
EUROPEAN JOURNAL 
OF MEDICAL RESEARCH

Yamagishi and Matsui European Journal of Medical Research  (2015) 20:15 
DOI 10.1186/s40001-015-0090-z
REVIEW Open Access
Role of receptor for advanced glycation end
products (RAGE) in liver disease
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Abstract

Receptor for advanced glycation end products (RAGE) belongs to a immunoglobulin superfamily of cell surface
molecules that could bind to a number of ligands such as advanced glycation end products, high-mobility group
protein box-1, S-100 calcium-binding protein, and amyloid-β-protein, inducing a series of signal transduction cascades,
and being involved in a variety of cellular function, including inflammation, proliferation, apoptosis, angiogenesis,
migration, and fibrosis. RAGE is expressed in hepatic stellate cells and hepatocytes and hepatoma cells. There is
accumulating evidence that engagement of RAGE with various ligands elicits oxidative stress generation and
subsequently activates the RAGE downstream pathway in the liver, thereby contributing to the development and
progression of numerous types of hepatic disorders. These observations suggest that inhibition of the RAGE
signaling pathway could be a novel therapeutic target for liver diseases. This article summarizes the pathological
role of RAGE in hepatic insulin resistance, steatosis and fibrosis, ischemic and non-ischemic liver injury, and
hepatocellular carcinoma growth and metastasis and its therapeutic interventions for these devastating disorders.
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Introduction
Receptor for advanced glycation end products (AGEs)
(RAGE) is a multiligand cell surface receptor that be-
longs to the immunoglobulin superfamily [1-4]. RAGE is
a pattern recognition receptor with a molecular mass of
47 to 55 kDa, consisting of an extracellular region made
of V1-, C1-, and C2-type immunoglobulin domains,
transmembrane-spanning domain, and a short cytosolic
tail [1-4]. V1- and C1-type domains are considered as
the principal interacting sites for various ligands,
whereas cytosolic tail is essential for downstream signal-
ing pathway of RAGE [1-4]. V1- and C1-type domains
of RAGE have a net positive charge that might act as an
electrostatic trap for negatively charged macromolecules
such as AGEs, high-mobility group protein box-1
(HMGB1), S-100 calcium-binding protein, and amyloid-
β-protein [1-4].
RAGE is found in an oligomeric or preassembled state

within the plasma membrane [1-4]. RAGE expression is
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usually low in the majority of healthy adult tissues, but
its levels are elevated under pathological conditions such
as diabetes, cardiovascular disease, Alzheimer’s disease,
and cancer [4-7]. Multimeric ligands could stabilize the
assemblies of RAGE and shift the equilibrium to larger
oligomers [1-4]. Moreover, engagement of RAGE with
RAGE ligands increases expression of RAGE itself in a
variety of cells [4-7]. These positive feedback loops could
partly explain why RAGE-ligands interaction could lead to
sustained activation of the RAGE downstream pathway.
RAGE activation by various ligands have been reported to

increase oxidative stress generation and subsequently evoke
inflammatory, proliferative, angiogenic, fibrotic, thrombo-
genic, and apoptotic reactions in numerous cell types via ac-
tivation of diverse intracellular signaling pathways such as
nuclear factor-κB (NF-κB), mitogen-activated protein kinase
(MAPK), Janus kinase-signal transducers and activators of
transcription (JAK-STAT), and phosphoinositol 3 kinase
[8-10]. RAGE is expressed in hepatic stellate cells and hepa-
tocytes and hepatoma cells [11]. There is accumulating evi-
dence that activation of RAGE signaling pathways in the
liver could contribute to the development and progression
of numerous types of hepatic disorders [11,12]. These obser-
vations suggest that inhibition of the RAGE downstream
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pathway could be a novel therapeutic target for various
liver diseases. This article summarizes the pathological
role of RAGE in hepatic insulin resistance, steatosis
and fibrosis, ischemic or non-ischemic liver injury, and
hepatocellular carcinoma (HCC) growth and metastasis
and its therapeutic interventions for these devastating
disorders.
In the present review, literature searches were under-

taken in Medline by the PubMed interface. Non-English
language articles were excluded. Key words (RAGE) and
(review or liver or hepatic) have been used to select the
articles.

