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Abstract 

Background Chronic obstructive pulmonary disease (COPD) frequently coexists with various diseases, yet the causal 
relationship between COPD and these comorbidities remains ambiguous. As a result, the aim of our study is to eluci-
date the potential causality between COPD and its common comorbidities.

Methods We employed the Mendelian randomization (MR) method to analyze single nucleotide polymorphism 
(SNP) data of common comorbidities with COPD from FinnGen and Integrative Epidemiology Unit (IEU) databases. 
Causality was primarily assessed using the inverse variance weighting (IVW) method. Multivariable Mendelian rand-
omization (MVMR) analysis was also conducted to eliminate the interference of smoking-related phenotypes. Sensitiv-
ity analysis was conducted to ensure the reliability of our findings.

Results Preliminary univariable MR revealed an increased risk of lung squamous cell carcinoma (LUSC) (IVW: 
OR = 1.757, 95% CI = 1.162–2.657, P = 0.008), chronic kidney disease (CKD) (IVW: OR = 1.193, 95% CI = 1.072–1.326, 
P < 0.001), chronic periodontitis (IVW: OR = 1.213, 95% CI = 1.038–1.417, P = 0.012), and heart failure (HF) (IVW: 
OR = 1.127, 95% CI = 1.043–1.218, P = 0.002). Additionally, the reverse MR analysis indicated that genetic susceptibil-
ity to HF (IVW: OR = 1.272, 95% CI = 1.084–1.493, P = 0.003), obesity (IVW: OR = 1.128, 95% CI = 1.056–1.205, P < 0.001), 
depression (IVW: OR = 1.491, 95% CI = 1.257–1.770, P < 0.001), and sleep apnea syndrome (IVW: OR = 1.209, 95% 
CI = 1.087–1.345, P < 0.001) could raise the risk of COPD. The MVMR analysis showed no causal effect of COPD on sus-
ceptibility to chronic periodontitis after adjusting for smoking.

Conclusions Our study identified that COPD may elevate the risk of LUSC, HF, and CKD. Additionally, our analysis 
revealed that HF, sleep apnea symptoms, depression, and obesity might also increase the susceptibility to COPD. 
These findings revealed a potential causal relationship between COPD and several prevalent comorbidities, which 
may provide new insights for disease early prediction and prevention.
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Background
COPD is one of the most prevalent chronic non-com-
municable diseases worldwide. Despite the availability of 
well-established treatment options, many of the symp-
toms of COPD patients remain uncontrolled, and the 
mortality is still alarmingly high [1]. Meanwhile, with 
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the extension of human life expectancy, the elderly are 
confronted with a singular disease and a confluence of 
multiple systemic diseases referred to as multimorbid-
ity. Patients with COPD also often coexist with other 
intrapulmonary or extrapulmonary clinical disorders [2, 
3], potentially attributable to shared risk factors or the 
influence of systemic inflammation et  al. [4, 5], which 
further increases the physical burden of patients and 
social medical expenditure [6, 7]. Strikingly, it was esti-
mated that the final cause of death for more than two-
thirds of COPD patients is non-respiratory disorders [2].

Due to time and financial resource constraints, the 
relationship between COPD and its comorbidities has 
not been adequately explored. Confounding variables 
such as aging, smoking, and environmental pollution 
pose challenges in large-scale cohort studies that provide 
higher levels of evidence for causation. Therefore, a cost-
effective research method that minimizes confounding 
factors should be employed to establish a causal relation-
ship between COPD and its comorbidities. The find-
ings could lead to early prevention and intervention of 
multimorbidity within the context of COPD, ultimately 
improving patients’ quality of life, prolonging their lifes-
pan, and reducing the burden on public health.

The MR analysis is an increasingly employed approach 
for investigating the causal relationship between obser-
vational risk factors and outcomes. Genetic variations, 
randomly assigned to individuals at birth, are utilized as 
instrumental variables (IVs) to maximally mitigate the 
impact of confounding factors mentioned above and 
reverse causation [8]. Previous studies have utilized MR 
methods to investigate the causal relationship between 
COPD and a few comorbidities, including osteoporosis 

[9], obesity [10], gastroesophageal reflux disease (GERD) 
[11], and iron deficiency anemia [12]. However, the bidi-
rectional MR analysis has not yet been employed to 
thoroughly investigate the causal relationship between 
COPD and its remaining common comorbidities. There-
fore, a comprehensive bidirectional MR analysis utiliz-
ing up-to-date data is warranted to explore the causal 
association between COPD and its commonly observed 
comorbidities.

