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Abstract 

Background Bladder cancer is a common malignancy of the urinary system, and the survival rate and recurrence 
rate of patients with muscular aggressive (MIBC) bladder cancer are not ideal. Hypoxia is a pathological process 
in which cells acquire special characteristics to adapt to anoxic environment, which can directly affect the prolifera-
tion, invasion and immune response of bladder cancer cells. Understanding the exact effects of hypoxia and immune-
related genes in BLCA is helpful for early assessment of the prognosis of BLCA. However, the prognostic model 
of BLCA based on hypoxia and immune-related genes has not been reported.

Purpose Hypoxia and immune cell have important role in the prognosis of bladder cancer (BLCA). The aim of this 
study was to investigate whether hypoxia and immune related genes could be a novel tools to predict the overall 
survival and immunotherapy of BLCA patients.

Methods First, we downloaded transcriptomic data and clinical information of BLCA patients from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A combined hypoxia and immune signature 
was then constructed on the basis of the training cohort via least absolute shrinkage and selection operator (LASSO) 
analysis and validated in test cohort. Afterwards, Kaplan–Meier curves, univariate and multivariate Cox and subgroup 
analysis were employed to assess the accuracy of our signature. Immune cell infiltration, checkpoint and the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm were used to investigate the immune environment and immu-
notherapy of BLCA patients. Furthermore, we confirmed the role of TFRC in bladder cancer cell lines T24 and UMUC-3 
through cell experiments.

Results A combined hypoxia and immune signature containing 8 genes were successfully established. High-risk 
group in both training and test cohorts had significantly poorer OS than low-risk group. Univariate and multivariate 
Cox analysis indicated our signature could be regarded as an independent prognostic factor. Different checkpoint 
was differently expressed between two groups, including CTLA4, HAVCR2, LAG3, PD-L1 and PDCD1. TIDE analysis 
indicated high-risk patients had poor response to immunotherapy and easier to have immune escape. The drug sen-
sitivity analysis showed that high-risk group patients were more potentially sensitive to many drugs. Meanwhile, TFRC 
could inhibit the proliferation and invasion ability of T24 and UMUC-3 cells.
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Introduction
Bladder cancer (BLCA) is a common malignant can-
cer in urinary system [1]. Unlike other cancers, BLCA 
can be divided into non-muscle-invasive (NMIBC) and 
muscle-invasive (MIBC) bladder cancer [2]. Non-inva-
sive and invasive tumors differ in clinical presentation, 
tumor invasiveness, pathological type and prognosis 
[3]. Besides, muscle-invasive cancers are more likely to 
have recurrence. As for treatment, considering approxi-
mately 75% of patients with BC present with a disease 
confined to the mucosa (stage Ta, CIS) or submucosa 
(stage T1) [4], the standard care strategy includes a com-
bination of endoscopic resection and intravesical bacil-
lus of Calmette-Guerin (BCG) instillation, particularly 
for patients who have high-risk NMIBC [5]. While it is 
well established that BCG immunotherapy is currently 
the best treatment for NMIBC [6], up to 40% of patients 
show no response to this treatment. A study found that 
multifocality, lymphovascular invasion and high grade 
on re-TURB were independent predictors for response 
to BCG treatment [7]. For MIBC patients, radical sur-
gery is generally selected, and adjuvant therapy such as 
chemotherapy and immunotherapy is decided according 
to postoperative pathological conditions [8, 9]. However, 
even after comprehensive treatment, the survival rate 
and recurrence rate of MIBC patients are still not ideal 
[10]. Therefore, predictors of early prognosis and immu-
notherapy responsiveness of bladder cancer need to be 
identified.

Hypoxia is a pathological process by which cells 
acquire specific properties to adapt to a hypoxic environ-
ment [11]. Hypoxia can affect the proliferation, invasion 
and immune response of bladder cancer cells [12]. This 
is believed to be associated with changes in the tumor 
microenvironment (TME) [13, 14]. Nevertheless, hypoxia 
can also influence the radiotherapy, chemotherapy and 
even the genetic instability and malignant progression 
of MIBC [15, 16]. These studies indicated that hypoxia 
is closely related to the prognosis of bladder cancer and 
thus can be thought to be a potential treatment.

