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Abstract 

Background  Previous observational studies have suggested a notably elevated prevalence of delirium in individuals 
diagnosed with Parkinson’s disease (PD), thereby implying a potential increased susceptibility to delirium among PD 
patients. However, it is imperative to acknowledge that observational studies inherently possess limitations, rendering 
it arduous to establish a definitive causal or reverse causal association between delirium and PD.

Methods  To explore the relationship between delirium and PD, a bidirectional two-sample Mendelian randomiza-
tion (MR) was conducted using summary statistics obtained from genome-wide association studies. The main analysis 
was performed using the inverse-variance weighted (IVW) method, with further analyses conducted using MR Egger, 
weighted median, and weighted mode to ensure accuracy of findings. Additionally, Cochran’s Q statistics and MR 
Egger intercept were utilized to assess heterogeneity and horizontal pleiotropy, respectively.

Results  According to the results obtained from the IVW model, no compelling evidence was found to support 
a potential causal association between delirium and PD (IVW: odds ratio [OR]: 0.996, 95% confidence interval CI 0.949–
1.043, P = 0.845). Additionally, in the reverse direction, based on the results obtained from the IVW model, no signifi-
cant evidence was found to support a causal association between PD and delirium (IVW: OR: 1.078, 95%CI  0.960–
1.204, P = 0.225). A sensitivity analysis verified the reliability of the results.

Conclusion  According to the MR findings, a bidirectional causal relationship between delirium and PD 
is not observed. It is crucial to conduct further research in clinical practice to investigate the association 
between delirium and the risk of PD.
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Introduction
Delirium is an acute state of confusion characterized 
by inattention, disorganized and incoherent think-
ing, and aberrant perceptual function [1, 2]. Delirium 
is associated with an increased risk of falls, cognitive 
decline, morbidity and mortality [3, 4]. Moreover, 
delirium is an important non-motor function that has 
received increasing attention in Parkinson’s disease 
(PD) and other forms of Parkinsonism [4]. Delirium 
has been commonly associated with parkinsonism, 
surpassing its occurrence in the general aging popula-
tion [4, 5]. However, the existing research on delirium 
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as a risk factor for PD remains limited, and there is a 
lack of studies investigating the prevalence of delir-
ium specifically in PD patients [6]. Furthermore, 
no research has yet explored a causal relationship 
between delirium and PD. In addition, the limitations 
of observational studies [1], such as the inability to 
fully control for potential confounding variables, small 
sample sizes, and selection bias, pose challenges in 
establishing a definitive causal relationship between 
delirium and PD. Therefore, novel research approaches 
are essential to gain a comprehensive understanding of 
this causal association.

Recently, the utilization of large-scale genome-wide 
association study (GWAS) data and substantial sample 
sizes has introduced Mendelian Randomization (MR) 
as a powerful analytical method. MR employs genetic 
variants, typically single nucleotide polymorphisms 
(SNPs), as instrumental variables (IVs) to estimate the 
causal relationship between an exposure and a disease 
[7, 8]. It addresses issues of confounding and reverse 
causality more effectively, resembling the randomized 
controlled trial design due to the random assortment 
and combination of alleles during gamete formation 
[7], MR studies offer a higher level of evidence com-
pared to observational studies [9]. In this study, we 
conducted a bidirectional two-sample MR analysis uti-
lizing GWAS databases to systematically investigate 
the genetic causality between delirium and the risk of 
PD.

Materials and methods
Study design and MR assumptions
To investigate bidirectional associations between delir-
ium and PD through MR studies, we applied three fun-
damental assumptions to genetic variants [10]: (1) the 
assumption of association, which states that SNPs are 
closely linked to the exposure; (2) the assumption of 
independence, implying that SNPs are free from con-
founders along the exposure–outcome pathway; and 
(3) the assumption of exclusivity, suggesting that SNPs 
exclusively influence the outcome through exposure and 
not via other pathways. Figure 1 provides an overview of 
our study design.

Data source
For our study, we sourced GWAS summary data on delir-
ium from the FinnGen Consortium. The dataset con-
sisted of 2612 delirium cases and 325,306 controls, all of 
Finnish ancestry. In total, we identified 21,168,109 SNPs 
in the analysis [1].