Hepatic insulin resistance, steatosis, and fibrosis

1) Hepatic insulin resistance

Non-alcoholic fatty liver (NAFL) is the most common
chronic liver disease in the world [13-16]. NAFL is
characterized by hepatic steatosis in the absence of
significant alcohol intake or other known liver
diseases. NAFL includes a wide spectrum of liver
diseases, ranging from fatty liver, a benign and non-
progressive condition, to non-alcoholic steatohepatitis
(NASH), a potentially progressive disease that may
cause cirrhosis, liver failure, and HCC [13-16]. NASH
is considered the hepatic manifestation of the meta-
bolic syndrome and is associated with central obesity,
insulin resistance, diabetes, essential hypertension, and
dyslipidemia [17,18].
We have previously shown that serum levels of AGEs
are elevated under oxidative stress, inflammatory, and/
or diabetic conditions and correlated with insulin resist-
ance and decreased adiponectin levels, thereby being
one of the useful biomarkers for differentiating NASH
from simple steatosis [19-24]. Further, activation of R-
AGE downstream pathway by AGEs evokes inflamma-
tory reactions and impairs insulin signaling in Hep3B
hepatoma cells by stimulating c-Jun NH2-terminal kin-
ase (JNK)- and IκB kinase-dependent serine phosphor-
ylation of insulin receptor substrate-1 via Rac-1
activation [25-27]. Combination therapy with nategli-
nide, a rapid-onset/short-duration insulinotropic agent
and telmisartan, an angiotensin II type 1 receptor
blocker with partial agonistic activity of peroxisome
proliferator-activated receptor-γ (PPARγ), improves
hepatic insulin resistance in Zucker fatty rats by
suppressing the AGE-RAGE axis as well [28]. These
observations suggest the involvement of AGE-RAGE
axis in inflammation and insulin resistance in the liver.

2) Hepatic steatosis
High AGE-containing methionine choline-deficient
(MCD) diet increased AGE contents, lipid peroxidation
product, 4-hydroxynonenal levels, and NADPH oxidase-
driven superoxide generation in the liver of Sprague
Dawley (SD) rats compared to SD rats with MCD diet
alone, which were associated with severity of steatohe-
patitis and hepatic fibrosis in these animals [29].
Furthermore, AGEs significantly increased reactive
oxygen species (ROS) production, RAGE, monocyte
chemoattractant protein-1 (MCP-1), interleukin-6
(IL-6), and α-smooth muscle cell actin expression
in hepatic stellate cells (HSCs) derived from MCD
diet-fed rats [29]. In addition, Gaen et al. recently
reported that carboxymethyllysine (CML) accumula-
tion in the liver of obese individuals was associated
with hepatic pro-inflammatory gene expression as
well as grade of steatosis and steatohepatitis [30].
They also found that fatty acids could stimulate
CML accumulation in hepatocytes and subsequently
elicit inflammatory reactions via RAGE induction [30].
Lack of galectin-3, a scavenging receptor for AGEs,
has been shown to progress the NAFL disease in mice,
which was also associated with enhanced hepatic accu-
mulation of AGEs and RAGE expression [31,32].
These findings suggest that dietary glycotoxins and/or
lipid peroxidation-induced AGE accumulation in
the liver might promote the progression of NAFL
to NASH by enhancing the RAGE-mediated in-
flammatory reactions.