TME is a complex system composed of cancer cells, 
extracellular matrix, immune cells and other molecules, 
which plays an important role in the occurrence and 
development of bladder cancer [17–19]. It is thought that 
the loss of immune cell function in the tumor microen-
vironment can free malignant tumors from immune 
surveillance [20]. In recent years, immune-related genes 

have attracted more and more attention from research-
ers. Xu et  al. found immune-related genes (IRGs) were 
associated with prognosis in RCC [17]. Xiao et al. found 
IRGs were involved in T-cell activation, cell killing, and 
NK cell activity and other biological processes and were 
strongly related to OS [22].

Up to now, the relationship between the expression of 
hypoxia- and immune-related genes and BLCA has not 
been studied in detail. In this study, a risk score model 
based on eight hypoxia- and immune-related genes was 
constructed and validated by GEO database. The AUC 
values and survival analysis results illustrated the fea-
sibility and accuracy of the risk score model. TIDE and 
TCIA database showed the high value of risk score model 
in immunotherapy response. Taking together, our results 
demonstrated the high value of risk score model and 
nomogram for the prediction of survival and immuno-
therapy for patients with BLCA.

Methods
Data collection
The gene expression data and corresponding clinico-
pathological characteristics (including age, gender, sur-
vival status, survival time, tumor grade, tumor stage, 
TNM stage.) of bladder cancer patients were down-
loaded from The Cancer Genome Atlas (TCGA) data-
base (https:// gdc- portal. nci. nih. gov/), which including 
412 BLCA samples and 19 normal bladder samples. 
GSE13507 from Gene Expression Omnibus (GEO) data-
base (https:// www. ncbi. nlm. nih. gov/ geo/) was down-
loaded as test cohort. Simple nucleotide variation (SNV) 
data were obtained from TCGA database, and tumor 
mutation burden (TMB) was defined as the total number 
of nonsynonymous alterations (SNVS or indels) for each 
patient.

Identification of differentially Expressed HRGs and IRGs
254 hypoxia-related genes were collected from GSEA 
database (http:// www. gsea- msigdb. org/ gsea) [23, 24]. 
IMMPORT database (https:// www. immpo rt. org/ home) 
was used to collect IRGs and 1794 IRGs were selected. 
“limma” R package was employed to identify the differen-
tially expressed genes (DEGs) between tumor and normal 
samples with FDR < 0.05 and |logFC| > 1. These DEGs 
were visualized by heatmap and volcano plot. Venn dia-
grams were used to graphically describe the combination, 

Conclusion A combined hypoxia and immune-related gene could be a novel predictive model for OS and immuno-
therapy estimation of BLCA patients and TFRC could be used as a potential therapeutic target in the future.
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intersection, and difference between DEGs, HRGs and 
IRGs [25].

Pathway enrichment analysis
To better understand the pathways and bioactivities of 
these intersection genes, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) was employed to analysis signal-
ing pathways and Gene Ontology (GO) was used to ana-
lyze biologic processes, molecular functions, and cellular 
components through “clusterProfiler” R package. These 
analyses were aimed to determine whether the genes fil-
tered for further investigation were indeed involved in 
hypoxia and immunity.

Construction of risk model based on intersection genes
First, we used univariate Cox regression analysis to iden-
tify the relationship between the expression of HRGs and 
IRGs and overall survival. Then the least absolute shrink-
age and selection operator (LASSO) and multivariate 
Cox regression were used to determine the optimal prog-
nostic factors of the model. After that, risk score model 
was calculated according to the following formula:

The Coef means the coefficient of each relevant mRNA 
in the risk model. Based on the median risk score, TCGA 
cohort and GEO cohort was divided into high-risk and 
low-risk groups while the TCGA cohort was defined as 
train cohort and GEO as test cohort.

Analysis and validation of risk model
Kaplan–Meier curves were plotted to illustrate the differ-
ent OS between high- and low-risk groups in train and 
test cohorts via “survival” and “survminer” R packages. 
Patients’ survival status and survival time were also esti-
mated. Besides, progression-free survival (PFS) between 
subgroups of BLCA patients in test cohort was plotted 
via Kaplan–Meier curves. Univariate and multivariate 
Cox regression were conducted to assess whether risk 
model could be regarded as independent risk parameter. 
Principal component analysis (PCA) were employed to 
the model feasibility and accuracy. The accuracy, sensi-
tivity, and specificity of the model were estimated by the 
Receiver Operating Characteristic (ROC) curves.

Identification the association of risk score model 
and clinicopathological features
Heatmap was plotted by “pheatmap” R package to illus-
trate the relationship between eight genes’ expression 
and different clinicopathological features including risk, 
age, gender, stage, grade, T, N and M. Box plots illus-
trated the different risk score in different clinicopatho-
logical features.

