
needs active and effective intervention to prevent fatal 
complications [2]. For decades, many drugs have been 
used in treating chronic HF (CHF). Although some 
drugs are effective to improve the symptoms, the com-
pliance is still poor due to long-term use and adverse 
effects [3]. Unfortunately, the incidence of CHF keeps 
increasing with the aging global population [4]. There-
fore, finding a pharmacotherapy or nonpharmacologi-
cal treatment with satisfactory safety and efficacy for 
treating CHF is a hot topic, which receives wide atten-
tion worldwide.

Traditional Chinese medicine (TCM) has been used 
in HF treatment for ages [5]. It is an idea HF treatment, 
because it is multilevel multitargeted with few side effects 
[6]. Shenfu Qiangxin (SFQX) capsule is a cardiotonic-
diuretic medicine approved by the China Food and Drug 
Administration and recommended by expert consensus 
for the treatment of HF [7]. SFQX is composed of six 
Chinese herbal extracts: Ginseng (Renshen, RS), Aconiti 
Lateralis Radix Praeparata (Fuzi, FZ), Mori Cortex (Sang-
baipi, SBP), Polyporus Umbellatus (Zhuling, ZL), Descu-
rainiae Semen (Tinglizi, TLZ) and Radix Rhei Et Rhizome 
(Dahuang, DH). It is reported that SFQX may alleviate 
oxidative stress-induced myocardial injury by regulating 
SIRT4/FOXO3a signaling in animal and cell studies [8]. 
However, the detail mechanisms of SFQX in treating HF 
remain unclear.

Network pharmacology can construct and visualize 
‘multi-gene-target-pathway’ interaction network to assess 
the molecular mechanism of agents by integrating medi-
cine and computer science [9], especially for the assess-
ment of TCM with complicated matrix nature [10, 11]. 
In this study, a comprehensive network pharmacology-
based analysis was used to demonstrate the mechanisms 
of SFQX in treating HF. We also identified the active 
components and the key targets of SFQX in treating HF.

Mechanistic Target of Rapamycin (mTOR) is involved 
in the regulation of cell growth, cell metabolism and 
nutrient sensing. Many age-related pathologies are partly 
caused by dysregulation of mTOR signaling, such as car-
diac dysfunction and HF [12]. Molecular docking is the 
process that a small ligand spatially docks into a macro-
molecular, such as protein. It can be used for structure-
based drug design scoring the complementary values of 
binding sites [13]. In the current study, we also investi-
gated the potential mechanisms of SFQX in HF using 
molecular docking. mTOR was found to be the hub gene 

in SFQX-target genes, which suggested a new target for 
HF treatment by SFQX.

Materials and methods
Obtaining the SFQX target and HF‑related gene set
The main ingredients of SFQX were obtained from the 
Traditional Chinese Medicine Systems Pharmacology 
(TCMSP) database (https://​www.​tcmsp-e.​com/) [14] 
by searching the “Herb name”. Active compounds were 
then filtered by setting the oral bioavailability (OB) > 40% 
and the drug-like (DL) index > 0.30. The three-dimen-
sional structure of each active compound was obtained 
from PubChem [15]. The compounds without available 
three-dimensional molecular structures were excluded. 
SwissTargetPrediction was then used to predict poten-
tial targets according to the three-dimensional structure 
of each compound [16]. Target genes with probability 
greater than 0.10 were considered as potential target 
genes of each compound. The compounds without such 
target genes were also excluded.

HF-related genes were searched in five databases: 
Genecards database (https://​www.​genec​ards.​org/) [17], 
OMIM database (https://​omim.​org/) [18], TTD data-
base (http://​db.​idrbl​ab.​net/​ttd/) [19], DrugBank database 
(https://​www.​drugb​ank.​ca/) [20], and DisGeNet data-
base (https://​www.​disge​net.​org/​home/) [21]. Genes with 
Gifts > 40 and Relevance score > 10 were filtered from 
Genecards database. The HF-related gene set was estab-
lished by combining all the search results.

The HF-related and SFQX-target gene set was gen-
erated by intersecting the HF-related gene set and the 
SFQX-target gene set.