Methods
Study design
This study is reported in accordance with the STROBE-
MR guidelines (Additional file 1: Table S1). A schematic 
overview of the study design is presented in Fig.  1. In 
brief, we conducted a MR analysis using publicly avail-
able summary statistics from FinnGen and IEU datasets. 
Both exposure and outcome cohorts were limited to indi-
viduals of European ancestry to minimize bias arising 
from population stratification.

Data source for exposure and outcome
The GWAS summary data on COPD were obtained 
from the FinnGen Research public database, compris-
ing 18,266 cases and 311,286 controls. Additionally, the 
GWAS dataset from FinnGen and IEU (https:// gwas. 
mrcieu. ac. uk/) was utilized to derive information on the 
24 common comorbidities associated with COPD. In the 
FinnGen study, diseases were defined using the Inter-
national Classification of Disease (ICD) code. Specific 
information about related diseases is shown in Table 1.

Fig. 1 Overall design of our study

https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
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Data source for smoking‑related phenotypes
The variables chosen for MVMR analysis to represent 
smoking exposure were the lifetime smoking index and 
age of smoking initiation. Wootton et al. developed the 
comprehensive lifetime smoking index, which incor-
porates information on smoking intensity, duration, as 
well as initiation and cessation patterns [13]. Besides, 
the GWAS summary data on age of smoking initiation 
(id: ieu-b-24) were retrieved from IEU database.

Genetic instrumental variables selection
The fundamental requirements for IVs to fulfill the 
MR assumptions in this research are as follows: 1) 
The IVs must be associated with the exposure; 2) the 
IVs must not be associated with any confounders of 
the exposure-outcome association; and 3) the IVs 
should not influence the outcome, except possibly via 

its association with the exposure [14]. To fulfill the 
assumption 1 of MR, we exclusively included individu-
als of European ancestry in our study population and, 
whenever feasible, restricted the P value of the selected 
SNPs to 5 ×  10–8; however, in cases where there were 
insufficient IVs for inclusion in the analysis, we could 
lower the threshold to 5 ×  10–6 step by step [15–17] 
(Table  1). To ensure each SNP’s independence, we 
applied a stringent linkage disequilibrium (LD) correla-
tion coefficient threshold of  R2 < 0.001 and a clumping 
window width of 10000  kb [17].  R2 for each instru-
ment variant:  R2 = 2 × EAF × (1 − EAF) × β2, where EAF 
is the effect allele frequency [18] (Additional file  1: 
Table  S2). Furthermore, we excluded SNPs, rs8040868 
and rs16969968 that were associated with confound-
ers or outcomes according to the comprehensive 
retrieved results of the Phenoscanner V2 database and 
GWAS catalog to fulfill the assumption 2 and 3 [19, 
20]. Detailed traits of comprehensive SNPs retrieved 

Table 1 Details of studies included in the MR analyses for the association between COPD and its common comorbidities

Disease Database Year Population Sample size Case definition P-values 
used to 
screen 
IVs

Cases Controls

Chronic obstructive pulmonary 
disease (COPD)

FinnGen-9 2023 European 18,266 311,286 ICD-10: J43;J44 5 × 10–8

Lung adenocarcinoma FinnGen-9 2023 European 1,553 287,137 ICD-10: C34 5 × 10–6

Lung squamous carcinoma (LUSC) FinnGen-9 2023 European 1,413 287,137 ICD-10: C34 5 × 10–6

Small cell lung cancer (SCLC) FinnGen-9 2023 European 676 287,137 ICD-10: C34 5 × 10–6

Coronary atherosclerosis FinnGen-9 2023 European 47,550 313,400 ICD-10: I24; I25;T82.2;Z95.11 5 × 10–8

Cerebral atherosclerosis FinnGen-9 2023 European 322 376,955 ICD-10: I67.2 5 × 10–6

Atrial fibrillation ebi-a-GCST006414 2018 European 60,620 970,216 Doctor diagnosed/Self report 5 × 10–8

Ischemic heart disease (IHD) FinnGen-7 2021 European 49,030 260,124 ICD-10: I20-I25 5 × 10–8

Heart failure (HF) FinnGen-9 2023 European 27,304 349,973 ICD-10: I11.0, I13.0, I13.2, I50 5 × 10–8