Construction of nomogram
We constructed a nomogram survival model via “rms” 
R package to predict the 1-, 3- and 5-year survival 
probability. Calibration curves, ROC curves, univariate 
Cox and multivariate Cox analysis were employed to 
illustrate the high accuracy of nomogram.

Analysis of DEGs between subgroups
The different expressed genes (DEGs) between 
subgroups were identified with FDR < 0.05 and 
|log2FC| ≥ 1. Gene set variation analysis (GSVA) by 
“GSVA”R package was used to estimate the functional 
enrichment pathways in two subgroups.

Estimation of the immune cell infiltration, immune 
microenvironment, and genetic alterations analysis
The immune microenvironment including stromal 
score (stromal content), immune score (degree of 
immune cell infiltration), ESTIMATE score (a compos-
ite marker of stroma and immunity) and tumor purity 
was illustrated by “estimate” R package. The immune 
cell infiltration between two groups were calculated 
by CIBERSORT and visualized in box plots. The coa-
lition of different immune cell and OS were plotted 
through Kaplan–Meier curves. TMB was analyzed by 
the “maftools” R package. The survival probability of 
low-TMB and high-TMB patients in subgroups was 
also assessed.

Checkpoint estimation and immune therapy estimation
Immune-checkpoint between high-and low-risk groups 
was estimated. The expression of common checkpoint 
including CTLA4, PD-L1, PDCD1, LAG3 and HAVCR2 
between two subgroups was investigated, and their coali-
tion with risk score was also searched. Furthermore, the 
tumor immune dysfunction and exclusion (TIDE) algo-
rithm was conducted to determine response to immuno-
therapy in TCGA cohort. Then we used Cancer Immune 
Atlas (TCIA) database (http:// tcia. at/) to obtain immu-
notherapy files of BLCA patients and further investigated 
the potential predictive roles of risk score in immuno-
therapy response in different treatments.

Potential drugs prediction
Furthermore, we calculated the chemotherapy sensitiv-
ity of each BLCA patient according to the Genomics of 
Drug Sensitivity in Cancer (GDSC) database. IC50 values 
for each chemotherapy drug were further determined by 
regression analysis. IC50 values for each drug was further 

http://tcia.at/
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determined and was compared between high-risk and low-
risk groups via boxplots.

Cell lines and culture conditions
T24 and UMUC3 cells are acquired from Procell Life Sci-
ence & Technology Co., Lt. T24 cells are cultured with 
RPMI-1640 medium supplemented with 10% FBS and 1% 
ABAM, while UMUC3 cells are cultured in the UM-UC-3 
Cells Complete Medium. All cells were maintained at 37 ℃ 
in a humidified 5%  CO2 incubator.

Edu assay
T24 and UMUC3 cells were seeded at a density of 
4000cells/well into 96-well plates then transported with 
two independent siRNA targeting TFRC. After 48 h, cells 
were added with EdU and continued incubating for another 
2 h. Then, the cells were fixed with a 4% paraformaldehyde 
solution for 30 min. The staining process was conducted in 
accordance with the manufacturer’s instructions. Images 
were captured under microscope, and the number of posi-
tive cells was quantified utilizing imageJ software.

Wound healing assay
T24 and UMUC3 cells were seeded in 6-well plates in trip-
licates for each condition, two of which were treated with 
two independent si-TFRC. The cells were allowed to grow 
until full confluency was achieved. A 10 µL pipette was 
used to form a uniform size wound in the center of the cell 
monolayer for each condition, and a photograph was taken 
at 0  h. Cells were then observed for wound healing and 
photomicrograph at 48 h was taken under microscope.

Invasion assay
The cells were transfected with either control or siRNA 
and seeded on the Matrigel-coated PET membrane in the 
upper compartment. The lower compartment was filled 
with complete growth media and the plates were main-
tained at 37  °C for 24 h. Cells that migrated to the lower 
side of membrane were fixed and stained with crystal vio-
let. The cells were then photographed using a light micro-
scope and the number of cells were counted using ImageJ 
software.

Statistical analysis
All statistical analyses were used R software (Version 4.1.3). 
p < 0.05 was served as the cutoff criterion.