Compound‑target pharmacology network and enrichment 
analysis
Using Cytoscape version 3.8.0, a target-compound net-
work was constructed based on the SFQX-HF target gene 
set and the SFQX compound set [22]. Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were performed 
using KOBAS 3.0 (https://​kobas.​cbi.​pku.​edu.​cn) to inves-
tigate the potential mechanisms and key signaling path-
ways [23]. The genes in mostly enriched pathway, which 
was also believed to be involved in HF, were further 
analyzed.

Protein–protein interaction (PPI) network and core 
subnetwork
The PPI network was constructed using STRING data-
base [24]. The parameter was set as moderate confidence 
(0.400). The PPI network was downloaded from STRING 
database and subsequently imported into Cytoscape to 
identify the core subnetwork using CytoNca plugin [25] 

https://www.tcmsp-e.com/
https://www.genecards.org/
https://omim.org/
http://db.idrblab.net/ttd/
https://www.drugbank.ca/
https://www.disgenet.org/home/
https://kobas.cbi.pku.edu.cn
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and CytoHubba plugin [26]. In detail, according to the 
score file calculated by CytoNca plugin, genes with each 
score of Betweenness, Closeness, Degree, Eigenvector, 
LAC, network scores higher than the median value were 
filtered for the construction of subnetwork. This subnet-
work was then calculated by using CytoHubba plugin to 
further rank the key gene. Combining the analysis results 
by CytoNca plugin and CytoHubba plugin, a key target 
gene was identified.

Molecular docking
The most core gene from the above analysis was then 
selected for molecular docking. The crystal structure of 
the receptor protein that is coded by this gene was down-
loaded at Protein Data Bank (https://​www.​rcsb.​org/). The 
structure of molecule ligands was obtained from Sci-
finder Scholar. Discovery Studio 2016 was used to carry 
out hydrogenation of protein. And AutoDockTools-1.5.6 
was used to charge calculation and determine parameters 
of the protein docking area. Then, the minimizing energy 
of molecule ligands was calculated and exported by 
ChemBio3D 19.0 and AutoDockTools. Finally, Molecular 

docking of ligands and receptor protein were performed 
by Autodock Vina [27]. And the docking results were 
shown in Discovery Studio.

Results
Screening of active compounds and target genes
By using the TCMSP database and SwissTargetPredic-
tion, 39 compounds with 539 target genes were iden-
tified (Additional file  1: Fig.  S1). Besides, 1445, 178, 
5, 13 and 199 HF-related genes were obtained from 
Genecards, OMIM, TTD, DrugBank and DisGeNet 
database, respectively. After we removed duplication 
and combined the search results, a gene set with 1659 
HF-related genes was constructed (Fig.  1A). And we 
finally acquired the SFQX target and HF-related gene 
set with 217 genes included by taking an intersec-
tion of the SFQX-target genes and HF-related genes 
(Fig. 1B). The 217 intersection genes were target genes 
of 37 compounds (Additional file 1: Table S1). The tar-
get-compound network with 254 nodes and 822 edges 
is visualized in Fig. 1C. One gene was targeted by sev-
eral active compounds while one compound could 

Fig. 1  Identification of the drug-target interaction. A Identification of the HF-related genes by taking a union of all the results from 5 
databases; B identification of the drug-target disease-related genes by taking an intersection of SFQX target genes and HF-related genes; C 
the compound-targets interaction pharmacology network of SFQX and interaction genes. Circle represents the molecule active compounds 
in SFQX. Each yellow rectangle represents a traditional Chinese medicine compound. Each blue rectangle represents a HF-related target gene. 
Edges represent the interaction between the molecule compounds and the target genes. HF heart failure, SFQX Shenfu Qiangxin

https://www.rcsb.org/
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also target multiple gene. Among 217 genes, CYP19A1 
and ESR1 were the most targeted gene by SFQX com-
pounds. Both of them were targeted by 21 compounds.