Hypertension FinnGen-9 2023 European 111,581 265,626 ICD-10: I10-I15, I67.4 5 × 10–8

Gastroesophageal reflux FinnGen-9 2023 European 26,184 320,387 ICD-10: K21 5 × 10–7

Gastric ulcer FinnGen-9 2023 European 5,935 320,387 ICD-10: K25 5 × 10–7

Duodenal ulcer FinnGen-9 2023 European 3,520 320,387 ICD-10: K26 5 × 10–8

Venous thromboembolism (VTE) FinnGen-9 2023 European 19,372 357,905 ICD-10: I26; I80; O87.1; O88.2 5 × 10–8

Obesity FinnGen-9 2023 European 21,375 355,786 ICD-10: E66 5 × 10–8

Pulmonary embolism (PE) FinnGen-9 2023 European 9,243 367,108 ICD-10: I26 5 × 10–7

Stroke FinnGen-9 2023 European 25,398 339,920 ICD-10: I9_SAH; I9_ICH; I9_OTHIN-
TRA CRA; I9_STR_EXH; I9_STR_SAH; 
I9_TIA

5 × 10–8

Osteoporosis FinnGen-9 2023 European 7,300 358,014 ICD-10: M80, M81, M82 5 × 10–8

Chronic periodontitis FinnGen-9 2023 European 4,434 259,234 ICD-10: K05.30, K05.31 5 × 10–7

Anxiety FinnGen-9 2023 European 24,662 337,577 ICD-10: F41.2, F41.3, F41.8, F41.9 5 × 10–7

Depression FinnGen-9 2023 European 43,280 329,192 ICD-10: F32, F33 5 × 10–8

Anemias FinnGen-9 2023 European 27,371 88,536 ICD-10: D3 5 × 10–8

Chronic kidney disease (CKD) FinnGen-9 2023 European 9,073 363,177 ICD-10: N18 5 × 10–7

Sleep apnea syndrome FinnGen-9 2023 European 38,998 336,659 ICD-10: G47.3 5 × 10–8

Type 2 diabetes ebi-a-GCST006867 2018 European 61,714 1,178 Doctor diagnosed/Self report 5 × 10–8
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in the Phenoscanner V2 database and GWAS catalog 
was shown in Additional file  1: Table S3. Additionally, 
to mitigate the impact of weak IVs on the experimen-
tal results, SNPs with an F statistic value less than ten 
were excluded based on the formula F = β2

exposure/SE2
ex-

posure. To further verify our findings, we re-performed 
MR analysis using the threshold of R2 = 0.01 to select 
diverse eligible IVs [21].

Statistical analysis
UVMR and MVMR analysis
We employed UVMR to evaluate the causal relationship 
between COPD and its common comorbidities. Given 
the strong correlation between smoking and COPD, we 
also conducted the MVMR analysis to assess the inde-
pendent causal effect of COPD on its comorbidities while 
adjusting for smoking, which itself has a causal impact on 
these comorbidities.

The primary approach for MR analysis in UVMR was 
the inverse-variance weighted (IVW) method, which 
is utilized to integrate the Wald ratio evaluations of 
each instrumental variable into a meta-analysis, and 
is equivalent to performing a weighted linear regres-
sion of the associations between the instrumental vari-
ables [22]. We also employed various other MR models 
such as MR-Egger regression, weighted median, and 
MR pleiotropy residual sum and outlier (MR-PRESSO) 
methods, were used to examine the aforementioned cau-
sality. The MR-Egger regression can be used even when 
all SNPs are invalid. It estimates the causal effect through 
a weighted linear regression of gene-outcome coefficients 
on gene-exposure coefficients [23]. The weighted median 
approach yields consistent effect estimates when at least 
half of the weighted variance attributable to horizontal 
pleiotropy is valid [24]. The MR-PRESSO method, which 
enables the detection and adjustment for horizontal plei-
otropy through outlier removal, was employed to assess 
pleiotropy [25]. In cases where significant pleiotropy was 
observed, we utilized the MR-PRESSO method to elimi-
nate outlier SNPs and reanalyze the data. Among these 
methods, the results obtained from IVW are more reli-
able compared to the other three approaches. For MVMR 
analysis, we utilized multivariable IVW (MV-IVW) as 
the main analysis and multivariable MR-Egger methods 
as the complementary analysis to estimate the effect of 
confounder factors on the outcome.