For the identification of genetic variants associated 
with PD prevalence, we analyzed data from a large-scale 
GWAS meta-analysis conducted by the International 
Parkinson’s Disease Genomics Consortium (IPDGC) 
for PD phenotypes, which comprised 33,674 cases and 
449,056 controls [11].

Selection criteria for IVs
In accordance with the core assumptions of MR studies, 
we included SNPs with correlations satisfying P < 5 × 10–8 
as instrumental variables by screening the GWAS data. 
To mitigate the impact of linkage disequilibrium (LD) on 

Fig. 1  Overall design of Mendelian randomization analyses
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analysis results, we enforced the condition of r2 < 0.001 
and window size = 10,000 kb [12]. To ensure robust asso-
ciations between instrumental and endogenous variables 
and to prevent weak instrumental variable bias, we calcu-
lated R2 [R2 = 2 × EAF × (1 − EAF) × b2], representing the 
proportion of variation explained by instrumental vari-
able SNPs, and the F statistic [F = R2 × (N − 2)/(1 − R2)], 
used to evaluate the strength of instrumental variables, 
for each SNP separately [13, 14].

In addition to the previous information provided, we 
identified SNPs that were specifically associated with the 
outcome through exposure using the PhenoScanner (V2) 
database. This database is available at http://​www.​pheno​
scann​er.​medsc​hl.​cam.​ac.​uk/.

Mendelian randomization study and sensitivity analysis
In this MR study, we primarily employed the inverse-
variance weighted (IVW) method to explore the causal 
relationship between delirium and PD. To ensure the 
robustness of our statistical findings, we conducted sen-
sitivity analyses using both the weighted median (WM) 
and Mendelian randomization-Egger regression (MR-
Egger) based on Egger regression. The IVW method is 
considered the standard approach for MR pooled data 
[15], utilizing the Wald ratio method to estimate the 
causal effect for each included instrumental SNP [15]. 
The weighted median estimation method requires that 
at least 50% of the weights contributed by genetic vari-
ation are valid for statistical calculations [16]. MR-Egger 
regression identifies and corrects for multicollinearity, 
provided that the included instrumental variables sat-
isfy the instrument strength independent of direct effect 
(INSIDE) assumption, which assumes independence 
between instrument-exposure and instrument-outcome 
associations [17]. Furthermore, weighted median [16] 
and maximum likelihood [18] methods were employed as 
complementary approaches to assess potential causality.

For sensitivity analyses, we calculated Cochran’s Q 
statistic using both IVW and MR-Egger regression. A 
P-value > 0.05 indicates no significant heterogeneity. 
Additionally, we employed the leave-one-out method, 
systematically excluding each included SNP one by one, 
and generated forest plots. A P-value > 0.05 after exclud-
ing a SNP suggests that the SNP does not significantly 
affect the results [15]. To assess pleiotropy, we used both 
the intercept term of MR-Egger regression and the Men-
delian randomization pleiotropy residual sum and outlier 
(MR-PRESSO) test for the included SNPs. In MR-Egger 
regression, an intercept trending towards zero indicates 
the absence of horizontal pleiotropy. The MR-PRESSO 
test calculates the degree of influence of included instru-
mental variables and assesses the effect size between 
exposure and outcome after removing outliers, thereby 

allowing a pre- and post-correction comparison of results 
[19]. In this MR analysis, odds ratio (OR) served as the 
effect value, and a 95% confidence interval (CI) was 
applied. Statistical significance was considered at P < 0.05. 
The R 4.0.3 software, along with the two-sample-MR [20] 
and MR-PRESSO [19] packages, were used for data pro-
cessing and visualization.

Results
Effect of delirium on Parkinson’s disease
Eight SNPs were identified as IVs in this study, following 
the exclusion of palindromic SNPs and SNPs associated 
with confounding factors. Notably, all of these selected 
SNPs yielded F-statistic scores exceeding 10, indicating a 
minimal risk of weak-instrument bias.

According to the results obtained from the IVW model, 
no compelling evidence was found to support a potential 
causal association between delirium and PD (IVW: odds 
ratio [OR]: 0.996, 95% confidence interval CI 0.949–1.043, 
P = 0.845). Consistent findings were observed across 
other MR methods, including MR Egger (OR: 1.003, 95% 
CI 0.950–1.060, P = 0.916), weighted median (OR: 0.993, 
95% CI 0.939–1.050, P = 0.816), and weighted mode (OR: 
0.995, 95% CI 0.938–1.051, P = 0.864). A comprehen-
sive overview of these results is presented in Table 1 and 
Fig. 2A. Furthermore, our analyses demonstrated no evi-
dence of heterogeneity (Q = 4.82, P = 0.567) or horizontal 
pleiotropy (P = 0.694), as indicated in Table 2. Addition-
ally, the results from the leave-one-out sensitivity analy-
sis provided further support, illustrating that the causal 
effect was not driven by any single SNP (Fig. 3A).