3) Hepatic fibrosis
HSCs are the main extracellular matrix-producing
cells in the liver and thus play a pivotal role in liver
fibrosis [33]. Fehrenbach et al. showed that expression
of RAGE was up-regulated during the process of
transdifferentiation of HSCs to myofibroblasts (MFB)
and transforming growth factor-β1 (TGF-β1) in-
creased RAGE and α-smooth muscle actin levels at
filopodial membranes of MFB, thus suggesting a
role of TGF-β1-RAGE axis in the spreading and
migration of activated HSCs. They also showed that
ligand activation of RAGE increased ROS formation
and subsequently induced MAPK and NF-κB sig-
naling pathways in HSCs [33]. Furthermore, we
have found that AGE-RAGE interaction induces
proliferative, inflammatory, and fibrotic reactions in
HSCs by stimulating TGF-β1, MCP-1, collagen type
I alpha2, and α-smooth muscle actin expression via
NADPH oxidase-derived ROS generation [34]. ROS
generation in HSCs evoked by the AGE-RAGE axis
is blocked by an inhibitor of Rac-1, a component of
NADPH oxidase, or p47phox silencing [35]. These
observations suggest that RAGE-mediated, NADPH
oxidase-derived ROS could contribute to hepatic fi-
brosis via the activation of HSCs.
Curcumin, a main curcuminoid present in turmeric,
a popular Indian spice, inhibited AGE-induced
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RAGE expression in HSCs by increasing PPARγ ac-
tivity and stimulating de novo synthesis of glutathione,
which could lead to the suppression of oxidative stress
generation, inflammation, and HSCs activation
[36]. Curcumin was also shown to eliminate the
deleterious effects of AGE-RAGE axis on HSCs by
inducing gene expression of AGE receptor-1, a
responsible receptor for detoxification and clearance
of AGEs, partly via interruption of leptin signaling and
activation of transcription factor NF-E2 p45-related
factor 2 [37,38]. We have previously shown that (1)
pigment epithelium-derived factor (PEDF), a glyco-
protein with anti-oxidative, anti-inflammatory, and
PPARγ-stimulating properties blocks the AGE- or
IL-6-induced hepatic inflammation and (2) serum
PEDF levels are independently associated with pro-
collagen type III N-terminal peptide, a marker
of hepatic fibrosis in patients with NAFL as a coun-
ter system against insulin resistance-related meta-
bolic derangements [39-44]. Stimulation of PPARγ
may be a therapeutic target for preventing the
HSCs activation.
In normal rats, chronic AGEs administration in-
duced significant increases in α-smooth muscle actin
levels, but did not induce fibrosis or biochemical
evidence of liver injury [45]. However, injection of
AGEs to rats following bile duct ligation significantly
increased hepatic fibrosis, which was in association
with oxidative stress and RAGE overexpression in the
liver [45]. Furthermore, RAGE gene-silencing therapy
decreased serum levels of inflammatory cytokines,
reduced hepatic levels of α-smooth muscle actin and
collagen I, markers of HSCs activation, and improved
inflammatory activity grade and fibrosis stage of CCl4-
induced liver injury in rats [46]. Kao et al. reported
the involvement of HMGB1 released from damaged
hepatocytes and its interaction with RAGE in the
pathogenesis of HSCs activation and liver fibrosis [47].
Carotenoids and polyphenols present in peach-derived
products have been shown to attenuate the CCl4-
induced oxidative stress and liver damage by
suppressing RAGE expression [48].
Ischemic or non-ischemic liver injury
Ischemic liver disease Hepatic ischemia/reperfusion
(I/R) injury associated with liver transplantation and
hepatic resection is characterized by hepatocyte damage
and enhanced inflammatory reactions [49]. Administra-
tion of soluble form of RAGE (sRAGE) has been re-
ported to increase survival of mice after hepatic I/R
injury by suppressing the RAGE downstream pathway,
which was associated with decreased cell death and ne-
crosis of hepatocytes as well as increased proliferative
activity of liver cells [49]. MAPK, JNK, and JAK-STAT
were activated in I/R-injured liver, while NF-κB was
suppressed. All of these changes were ameliorated by the
treatment with sRAGE, in parallel with increased expres-
sion of pro-regenerative cytokine [49]. In addition, RAGE-
mediated increased expression of early growth response-1
(Egr-1), an inducible zinc finger transcription factor acti-
vated in response to cell stress, was involved in enhanced
inflammatory reactions in the I/R-injured liver [50]. Losar-
tan, a blocker of angiotensin II type 1 receptor, inhibited
the I/R injury-induced hepatocyte apoptosis and inflam-
mation by suppressing the RAGE expression and subse-
quent activation of Egr-1 via PPARγ activation [51]. These
findings suggest that RAGE could modulate hepatic I/R
injury, at least in part by activation of key signaling
pathways linked to pro-inflammatory and cell death-
promoting responses.

Non-ischemic liver disease
Uncoupling protein-2 (UCP2) knockout mice showed
higher malondialdehyde levels and reduced glutathione/
glutathione disulfide ratios as well as significantly higher
hepatic levels of AGEs and RAGE compared with nor-
mal mice [52]. Galactosamine/lipopolysaccharide (G/L)-
induced liver injury was enhanced in UCP2 knockout
mice, which was associated with increased AGEs and
RAGE levels in the liver [52]. Further, aging accelerated
the harmful effects of UCP2 deficiency on AGE-RAGE
axis and G/L-induced liver injury by suppressing hepatic
activity of glyoxalase-I, a detoxifying enzyme for methy-
glyoxal, one of the precursors of AGEs [53]. sRAGE
treatment has been found to significantly diminish liver
damage and increased survival particularly in both young
and old UCP2 knockout mice [52,53]. These observations
suggest that mitochondrial dysfunction-associated oxida-
tive stress could activate hepatic AGE-RAGE axis, leading
to augmentation of inflammation-induced liver injury.
Anti-RAGE antibody therapy inhibited the G/L-induced
acute liver injury in senescence-accelerated-prone mice
[54]. Sinusoidal perfusion failure and inflammation in the
livers exposed to G/L were also suppressed by the treat-
ment with anti-RAGE antibody [55]. These findings could
further support the clinical relevance of RAGE blockade
for the treatment of endotoxemic liver damage.
RAGE is up-regulated in liver remnants selectively

after massive (85%) versus partial (70%) hepatectomy,
principally in mononuclear phagocyte-derived dendritic
cells [56]. Furthermore, blockade of RAGE, using
pharmacological antagonists or transgenic mice in which
a signaling-deficient RAGE mutant is expressed in cells
of mononuclear phagocyte lineage, significantly increases
survival after massive liver resection [56]. RAGE inhib-
ition induced NF-κB activation and resultantly enhanced
expression of regeneration-promoting cytokines in the
massively injured liver [56]. sRAGE treatment also
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decreased hepatic necrosis and inflammatory and oxida-
tive stress reactions and increased survival of mice with
acetaminophen-induced liver injury [57]. Blockade of
RAGE may improve survival of mice with extensive hep-
atectomy by restoring adaptive mechanisms triggered by
Myd88 signaling pathways [58].