Results
Identification of differently expressed hypoxia‑related 
genes and immune‑related genes in BLCA patients
We screened 7394 differently expressed genes between 
normal and tumor tissue samples (Additional file  1: 
Fig. S1 and Additional file  3: Table  S1), including 2848 

downregulated genes and 4546 upregulated genes with 
FDR value < 0.05 and |logFC|> 1 (Fig.  1A). Using pub-
lic databases, we identified 254 hypoxia-related genes 
(HRGs) and 1793 immune-related genes (IRGs). Then we 
employed Venn diagram to identify intersection genes 
from DEGs, HRGs and IRGs. Finally, 18 genes were fil-
tered (Fig. 1B, Additional file 4: Table S2) and considered 
the differentially expressed hypoxia- and immune-related 
genes. These genes were used for subsequent analysis.

Functional analysis of hypoxia‑related genes 
and immune‑related genes pathways
GO function analysis showed that these genes were 
involved in hypoxia, cell proliferation, steroid hormone 
and lipopolysaccharide (Fig. 1C). KEGG pathway analy-
sis showed that these genes were involved in PI3K-Akt 
signaling pathway, MAPK signaling pathway, Rheuma-
toid arthritis, IL-17 signaling pathway and TNF signal-
ing pathway (Fig. 1D). These results indicated these genes 
were closely related to hypoxia and immunity.

Construction and validation of risk score model
First, we used univariate Cox analysis to identify the rela-
tionship between these genes and overall survival, and 
10 genes were screened (Fig. 2A). To optimize model, we 
employed LASSO regression analysis (Fig. 2B, C). There-
fore, a risk score model including JUN, STC1, PROK1, 
TFRC, TGFB3, PLAU, PGF and SPP1 was established 
(Additional file  5: Table  S3). Subsequently, we divided 
BLCA patients in TCGA and GEO cohorts into low 
and high-risk groups according to the median risk score 
(Fig. 2E, F). The prognosis of BLCA patients in the low-
risk group was better than that in the high-risk group 
(Fig. 2H, I). The expression levels of the 8 hypoxia- and 
immune-related genes were visualized in the heatmap 
(Fig.  2J, K). Kaplan–Meier curves illustrated that high-
risk group had worse OS than low-risk group both in 
train cohort and test cohort (p < 0.001 and p = 0.039, 
respectively) (Fig.  2D, G). High-risk group was also 
observed worse PFS than low-risk group in train cohort 
(p = 0.003) (Fig. 2L). The univariate Cox and multivariate 
Cox analysis was performed in the train cohort, which 
indicated our risk score model was an independent prog-
nostic factor (p < 0.001) (Fig. 3A, B). PCA and t-SNE anal-
ysis illustrated our model could distinguish dimensions 
among different groups both in train and test cohorts 
(Fig. 3C, D, F, G). ROC analysis showed the AUCs for 1-, 
3- and 5-year survival was 0.629, 0.668 and 0.704, respec-
tively in train cohort and 0.681, 0.649 and 0.635, respec-
tively, in test cohort (Fig.  3E, F). These data suggested 
that our model could be helpful in predicting the out-
come of BLCA patients.
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The coalition between different clinical features and risk 
model
We conducted a heatmap to illustrate the coalition 
between different clinical features and risk model 
(Fig. 4A). Risk score has close relation with age (> 60 years 
or ≤ 60  years), gender (female or male), grade (high or 
low), stage (stage I–II or stage III–IV), T (T1–2 or T3–4), 
N (N0 or N1–3) and M (M0 or M1) (Fig. 4B–H). These 
results indicated our risk score model was in good agree-
ment with different clinical and pathological features.

Construction of predictive nomogram and calibration 
curves
Based on the previous results, we constructed a predic-
tive nomogram to provide a more convenient and accu-
rate tool that can predict the survival risk of particular 

BLCA patients (Fig. 4I). Our results showed that nomo-
grams could be used as an effective tool for prognostic 
assessment of BLCA patients, and the calibration curves 
indicated our nomogram had high accuracy in BLCA 
patients’ survival rate (Fig. 4J).