Sensitivity analysis
The sensitivity analysis encompassed assessments of 
heterogeneity, pleiotropy, and leave-one-out sensitiv-
ity tests. Heterogeneity was evaluated using the IVW 
method and MR-Egger regression, with Cochran’s 
Q-test P > 0.05 means the absence of heterogeneity. If 

there existed heterogeneity, multiplicative random-
effect IVW (IVW-MRE) was chosen as the primary 
MR analysis method [26]. Horizontal pleiotropy was 
detected through the intercept term of the MR-Egger 
method [23]. To address horizontal pleiotropy, we 
employed MR-PRESSO to identify and remove outliers 
that were corrected for horizontal pleiotropy (P < 0.05 
for outlier detection), subsequently evaluating dif-
ferences in estimates before and after outlier correc-
tion[25]. Additionally, a leave-one-out sensitivity test 
was conducted to evaluate the robustness of our MR 
findings [27]. For MVMR, the MVMR-Egger intercept 
test was performed to examine the horizontal pleiot-
ropy [23]. Given that the exposure and outcome sam-
ples for the MR analysis were almost derived from the 
same database, it is inevitable to encounter sample 
overlap. To address this issue, we assessed the extent of 
sample overlap between exposure and outcome in the 
Finnish database and subsequently performed online 
calculations via a dedicated platform to determine Type 
I errors and potential bias (https:// sb452. shiny apps. io/ 
overl ap/)  [28].

The “TwosampleMR” package (version 0.5.7) of R 
software (version 4.2.2) was employed to analyze the 
causal-effect relationship between COPD and its com-
mon comorbidities. A conservative Bonferroni-corrected 
threshold (P < 0.05/24, 0.0021, because 24 comorbidities 
were evaluated for bidirectional analyses) was adopted 
to address multiple testing. Associations with P < 0.0021 
were considered as significant evidence, while associa-
tions with P > 0.0021 and P < 0.05 were defined as sugges-
tive evidence based on IVW method.

Results
Characteristics of included IVs and overall experimental 
design
Through the IVs screening process, the number of instru-
mental variables associated with 24 common comorbidi-
ties of COPD ranged from 3 to 187. The specific details 
regarding these instrumental variables can be found in 
Table  1 and Additional file  1: Table  S3. However, given 
that the majority of samples were sourced from the 
FinnGen database and there was some degree of overlap 
between them, we searched the sample overlap rate in 
the FinnGen database and calculated the corresponding 
magnitude of biases and Type I error rate using available 
online tools (Additional file  1: Table  S4). The potential 
bias caused by sample overlap was considered insignifi-
cant (bias estimate < 0.005). All SNPs involved exhibited 
F statistics greater than 20, indicating robust genetic 
instruments. Figure 1 provides an overview of the experi-
mental design employed in this study.

https://sb452.shinyapps.io/overlap/
https://sb452.shinyapps.io/overlap/


Page 5 of 11Wang and Sun  European Journal of Medical Research          (2024) 29:143  

Forward univariable MR analysis
For the preliminary forward MR analysis, it was dis-
covered that COPD is potentially causally related to 
an increased risk of LUSC (IVW: OR = 1.757, 95% 
CI = 1.162–2.657, P = 0.008), HF (IVW: OR = 1.127, 
95% CI = 1.043–1.218, P = 0.002), osteoporosis (IVW: 

OR = 1.197, 95% CI = 1.037–1.381, P = 0.014), chronic 
periodontitis (IVW: OR = 1.213, 95% CI = 1.038–1.417, 
P = 0.012) and CKD (IVW: OR = 1.193, 95% CI = 1.072–
1.326, P < 0.001) (Fig.  2, Table  2 and Additional file  1: 
Table S5).

Fig. 2 Preliminary UVMR assessments of the associations between genetic susceptibility to COPD and its prevalent comorbidities. Purple 
boxes denote positive correlations, while light blue boxes signify negative associations. The asterisk “*” represents P-values of MR estimates 
between the Bonferroni-adjusted threshold (P < 0.0021) and 0.05. The double asterisk “**” designates P < 0.0021

Table 2 The preliminary forward UVMR results of significant relationship between COPD and its common comorbidities mainly based 
on IVW method (P < 0.05)

Bold values represent P < 0.05 for the result

CI confidence interval, IVW inverse variance weighted, OR odds ratio, SE standard error, SNPs single-nucleotide polymorphisms

Exposure Outcome Method nSNP Beta SE P OR 95% CI

COPD Lung squamous carcinoma IVW 12 0.564 0.211 0.008 1.757 1.162–2.657
MR-Egger 12 0.690 0.615 0.288 1.993 0.597–6.655