Enrichment analysis
The underlying gene ontology of the 217 target genes was 
discovered by GO enrichment analysis. 1546 significant 
GO terms with corrected P-value < 0.05 were identified. 
The terms with enrichment gene count > 30 are shown 
in Fig.  2A. The GO terms indicated that these target 

Fig. 2  Enrichment analysis and pathway map. A GO enrichment analysis of the target genes. Gene ratio refers to the ratio of enriched genes to all 
target genes, and counts refer to the number of the enriched genes; B KEGG enrichment analysis of the target genes. Gene ratio refers to the ratio 
of enriched genes to all target genes. Counts refer to the number of the enriched genes; C pathway map of PI3K–Akt signaling pathway. GO gene 
ontology, KEGG Kyoto Encyclopedia of Genes and Genomes



Page 5 of 10Zou et al. European Journal of Medical Research          (2024) 29:173 	

genes were involved in protein binding and plasma mem-
brane construction. In addition, some GO terms, such 
as negative regulation of apoptotic process, inflamma-
tory response, response to oxidative stress and cellular 
response to hypoxia, were associated with the develop-
ment of HF, which indicated that these target genes may 
be involved in the regulation of HF.

The pathways, which the 217 target genes were 
enriched in, were discovered by KEGG enrichment anal-
ysis. 212 KEGG pathways with corrected P-value < 0.05 
were significantly enriched. Except for the pathways in 
cancer, the most enriched pathway was PI3K–Akt signal-
ing pathway, which is reported to play an important role 
in HF [28]. The 44 genes enriched in PI3K–Akt signal-
ing pathway are shown in Additional file 1: Table S2. The 
bubble plot of the KEGG pathways with enrichment gene 
count > 20 is shown in Fig. 2B and the map of the PI3K–
Akt signaling pathway is shown in Fig. 2C.

PPI network and core subnetwork
PPI network from STRING database for proteins 
encoded by 217 genes is shown in Additional file  1: 
Fig.  S2. PPI network for the proteins encoded by tar-
get genes enriched in PI3K–Akt signaling pathway had 
complex interactions (Fig.  3A). This PPI network was 
imported into Cytoscape for the identification of core 
subnetwork. A core subnetwork composed of 18 genes 
were identified using CytoNca (Fig. 3B, Additional file 1: 
Table S3). These 18 target genes were further ranked by 
CytoHubba (Fig.  3C, Additional file  1: Table  S4). After 
combining the analysis results by CytoNca plugin and 
CytoHubba plugin, MTOR was identified as the key 
target gene. It ranked first in CytoNca and second in 
CytoHubba.

Molecular docking of active compounds and MTOR 
encoding protein
The crystal structure of the mTOR was downloaded at 
Protein Data Bank (4JSV). The original structure of 4JSV 
is a homodimer, which contains two identical complexes 
of atypical kinase mTOR and ligand mLST8 (Fig. 4A). We 
removed one of the complexes and the ligand mLST8 
to obtain the monomer structure as the receptor pro-
tein encoded by MTOR for further molecular docking 
(Fig. 4B, C). In the compound-target interaction network, 
six active compounds targeted mTOR protein, including 
moracin D (from Sangbaipi), cerevisterol (from Zhuling), 
(22e,24r)-ergosta-6-en-3beta,5alpha,6beta-triol (from 
Zhuling), deoxyandrographolide (from Fuzi), moracin 
O (from Sangbaipi) and polyporusterone E (from Zhul-
ing) (Additional file  1: Fig.  S3). Using Autodock Vina, 
several binding sites in mTOR for each compound were 
predicted. The docking results indicated that all these 

6 compounds could easily bind to the protein kinase 
domain of mTOR (Fig.  4D–I) through several bonds. 
The molecular docking binding energy for these sites is 
recorded in Table 1.

Discussion
HF is the end stage of cardiac diseases, such as cardio-
myopathy, high blood pressure, coronary heart disease, 
and acute myocardial infraction [29]. A failing heart can’t 
pump sufficiently and provide enough blood supply [30]. 
The conventional HF management agents are diuret-
ics, β-adrenergic blockers, and angiotensin-converting 
enzyme inhibitors [31]. Unfortunately, severe side effects 
may occur during the long-time use of these chemical 
agents, such as hypotension, fluid depletion and electro-
lyte depletion [32]. Therefore, TCM can be used as alter-
native agents in treating HF with fewer side effects and 
lower cost [33].