HCC
RAGE was expressed in human HCC cell line, Hep3B and
HepG2 cells, whereas AGEs increased vascular endothelial
growth factor (VEGF) expression in these cell types [59,60].
Furthermore, AGE-treated conditioned medium significantly
increased proliferation, migration, and tube formation of
endothelial cells (ECs), thus suggesting that AGE-RAGE sig-
naling could enhance the angiogenic potential of HCC cells
by up-regulating VEGF expression [59]. AGEs have been
shown to increase the growth of HuH7, other type of HCC
cell line as well [60]. MK615, an extract from Japanese apricot
was reported to inhibit the AGEs-induced proliferation of
HuH7 by suppressing RAGE expression [60]. Orally adminis-
tered high-AGE beverage induced hepatic VEGF expression
and AGE accumulation in rats, suggesting a pathological role
of dietary AGEs for the progression of HCC [61].
We have previously shown that AGE-RAGE interaction-

mediated, NADPH oxidase-induced ROS generation stim-
ulates proliferation and tube formation of ECs, the key
steps of tumor angiogenesis, through VEGF expression via
transcriptional activation of NF-κB and activator protein-1
[62-66]. Furthermore, activation of the AGE-RAGE axis
also evokes inflammatory and thrombogenic reactions in
ECs by inducing MCP-1, intercellular adhesion molecule-
1, and plasminogen activator inhibitor-1 expression via
ROS generation [67-73]. Several lines of evidence implicate
VEGF as the key factor involved in tumor growth and me-
tastasis [74]. VEGF expression levels are associated with
angiogenesis and macrophage infiltration, the extent of
which being correlated with various tumor prognoses
[75-79]. So, the AGE-RAGE interaction could stimulate
tumor-associated angiogenesis and macrophage infiltration
by inducing VEGF expression and its related inflammatory
reactions, thereby promoting tumor growth and metastasis.
In addition, the AGE-RAGE-evoked thrombogenic reac-
tions could cause ischemia and hypoxia within the tumor
environments and trigger VEGF expression again, thus fur-
ther augmenting tumor angiogenesis and inflammation.
Further, hypoxia has been known to stimulate brisk gener-
ation of AGEs by ECs and subsequently activates the
RAGE downstream pathway, which could induce up-
regulation of Egr-1, thereby causing inflammatory and
thrombotic reactions within the hypoxic areas of tumors
[80]. Therefore, these positive feedback loops between
AGE-RAGE axis and hypoxia might further potentiate
tumor-associated angiogenesis and inflammation, being in-
volved in HCC growth and expansion.
HCC lines resistant to hypoxia were found to have higher
levels of RAGE expression, and RAGE overexpression
showed significantly prolonged survival under hypoxia [81].
Furthermore, cytoplasmic expression of RAGE was corre-
lated with poorly differentiated HCC, and RAGE was an in-
dependent predictor for both overall survival and disease-
free survival in patients with HCC after hepatectomy [82].
Knockdown of RAGE by small interfering RNAs inhib-

ited proliferation of HuH7 cells and induced G1 arrest
of this cell type, whereas HMGB1, one of the ligands for
RAGE, exerted opposite effects on HuH7 cells [83].
HMGB1-RAGE-evoked NF-κB activation has been
shown to promote the invasiveness of HCC via activation
of heat shock protein 70 [84]. Ethyl pyruvate induced apop-
tosis and cell cycle arrest in G phase in HCC by suppress-
ing the HMGB1-RAGE-induced Akt activation and matrix
metallopeptidase-9 expression [85]. Moreover, in hypoxic
HCC cells, HMGB1 activates the RAGE-signaling pathway
to induce caspase-1 activity with subsequent production of
multiple inflammatory mediators, which, in turn, could en-
hance the invasion and metastasis of HCC [86].
Conclusions
As discussed here, there is accumulating evidence that
RAGE could play a pathological role in numerous liver
diseases via increased oxidative stress generation and in-
flammatory reactions (Figure 1). RAGE ligands up-regulate
RAGE expression itself in the liver, further potentiating
the harmful effects of RAGE ligands on hepatic insulin
resistance, steatosis, and fibrosis, ischemic and non-
ischemic liver disease, and growth and metastasis of HCC,
especially in elderly persons or patients with metabolic
disorders. Blockade of the RAGE downstream pathway,
knockdown of RAGE expression, or restriction of dietary
AGEs might be a novel therapeutic target for these devas-
tating hepatic disorders.
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