Weighted median 12 0.519 0.247 0.036 1.680 1.036–2.724
MR-PRESSO 12 0.149 0.458 0.752 1.160 0.472–2.849

Heart failure IVW 13 0.120 0.040 0.002 1.127 1.043–1.218
MR-Egger 13 0.161 0.093 0.114 1.174 0.978–1.410

Weighted median 13 0.156 0.045 0.001 1.169 1.070-1.218
MR-PRESSO 13 0.120 0.040 0.011 1.127 1.043-1.218

Osteoporosis IVW 13 0.179 0.073 0.014 1.197 1.037–1.381
MR-Egger 13 0.520 0.130 0.002 1.682 1.303–2.170
Weighted median 13 0.179 0.073 0.030 1.197 1.037–1.381
MR-PRESSO 13 0.212 0.080 0.008 1.236 1.056–1.447

Chronic periodontitis IVW 13 0.193 0.079 0.015 1.213 1.038–1.417
MR-Egger 13 0.379 0.179 0.057 1.461 1.030–2.073

Weighted median 13 0.087 0.092 0.362 1.091 0.911–1.307

MR-PRESSO 13 0.342 0.097  < 0.001 1.408 1.164–1.703
Chronic kidney disease IVW 12 0.176 0.054 0.001 1.193 1.072–1.326

MR-Egger 12 0.270 0.125 0.056 1.310 1.025–1.675

Weighted median 12 0.193 0.068 0.005 1.213 1.061–1.387
MR-PRESSO 12 0.176 0.054 0.008 1.193 1.072–1.326
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Upon conducting a sensitivity analysis, heterogene-
ity was observed between studies of LUSC, osteoporo-
sis and COPD as determined by Cochran’s Q statistics. 
Additionally, the MR-Egger intercept test revealed the 
presence of horizontal pleiotropy in the results of the 
analysis between COPD and osteoporosis. (Additional 
file 1: Table S6). For the leave-one-out analysis, our find-
ings indicate that no individual genetic variant holds 
significant influence over the results (Additional file  1: 
Figure S1). Ultimately, due to the horizontal pleiotropy 
on the outcome involved between COPD and osteopo-
rosis which cannot be adjusted by MR-PRSSO method, 
thus the preliminary result that liability to COPD could 
increase the risk of osteoporosis is unreliable.

Reverse univariable MR analysis
Preliminary reverse MR Analysis results suggest that 
genetic predisposition to specific comorbidities of 
COPD may also be associated with its outcome. From 
one perspective, genetic predisposition to IHD (IVW: 
OR = 0.867, 95% CI = 0.800–0.939, P < 0.001) may confer 
a protective effect on the development of COPD. Con-
versely, genetic susceptibility to HF (IVW: OR = 1.272, 
95% CI = 1.084–1.493, P = 0.003), hypertension (IVW: 
OR = 1.067, 95% CI = 1.016–1.120, P = 0.010), obesity 
(IVW: OR = 1.128, 95% CI = 1.056–1.205, P < 0.001), 
depression (IVW: OR = 1.491, 95% CI = 1.257–1.770, 
P = 0.0005), anemias (IVW: OR = 1.227, 95% CI = 1.061–
1.420, P = 0.006) and sleep apnea syndrome (IVW: 
OR = 1.209, 95% CI = 1.087–1.345, P < 0.001) may exert 
a detrimental effect on COPD (Fig. 3, Table 3 and Addi-
tional file 1: Table S7).

The sensitivity analysis revealed the presence of het-
erogeneity among the studies on IHD, hypertension, 

coronary atherosclerosis, anemias, depression, and 
COPD based on Cochran’s Q statistic. Furthermore, the 
MR-Egger intercept revealed the presence of horizontal 
pleiotropy in studies investigating the association among 
IHD, hypertension, coronary atherosclerosis, and COPD 
(Additional file 1: Table S8). No SNP was found to drive 
the above associations (Additional file  1: Figure S2). 
Finally, the outcomes that the association between IHD, 
hypertension, coronary atherosclerosis, anemias and 
COPD were unsteady due to the unadjustable horizontal 
pleiotropy.