Functional enrichment analysis of DEGs between high‑ 
and low‑risk groups
With FDR value < 0.05 and |logFC|> 1, we identified 1547 
differently expression genes between subgroups, includ-
ing 248 downregulated genes and 1299 upregulated genes 
(Additional file 6: Table S4). Then we performed GSEA, 
GO and KEGG analysis to show the enriched path-
ways. GSEA indicated the chemokine signaling pathway, 
cytokine-cytokine receptor interaction, ECM receptor 

Fig. 1 Identification and Functional Analysis of Hypoxia-Related Genes and Immune-Related Genes. A Volcano plot of differently expressed 
Hypoxia-Related Genes and Immune-Related Genes in BLCA patients. B Identification of intersection genes from DEGs, HRGs and IRGs. C The 
bar plot of GO enrichment analysis. D The bar plot for KEGG enrichment analysis
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interaction, focal adhesion and systemic lupus erythema-
tosus were enriched in high-risk group, indicating high- 
risk group might eager to have metastasis (Fig.  5A, B). 
The results of GO and KEGG enrichment analysis also 
illustrated that collagen-containing extracellular matrix 
and PI3K-Akt pathway was activated in high-risk group 
(Fig. 5D, E).

Tumor mutation burden and survival analysis
The maftool package in R software is utilized to iden-
tify the top 15 mutation genes in high-risk and low-risk 
groups (Fig.  5C, F). Tumor mutation burden (TMB) 
between two groups had no significantly different 
(Fig.  5G). Nevertheless, subsequent analysis indicated 
that while combined with risk score, high TMB with low 

risk had better outcome and low TMB with high risk had 
worse outcome (Fig. 5H).

Analysis of TME, immune cell infiltration 
and immune‑checkpoint
As for TME estimation, ESTIMATE algorithm was 
employed. Violin plot showed that stromal score, 
immune score and ESTIMATE score are significantly 
higher in high-risk group, indicating lower tumor purity 
(Fig.  6A). By CIBERSORT algorithm, we compared the 
difference of infiltration immune cells between high and 
low risk groups (Fig. 6B). The proportion of T cells CD8, 
T cells follicular helper, T cells regulatory (Tregs) was sig-
nificantly higher in the low-risk group than in the high-
risk group, while the proportion of T cells CD4 memory 

Fig. 2 Correlation between the risk score model and overall survival of BLCA patients. A The relationship between intersection genes and overall 
survival. B, C LASSO regression analysis to optimize the risk score model for patients with BLCA. E The distribution of risk scores in the train cohort. 
F The distribution of risk scores in the test cohort. H The survival status of patients in the train cohort. I The survival status of patients in the test 
cohort. J Heat map of 8 genes expression in the train cohort. K Heat map of 8 genes expression in the test cohort. D Kaplan–Meier curves of survival 
in the train cohort. G Kaplan–Meier curves of survival in the test cohort. L Kaplan–Meier curves of PFS in the train cohort
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resting and Neutrophils were significantly higher in the 
high-risk group than in the low-risk group (Fig. 6C). To 
investigate their agreement with OS, survival curves 
were plotted. Except neutrophils, the results of coalition 
of immune cell with OS were in good agreement with 
immune cell infiltration results (Fig.  6D–G). Then we 
estimated the different immune functions between two 
groups. The heatmap indicated many immune-functions 
were higher enriched in high group, including T cell co-
stimulation HLA and checkpoint (Fig. 6H). These results 
illustrated strong association between risk score model 
and tumor immunity. Furthermore, we identified gene 
expression of different checkpoint. We found that many 
checkpoint including CTLA4, CD274, also known as 
PD-L1, HAVCR4, LAG3 and PDCD1 were extremely 

higher expressed in high-risk group, indicating there 
might be different immunotherapy response between 
two groups (Fig.  7A). Spearman correlation analysis 
showed that CTLA4, HAVCR2, LAG3, PDCD1 and 
CD274 were significantly positively correlated with risk 
score (Fig. 7B–K). Generally, these genes were positively 
related to risk score.

Prediction of immunotherapy response and potential 
drugs
According to above results, we considered that our risk 
score model might play an important role in immuno-
therapy response prediction in BLCA patients. The TIDE 
algorithm showed that high-risk group had higher TIDE 
score, indicating the higher immune escape potential and 