Several TCMs have been used in the management of 
HF with satisfactory effect [5], for example, Zhenwu 
tang, Shengmai san, Baoyuan tang, Xuefuzhuyu tang, 
Tinglidazaoxiefei tang, Danshen yin, Taohongsiwu tang. 
Meanwhile, several Chinese patent drugs have been 
successfully produced by standardized procedures and 
are widely used in health care industry, such as Qishe-
nyiqi dripping pill, Fufang danshen dripping pill, Danqi 
pill, Qili qiangxin capsule, Shengmai capsule [34, 35]. 
Although TCMs are commonly used as complementary 
therapy to treat HF, there is currently evidence to sup-
port the use of TCM alone in treating HF. The LVEF of 
HF patients treated with Xinmailong for 15  days was 
increased from 36.9 to 46.4% [36], which indicated that 
TCM can be used as an independent treatment for HF.

In clinical study, SFQX combined with recombinant 
human brain natriuretic peptide can improve the car-
diac function, and decrease myocardial enzyme indexes 
and myocardial damage markers of HF patients [37]. 
Moreover, it is reported that SFQX can protect heart by 
correcting electrolyte disturbances, reducing sodium 
and water retention, and inhibiting apoptosis and 
autophagy of myocardial cells in several animal experi-
ments [38]. In this study, an SFQX target HF-related 
gene set with 217 target genes included was con-
structed by analyzing the active components of SFQX. 
GO analysis revealed that SFQX can regulate the pro-
cess which are involved in the development of HF, such 
as negative regulation of apoptotic process [39], inflam-
matory response [40], response to oxidative stress [41] 
and cellular response to hypoxia [42]. KEGG analysis 
identified several signal pathways associated with HF, 
in which PI3K–Akt pathway is the pathway with the 
largest number of genes enriched in. PPI network and 
critical subnetwork analyses found 18 hub target genes 
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Fig. 3  PPI network and identification of key subnetwork. A PPI network for the proteins encoded by target genes enriched in PI3K–Akt signaling 
pathway exported from STRING database; B a subnetwork constructed by filtration via CytoNca. The yellow nodes were screened with a score 
higher than the median. C Rank of genes by CytoHubba. The darker red colour refers to higher rank. PPI protein–protein interaction



Page 7 of 10Zou et al. European Journal of Medical Research          (2024) 29:173 	

Fig. 4  Molecular docking. A Original crystal structure of the mTOR downloaded from Protein Data Bank (4JSV); B the monomer structure of mTOR; 
C the structure of mTOR with each domain marked by different colour; molecular docking for mTOR with moracin D (D), cerevisterol (E), (22e,2
4r)-ergosta-6-en-3beta,5alpha,6beta-triol (F), deoxyandrographolide (G), moracin O (H) and polyporusterone E (I), on the top shows the surface 
of the receptor protein and 3D structure of the ligand, at the bottom shows the detail binding bond of each ligand with receptor protein
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out of 44 genes, which were involved in PI3K–Akt path-
way. Among all the hub target genes, MTOR was the 
most significant gene. And we performed molecular 
docking to analysis the interaction between mTOR and 
active compounds in SFQX. The results demonstrated 
the potential roles of SFQX in treating HF by bioin-
formatics analysis, and provided an overview on the 
mechanism of SFQX, which may help targeted drug 
design and basic research of HF treatment.

We identified several active compounds of SFQX 
from TCMSP database. Renshen and Fuzi are impor-
tant ingredients in SFQX. The major active components 
in ginseng are ginsenosides, which have been shown to 
inhibit HF in several experimental models of both left 
and right ventricular hypertrophy or failure [43]. For 
NYHA Class II to IV HF patients, the administration 
of a water extract of P. ginseng combined with stand-
ard HF therapy for 14 days results in the improvement 
in several parameters, including quality of life scores, 
which is determined by a questionnaire, and left ven-
tricular function. It can also reduce plasma cytokine 
levels, and indices of hepatic injury [44]. A systematic 
review and meta-analysis on the efficacy and safety of 
Fuzi Formulae, a prescription containing Fuzi as major 
ingredient, in treating HF analyzes 12 high-quality 
randomized clinical trials with 1490 participants, in 
which the control group received standardized treat-
ment with or without placebo, while the intervention 
group received standardized treatment with Fuzi For-
mulae. The results indicate statistical benefits from Fuzi 
Formulae in reducing plasma NT-proBNP level and 
improving the efficacy on NYHAfc and LVEF. Moreo-
ver, the patients’ prognosis and life quality are also 
improved and patients’ risks in readmission and death 
for HF are reduced [45].