Multivariable MR analysis
Considering the close relationship between smoking and 
COPD, we employed the multivariable MR to adjust the 
effect of smoking confounding factors on the outcome. 
The results showed that after adjusting the influence of 
lifetime smoking index and age of initiation smoking con-
founders through MVMR, there was no causal relation-
ship between COPD and chronic periodontitis. However, 
individuals who are liable to COPD could be prone to suf-
fer LUSC (OR = 1.998,  95%CI = 1.249–3.197, P = 0.004), 
HF (OR = 1.174, 95%CI = 1.018–1.354, P = 0.027) and 
CKD (OR = 1.293, 95%CI = 1.070–1.564, P = 0.008) was 
consistent with the preliminary results based on MVMR-
IVW. No significant horizontal pleiotropy was detected 
in the sensitivity analysis (Additional file 1: Table S9).

The outcome of secondary analysis
The threshold of  R2 for the selection of IVs was adjusted 
to 0.01 to investigate the potential impact of different IVs 
on the final outcome. Notably, our secondary MR analysis 
yielded consistent results with those obtained from the 
preliminary analysis (Additional file 1: Table S10–S14).

Fig. 3 The preliminary MR assessments of the associations between genetic susceptibility to prevalent comorbidities and chronic obstructive 
pulmonary disease (COPD)
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Summary results of bidirectional MR analysis
Collectively, after preliminary MR and subsequent sensi-
tivity analysis, our study identified that liability to COPD 
may elevate the risk of LUSC, HF, and CKD. Addition-
ally, our analysis revealed that genetic predisposition to 
HF, sleep apnea symptoms, depression, and obesity might 
also increase the susceptibility to COPD. Among them, 
there exists strong evidence linking CKD, sleep apnea 
syndrome, depression, obesity, and COPD. The compre-
hensive results of our research are depicted in Fig. 4.

Discussion
To the best of our knowledge, the current study repre-
sented the first comprehensive MR analysis to investigate 
the causal relationship between COPD and its common 
comorbidities using the UVMR and MVMR approaches. 
Our findings revealed that genetic liability to COPD 
caused a higher risk of LUSC, HF and CKD. Additionally, 

genetic predisposition towards HF, obesity, sleep apnea 
syndrome, and depression increases the risk of COPD 
after excluding studies of existing horizontal pleiotropy, 
which could influence the final accuracy of our outcome.

Lung cancer, known for its rapid progression and poor 
prognosis, is a challenging disease to manage. Smoking 
is a shared risk factor for both COPD and lung cancer, 
interfering with investigating their causal relationship. 
However, Huang et  al. [29] examined 24 pooled case–
control studies from the International Lung Cancer Con-
sortium (ILCCO). They demonstrated that 86% of the 
increased risk of SCLC occurs in individuals with COPD 
independent of smoking status. Besides, Wang et al. [30] 
reported that individuals diagnosed with COPD, specifi-
cally those with an emphysema-predominant phenotype, 
exhibited a heightened risk profile for SCLC. Several 
different hypotheses have been proposed to explain the 
possibility that COPD increases the risk of lung cancer. 

Table 3 The preliminary reverse UVMR results of significant relationship between COPD and its common comorbidities mainly based 
on IVW method (P < 0.05)

Bold values represent P < 0.05 for the result

Exposure Outcome Method nSNP Beta SE P OR 95% CI

Ischemic heart disease (IHD) COPD IVW 49 -0.143 0.041  < 0.001 0.866 0.800–0.939
MR-Egger 49 -0.232 0.098 0.023 0.793 0.654–0.962

Weighted median 49 -0.186 0.047  < 0.001 0.830 0.757–0.911
MR-PRESSO 49 -0.143 0.041 0.001 0.866 0.800–0.939

Heart failure IVW 4 0.241 0.082 0.003 1.272 1.084–1.493

MR-Egger 4 0.190 0.332 0.625 1.210 0.631–2.320

Weighted median 4 0.264 0.107 0.014 1.302 1.055–1.607
MR-PRESSO 4 0.241 0.079 0.056 1.272 1.089–1.487

Hypertension IVW 181 0.064 0.025 0.010 1.067 1.016–1.120
MR-Egger 181 -0.058 0.075 0.438 0.944 0.816–1.092

Weighted median 181 0.078 0.031 0.011 1.082 1.018–1.149
MR-PRESSO 181 0.064 0.025 0.011 1.067 1.016–1.120

Obesity IVW 29 0.120 0.034  < 0.001 1.128 1.056–1.205
MR-Egger 29 -0.013 0.089 0.882 0.987 0.828–1.176