Fig. 3 Validation of the risk score model. A Univariate cox proportional hazard model in the train cohort. B Multivariate cox proportional hazard 
model in the train cohort. C PCA analysis in the train cohort. D PCA analysis in the test cohort. F t-SNE analysis in the train cohort. G t-SNE analysis 
in the test cohort. E Time-dependent ROC curves of the risk score model for predicting 1-, 3- and 5-years in the train cohort. H Time-dependent 
ROC curves of the risk score model for predicting 1-, 3- and 5-years in the test cohort
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poorer immunotherapy response of patients in the high-
risk group (Fig. 8A–D). Therefore, we obtained immuno-
therapy file from TCIA database for further investigation. 
The violin plot demonstrated that the effect of immu-
notherapy was significantly improved in low-risk group 
when using anti-CTLA4 treatments (Fig.  8E–H). These 
results confirmed the strong association between risk 
score model and immunotherapy response in BLCA. Fur-
thermore, we calculated the different drugs’ sensitivity 
of each patient based on GDSC database. Our risk score 
model had significant association with cisplatin, doc-
etaxel, olaparib, staurosporine, paclitaxel, sorafenib, linsi-
tinib and talazoparib (Fig. 8I–P). It might provide a novel 
prospective in BLCA treatment.

Identifying TFRC as prognosis marker for BLCA
The circus plot shows the position of the model gene 
in the chromosome (Fig. 9A). To identify hypoxia- and 

immune-related prognosis markers for BLCA, we ana-
lyzed the mutation frequency of the model genes via 
CNV, and the results showed that TFRC had the high-
est acquired mutation frequency (Fig.  9B). TFRC was 
significantly higher expressed in BLCA tumor samples 
compared with normal samples (Fig. 9C), and survival 
curves showed BLCA patients with low TFRC expres-
sion level had significantly longer OS compared with 
that with high TFRC expression level (Fig.  9D). The 
expression levels of TFRC in pan-carcer were also 
analyzed, and the box plot demonstrated differential 
expression of TFRC between normal and tumor tissue 
samples across multiple tumors (Fig.  9E). Spearman 
correlation analysis was conducted to demonstrate the 
relationship between TFRC expression and CTLA4 
as well as PTCD1 (Additional file 2: Fig. S2A, B). This 
study discovered an association between TFRC and the 
immune microenvironment in patients with bladder 

Fig. 4 The clinical correlation analysis and predictive nomogram. A Clinical correlation analysis heatmap. B–H The relationship between eight 
genes’ expression and different clinicopathological features. I Nomogram to evaluate the survival risk of particular BLCA patients. J Calibration 
curves for nomogram-predicted OS at 1, 3 and 5 years
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cancer. This identification allows for the classification 
of bladder cancer patients into six immune subtypes, 
which aids in categorizing BLCA based on various 
immune response types (Additional file 2: Fig. S2C).

Knockdown of TFRC inhibited BLCA cell proliferation, 
migration and invasion
To validate the biological function of TFRC in BLCA, 
we knocked down TFRC using two siRNAs in T24 and 
UMUC3 cells. Edu staining results showed that knock-
down of TFRC significantly reduced the proliferation of 
BLCA cells (Fig. 10A, B). The wound healing rate of T24 
and UMUC3 cells was significantly inhibited by BLCA 
depletion, as indicated by the results of the wound-heal-
ing assay (Fig.  10C). The invasion ability of HepG2 and 
Hep3B cells was significantly inhibited in transwell assay 
following TFRC knockdown (Fig. 10D).

Discussion
Bladder cancer is one of the most common malignancies 
worldwide, characterized by high morbidity and mortal-
ity [26]. Although researchers have made many attempts 
and explorations in the treatment of bladder cancer, 
the prognosis of patients with bladder cancer has not 
improved substantially due to high postoperative tumor 
recurrence rate [27]. Therefore, novel prognostic and 
outcome model for BLCA needs to be identified urgently.

Hypoxia plays a vital role in cancer cell survival as it can 
increase tumor cell proliferation and tumor cell transi-
tion, which causing malignant phenotype transition [28]. 
This might indicate that study tumor hypoxic environ-
ments could help the decision of BLCA treatment. Immu-
notherapy is an important option for BLCA patients. 
Thus immune cell infiltration and immune-related genes 
had gained much research [29, 30]. Although many prog-
nostic models have constructed and predicted survival 

Fig. 5 Functional enrichment and tumor mutation analysis between high- and low- risk groups. A GESA analysis in the high- risk group. B 
GESA analysis in the low- risk group. D The bar plot of GO enrichment analysis. E The bubble plot for KEGG enrichment analysis. C, F Differences 
in mutation frequency between high- and low- risk groups. G Tumor mutation burden between high- and low-risk groups. H Survival analysis 
between subgroups
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outcomes in BLCA based on hypoxia-related genes or 
immune-related genes, combing hypoxia- and immune-
related genes is a novel method. When these two phe-
notypes were nested, the prognosis of patients could be 
more accurately evaluated and immunotherapy could be 
guided.