In current study, mTOR was identified as the key 
SFQX target and HF-related protein, which involves 
in PI3K–Akt signaling pathway. Accumulated studies 

have proven that phosphoinositol-3 kinase (PI3K)/Akt 
signaling pathway is involved in regulating the occur-
rence, progression and pathological formation of car-
diac fibrosis via regulating cell survival, apoptosis, 
growth, cardiac contractility and even the transcription 
of related genes through a series of molecules includ-
ing mammalian target of rapamycin (mTOR), glycogen 
synthase kinase 3 (GSK-3), forkhead box proteins O1/3 
(FoxO1/3), and nitric oxide synthase (NOS) [28]. Six 
compounds from SFQX could easily bind to the protein 
kinase domain of mTOR. The mTOR mainly belongs to 
PI3K-related kinases with conserved domain [46]. The 
mTOR protein consists of several domains including 
HEAT repeats, a FAT domain, a protein kinase domain, 
an FRB domain and a FATC domain [47, 48]. The kinase 
domain is essential for mTOR function [49]. In normal 
cells, mTOR is stimulated by amino acids, stress, redox 
sensors, oxygen, growth factors, or energy. The active 
mTOR can promote cellular anabolism to synthetize 
several macromolecules, including lipids, proteins 
and nucleic acids in response to those environmental 
stimuli. The mTOR can regulate metabolic pathways 
by integrating these anabolic processes in cell metab-
olism, growth, proliferation, and autophagy [50]. The 
mTOR signaling plays an important role in aging. The 
dysregulation of mTOR is associated with many age-
related diseases, such as cardiac dysfunction and HF 
[12]. MTOR is reported to regulate the upstream sig-
nals of autophagy, significantly improved the cardiac 
function with HF by inhibiting apoptosis and activat-
ing autophagy [51]. mTOR complex 1 (mTORC1) is 
involved in the functional and structural deterioration 
of heart [52, 53]. The inhibition of mTORC1-related 
pathway by rapamycin [50, 54] or caloric restriction 
[55] can rejuvenate the senescent heart or amelio-
rate cardiovascular function and inhibit cardiac aging 
pathologies, such as cardiac fibrosis and inflammation. 
Our current study demonstrated that some compounds 
from SFQX can bind to the protein kinase domain of 
mTOR, which indicated that SFQX may help the inter-
vention of cardiac aging and heart failure. In clinical 
settings, SFQX (5.4  g) was given twice or three times 
a day, combined with standardized chemical medicine 
treatment, in treating HF patients [56].

In this study, we analyzed the potential therapeutic 
mechanisms of the SFQX in treating HF. The results 
emphasize the intervention on PI3K–Akt pathway by 
SFQX in the treatment of HF. However, there was a lack 
of experimental validation of our results, which was 
the main limitation of our study. Future clinical study 
should assess the efficacy and safety of SFQX in treating 
HF, either used alone or combined with standard medi-
cal treatment. Moreover, the detailed mechanism of the 

Table 1  Molecular docking binding energy of each compound 
with mTOR

Compound name Molecular 
docking binding 
energy

Moracin D − 8.3

Cerevisterol − 7.5

(22e,24r)-Ergosta-6-en-3beta,5alpha,6beta-triol − 7.2

Deoxyandrographolide − 7.0

Moracin O − 7.5

Polyporusterone E − 8.7
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compounds in SFQX still needs further investigation, 
which could help the design of anti-HF drugs.

Conclusions
We investigated the potential mechanisms of SFQX 
by performing pharmacology network and molecular 
docking analyses. PI3K–Akt pathway, especially mTOR-
related signaling pathway, is involved in the mechanism 
of SFQX in treating HF.
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