Weighted median 29 0.061 0.042 0.148 1.063 0.979–1.154

MR-PRESSO 29 0.120 0.034 0.001 1.128 1.056–1.205
Depression IVW 14 0.400 0.087  < 0.001 1.491 1.257–1.769

MR-Egger 14 0.317 0.519 0.552 1.373 0.497–3.795

Weighted median 14 0.420 0.098  < 0.001 1.523 1.257–1.844
MR-PRESSO 14 0.400 0.087 0.001 1.491 1.257–1.769

Anemias IVW 7 0.205 0.074 0.006 1.227 1.061–1.420
MR-Egger 7 0.118 0.146 0.455 1.125 0.846–1.497

Weighted median 7 0.272 0.067  < 0.001 1.313 1.152–1.496
MR-PRESSO 7 0.205 0.074 0.033 1.227 1.061–1.420

Sleep apnea syndrome IVW 19 0.190 0.054  < 0.001 1.209 1.087–1.345
MR-Egger 19 0.183 0.208 0.391 1.201 0.798–1.808

Weighted median 19 0.150 0.076 0.048 1.162 1.001–1.348

MR-PRESSO 19 0.190 0.054 0.003 1.209 1.087–1.345



Page 8 of 11Wang and Sun  European Journal of Medical Research          (2024) 29:143 

One possible explanation is that chronic inflammation 
and the accumulating release of free radicals may facili-
tate genetic malignant transformation during tissue 
reparation [31, 32]. Additionally, the accumulation of 
detrimental substances resulting from impaired pulmo-
nary ventilation function and airway cilia destruction in 
patients with COPD could also contribute to the develop-
ment of lung cancer [33]. Our comprehensive MR analy-
sis indicated that individuals liable to COPD could have a 
higher chance of developing LUSC, but is not associated 
with lung adenocarcinoma and SCLC development, indi-
cating that COPD may not increase the risk of all types of 
lung cancer. Therefore, additional experiments are nec-
essary to elucidate the relationship between COPD and 
lung malignancy.

Our preliminary UVMR analysis showed that geneti-
cally predisposition to COPD could elevate the risk of 
periodontitis, but this finding was not statistically sig-
nificant after correcting for smoking confounding factors 
by MVMR analysis, suggesting that smoking exposure 
is primarily a contributing factor to periodontitis rather 
than COPD itself. Although a comprehensive longitudi-
nal cohort study conducted by Shen et  al. [34] revealed 
that individuals with COPD had a 1.19 times greater like-
lihood of developing periodontitis compared to those 
without COPD, the study did not consider the additional 
effect of smoking on periodontitis.

Our research provided significant evidence that indi-
viduals with a genetic predisposition to COPD may be 
more susceptible to developing CKD. A comprehensive 
case-cohort study revealed that the likelihood of CKD 

in COPD patients was 1.61 times greater than in those 
without COPD [35]. Our study results present a contrast-
ing view to those obtained from a previous MR Analysis, 
where reduced renal function was found to be associated 
with lower lung function. At the same time, the recipro-
cal was not statistically significant. This inconsistency 
could be attributed to the fact that the MR Analysis 
only examined indicators of pulmonary, forced expira-
tory volume in 1  s (FEV1)/forced vital capacity (FVC) 
and renal function, estimated glomerular filtration rate 
(eGFR) without considering the disease status [36]. The 
pathophysiological mechanisms underlying the develop-
ment of CKD in patients with COPD are multifactorial 
and complex. However, previous studies have shown that 
the hypoxia and hypercapnia resulting from COPD can 
lead to renal vasoconstriction, thus compromising renal 
blood flow and sympathetic activation [37, 38]. Further-
more, the systematic inflammatory response triggered by 
COPD may also contribute to the development and pro-
gression of CKD.

It is worth noting that sleep apnea is a common con-
dition that often coexists with COPD. The outcome of 
our reverse MR analysis provided significant evidence 
supporting the findings that individuals with a genetic 
predisposition for sleep apnea syndrome may be at an 
elevated risk of developing COPD. However, there have 
been varying findings between prior studies. Greenberg-
Dotan et al. [39] discovered that sleep apnea can elevate 
the risk of COPD in a case–control study. In contrast, 
other community-based controlled studies of older adults 
have reported the opposite outcome [40]. The differences 

Fig. 4 The overall outcome of our study
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in the conclusions of the two studies may be due to the 
differences in the age and number of subjects enrolled in 
the study. Nonetheless, it has been well established that 
intermittent hypoxia-induced by sleep apnea syndrome 
can initiate the activation of hypoxia-driven and oxida-
tive stress pathways, thereby triggering airway and sys-
temic inflammatory responses [41]. To corroborate the 
results of our MR analysis, Additional file 1: studies with 
longer follow-up durations may be necessary.