In this study, we identified 18 differentially expressed 
hypoxia and immune-related genes in BLCA patients 

through analysis of public databases. Using Cox and 
LASSO regression analysis, we developed a new prognos-
tic model containing 8 genes (JUN, STC1, PROK1, TFRC, 
TGFB3, PLAU, PGF and SPP1) to predict overall survival 
in BLCA patients. Furthermore, Kaplan–Meier curves 
of disease-free survival (DFS) and overall survival (OS) 
showed that high-risk group had worse outcome. The 
consistent results were observed in test cohort, indicating 

Fig. 6 Correlation between tumor immune cell infiltration and risk score. A Correlation between TME and risk score. B, C The composition 
of subpopulations of immune cells in high- and low-risk groups. D–G Survival curves in different subtypes. H The different immune functions 
between two groups

Fig. 7 Correlation between tumor immune-checkpoint and risk score. A Comparison of the immune-checkpoint genes in the high- and low-risk 
groups. B–K Spearman correlation analysis between immune-checkpoint molecules and risk score
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this hypoxia- and immune-related gene risk score model 
can be used as a prognostic marker for BLCA. Further-
more, we confirmed this model had strong association 
with various clinical features. Besides, the impact of risk 
score model on the immune microenvironment, immune 
checkpoint, immunotherapy response, and anti-tumor 
drug sensitivity were also investigated.

JUN is a dimer and functions as a transcription factor 
and The heterodimers of JUN have a more stable and rel-
atively stronger DNA-binding behavior [31, 32]. Research 
had confirmed the associated with the invasiveness of 
colorectal cancer cell [33]. STC1 is a hypoxia-induced 
molecular target which promotes the progression of dif-
ferent types of cancer, including gastric cancer [34], colo-
rectal cancer [35], breast cancer [36] and bladder cancer 

[37, 38]. As a ligand of the PROKR2, PROK1 can induce 
biological changes by transducing important molecular 
signals [39]. PROK1 can influence the expression of EG-
EGFR thus influence the cell proliferation and hematog-
enous metastasis [40–42]. TFRC is considered to be an 
important player in intracellular iron transport, which 
induces the proliferation and metastasis by up-regulating 
the expression level of AXIN2 [43]. Besides, many models 
containing TFRC had been confirmed to have associated 
with prognosis of bladder cancer [44–46]. In this study, 
we also found the role of TFRC in the proliferation of 
bladder cancer. We used siRNA to reduce TFRC expres-
sion in bladder cancer cells and found that TFRC knock-
down inhibited tumor cell proliferation and reduced their 
invasive ability. AXIN2 might be one of the regulatory 

Fig. 8 Assessment of response of high- and low-risk patients with BLCA to immunotherapy and potential drugs. A–D Immunotherapy response 
of BLCA patients in high- and low-risk groups. E–H The effect of immunotherapy between different subtypes. I–P The sensitivity of different drugs 
between the high- and low- risk groups
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Fig. 9 Identifying TFRC as prognosis marker for BLCA. A The position of TFRC in the chromosome. B The mutation frequency of the model genes. 
C TFRC expression levels of normal and tumor tissue in BLCA patients. D OS curves for BLCA patients with high and low TFRC expression. E The 
expression levels of TFRC in pan-cancer
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factors, but the specific mechanism needs to be further 
studied.

TGFB3, also known as transforming growth factor-B3, 
was associated with anti-PD-L1 monoclonal antibody 
treatment in urothelial carcinoma [47]. Inhibition of 
TGF-β signaling can conquer resistance to PD-1/PD-L1 
blocking in cancer [48]. PLAU is involved in tumor cell 
migration and invasion [49], and previous study had con-
firmed the relationship between PLAU and OS in TCGA 
cohort [50]. PGF was also discovered to be associated 

with BLCA prognosis and OS [51, 52]. It has also been 
suggested that SPP1 was correlated with poor clinical 
outcomes and promote tumor progression by interact-
ing with carcinogenic genes and facilitating immune 
cell infiltration [53]. High SPP1 expression levels were 
strongly connected with higher stage and grade in upper 
tract urothelial carcinoma [54].

After analyzing the different genes between subgroups, 
we found the PI3K-Akt pathway was activated in the 
high-risk group. PI3K-Akt pathway was a “star pathway” 

Fig. 10 TFRC promotes the proliferation, migration, and invasion of BLCA cells. A, B The cell proliferation of control cells comparing to TFRC 
knockdown cells. C The cell migration of control cells compared to TFRC knockdown cells. D The invasion ability of control cells compared to TFRC 
knockdown cells
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in the bladder which regulated autophagy, apoptosis 
and cancer progression. According to these results, we 
inferred that the willingness of high-risk groups to metas-
tasize and muscle-invasive might be related to the PI3K-
Akt pathway. Furthermore, we investigated the immune 
environment between subgroups. In hypoxic environ-
ments, macrophages synthesize chemokines and cancer 
cells attract regulatory T cells from the circulation and 
suppress the antitumor responses of other T cells [55]. In 
our study, we also found significantly immune cell infil-
tration including many types of T cells.

In this study, we demonstrated improved survival out-
comes in the high TMB group, which is consistent with 
previous studies [56]. Groups with high TMB and lower 
risk scores had the best survival outcomes, whereas 
groups with low TMB and higher risk scores had the 
worst survival outcomes. Taken together, a combination 
of TMB and risk score could significantly improve the 
prediction of overall survival in bladder cancer. Other 
studies had found that in bladder cancer, high TMB sta-
tus can increase the neoantigen burden and thus enhance 
the immunotherapeutic effects [56, 57]. Therefore, this 
risk score model might provide new insights into the 
underlying mechanism with high TMB.

Besides, tumor progression is usually affected by 
abnormal pathological conditions of tumor microenvi-
ronment, such as tumor-associated fibroblasts (CAFs), 
ECM deposition, vasodilation, and immune response 
suppression [58]. In this study, we employed ESTIMATE 
to evaluate components of tumor. The increase of matrix 
components and immune cell components indicates that 
the lower the purity of the tumor, the more likely the 
tumor metastasis and the worse the prognosis.

The immune response is considered to be the pri-
mary mechanism of action of the BCG, studies using 
factors reflecting the patient’s immune status to predict 
the effect of BCG treatment have been recently reported 
[59]. In a multicenter study of bladder carcinoma in situ, 
70  years old was used as cut-off value, suggested that 
patients over 70 years old had an increased risk of recur-
rence and progression with a poor recurrence free sur-
vival. Elderly patients may not respond effectively to BCG 
treatment [60], indicating the treatment of these patients 
faces more challenges.

The immune system and tumor microenvironment are 
widely believed to be closely related to bladder cancer and 
play an important role in the development, maintenance 
and spread of bladder cancer, as well as the response to 
treatment [61]. With the development of genomics and 
the advent of immune checkpoint inhibitors, an increas-
ing number of therapeutic targets are being identified 
[62]. For instance, modifications of oncogenes such as 
cyclin dependent kinase (CDK) and fibroblast growth 

factor receptor (FGFR3) can serve as predictive bio-
markers for their respective inhibitor responses [63, 64]. 
Based on these results, we assume that patients in dif-
ferent subgroups might have different immune-check-
point expression and response to immunotherapy. After 
investigation, we discovered many checkpoints including 
CTLA4, PD-L1, HAVCR4, LAG3 and PDCD1 had dif-
ferent expression, indicating different immune-response. 
As a novel cancer treatment option, immunotherapy 
gives hope to many bladder cancer patients. The cor-
relation of immune infiltration with immunotherapy 
response in BLCA cases has also been reported [57]. We 
observed patients in the high-risk group had significant 
lower responses than those in the low-risk group for 
CTLA-4-positive or both negative. TIDE results indi-
cated high-risk group was easier to have immune escape. 
Furthermore, we found that low-risk group was more 
sensitive to cisplatin, docetaxel, olaparib, staurosporine, 
paclitaxel and sorafenib. In conclusion, our risk model 
can assess the prognosis, immune status, immunotherapy 
response, and drug sensitivity of BLCA cases.

However, there are certain flaws in this study. First, this 
study was based on public database, thus the results may 
be skewed for different ethnic groups and regions. Sec-
ond, the particular pathways might require further inves-
tigation with in vivo and in vitro experiments.

Conclusion
This 8-genes risk score model was an accurate and reli-
able tool for predicting clinical outcomes, immunother-
apy response, and anti-tumor drug sensitivity of BLCA 
patients, providing novel prospective for BLCA treat-
ment. TFRC plays an important role in bladder cancer, 
which affects proliferation, invasion, and migration of 
BLCA. TFRC may be a very important target in the treat-
ment of bladder cancer.
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