Interestingly, our MR study revealed that genetic lia-
bility to depression could elevate the risk of developing 
COPD. A previous meta-analysis and systematic review, 
including sixteen relevant follow-up studies conducted by 
Atlantis et al. [42], demonstrated a link between depres-
sion and a higher risk of COPD outcomes. However, 
Martuccci [43] conducted a phenome-wide association 
study, which revealed no significant causal relationship 
between major depressive disorder and lung function at 
the genetic level, even after excluding the confounding 
factor of smoking. Nevertheless, it is essential to note 
that their study solely relied on a genome-wide associa-
tion study (GWAS) of lung function, and their selection 
criteria exclusively encompassed patients with depres-
sion exhibiting severe symptoms. These methodological 
disparities may potentially contribute to discrepancies 
compared to our findings. The underlying mechanisms 
by which depression may contribute to the development 
of COPD remain unclear. However, several mechanisms 
have been speculated, such as depression leading to sym-
pathetic activation and an increase in systemic inflam-
matory factors [27, 44]. Further studies are needed to 
establish the precise nature of the association between 
depression and COPD and the mechanisms that underlie 
this relationship.

Previous studies have established a significant relation-
ship between COPD and obesity or Body Mass Index. 
Our latest analysis, which harnessed the power of the 
FinnGen database, corroborated these findings and sug-
gested that obesity increases the susceptibility to COPD. 
The observed correlation may be attributed to the impact 
of obesity on chest volume, which can lead to physical 
repercussions. The inflammatory factors and hormonal 
changes associated with obesity are believed to exacer-
bate the progression of COPD [45, 46].

Our research has shown that liability to COPD are 
more likely to increase the risk of HF and vice versa. 
According to a prospective, multicenter, longitudinal 
cohort study conducted by LEKARZ et  al. COPD was 
associated with a higher myocardial fibrosis burden and 
HF hospitalization compared to non-COPD patients 
[47]. Additionally, a recent experimental study has shown 
that elastase-induced COPD resulted in the develop-
ment of diastolic cardiomyopathy in an animal model, 

independent of the confounding effects of cigarette 
smoke [48]. Given that HF is predominantly prevalent 
among elderly patients and the progression of COPD is 
a prolonged process, conducting a prospective cohort 
study to determine the causal relationship between HF 
and COPD would prove to be a formidable challenge. 
Notably, HF exists dysregulation of innate immunity 
and chronic inflammatory response. Furthermore, HF 
and COPD share common molecular and mechanistic 
pathways [49], which suggests a potential explanation 
for the increased vulnerability of HF patients to COPD 
development.

Our research has leveraged GWAS data as new as pos-
sible to scrutinize the causal connection between COPD 
and its common comorbidities. This approach has suc-
cessfully addressed the challenge of establishing causality 
between diseases due to the impracticability of conduct-
ing a large-scale prospective study. Moreover, we have 
utilized various statistical techniques to ensure the preci-
sion of our outcomes and conducted a parallel sensitivity 
analysis to confirm the dependability of our findings.

Our study is subject to several limitations that war-
rant discussion. Firstly, to ensure homogeneity by race, 
we limited our study to populations of European ethnic-
ity. Consequently, the generalizability of our findings is 
restricted to European populations, indicating the need 
for future studies that explore more diverse populations. 
Secondly, it is worth mentioning that majority of the 
study populations we analyzed were mainly derived from 
Finnish databases, which could potentially lead to some 
bias due to the inevitable overlap between exposure and 
outcome. In the future, the MR analysis based on GWAS 
databases from diverse sources is needed to verify our 
conclusions. Last but not least, although the MR analy-
sis serves as an approach to infer the causal relationship 
between exposure and outcome using IVs, it is still cru-
cial to confirm our findings with large-scale clinical stud-
ies or experiments.

Conclusions
To sum up, our study has effectively established a causal 
connection between COPD and prevalent comorbidities 
using MR. This discovery could offer fresh insights into 
preventing and managing concerned diseases in clinical 
settings. Nonetheless, extensive prospective studies and 
animal experiments should be conducted to verify the 
precision and applicability of our results in the future.
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