Effect of Parkinson’s disease on delirium
Twenty-two SNPs were identified as IVs after excluding 
palindromic SNPs and those associated with confound-
ing factors. Of particular note, the selected SNPs dis-
played F-statistic scores greater than 10, demonstrating a 
minimal risk of weak-instrument bias.

Based on the results obtained from the instrumental 
variable-weighted (IVW) model, no significant evidence 
was found to support a causal association between PD 
and delirium (IVW: odds ratio [OR]: 1.078, 95% con-
fidence interval CI 0.960–1.204, P = 0.225). Consist-
ent findings were observed across other MR methods, 
including MR Egger (OR: 1.241, 95% CI 0.795–1.684, 
P = 0.120), weighted median (OR: 1.135, 95% CI 0.891–
1.391, P = 0.153), and weighted mode (OR: 1.226, 95% 
CI 0.915–1.597, P = 0.162). Table 1 and Fig. 2B provide a 
comprehensive overview of these results. Our analyses 
also revealed no evidence of heterogeneity (Q = 16.03, 
P = 0.714) or horizontal pleiotropy (P = 0.247), indicat-
ing that the associations were not confounded by pleio-
tropic effects, as noted in Table  2. Additionally, the 
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leave-one-out sensitivity analysis demonstrated that the 
causal effect was not driven by any individual SNP, fur-
ther supporting the validity of the results (Fig. 3B).

Discussion
The causal relationship between delirium and PD lacks 
a comprehensive understanding, necessitating further 

Table 1  The result of the MR study and reverse MR study

OR, odds ratio, CI confidence interval, MR Mendelian randomization, SNPs single nucleotide polymorphisms, NA not available
* The statistically significant difference with a P-value less than 0.05 (P < 0.05)

Exposure Outcome Method SNP (n) β se P-value OR (95CI%)

Delirium PD MR Egger 8 0.003 0.028 0.916 1.003 (0.950–1.060)

Weighted median 8 − 0.006 0.028 0.816 0.993 (0.939–1.050)

Inverse variance weighted 8 − 0.004 0.022 0.845 0.996 (0.949–1.043)

Weighted mode 8 − 0.005 0.028 0.864 0.995 (0.938–1.051)

PD Delirium MR Egger 22 0.215 0.132 0.120 1.241 (0.795–1.684)

Weighted median 22 0.126 0.088 0.153 1.135 (0.891–1.391)

Inverse variance weighted 22 0.076 0.062 0.225 1.078 (0.960–1.204)

Weighted mode 22 0.204 0.141 0.162 1.226 (0.915–1.597)

Fig. 2  Scatter plot of genetic correlation between PD and delirium using four MR methods. A Evaluation the effect of delirium on PD. B Evaluation 
the effect of PD on delirium. PD Parkinson’s disease, MR Mendelian randomization

Table 2  Heterogeneity and horizontal pleiotropy analysis between PD and delirium

Exposure Outcome Heterogeneity Horizontal pleiotropy

MR Egger Inverse variance weighted MR Egger intercept

Q P value Q P value SE P value

Delirium PD 4.82 0.567 4.99 0.661 0.016 0.694

PD Delirium 16.03 0.714 17.45 0.683 0.023 0.247
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investigation. This study aims to address this research gap 
by examining the causal association between delirium 
and PD using a bidirectional two-sample MR analysis. 
Notably, to the best of our knowledge, this study repre-
sents the first attempt to explore the genetic risk aspect 
of this relationship. Moreover, our findings suggest no 
significant genetic susceptibility correlation between 
delirium and PD.

In this investigation, we employed a range of MR analy-
sis techniques to uncover compelling evidence that chal-
lenges the notion of delirium as an autonomous risk 
factor for PD. The consistency of our findings was bol-
stered by the absence of any pleiotropy or heterogeneity 
in the sensitivity analyses, rendering them highly cred-
ible. However, while we cannot wholly dismiss the pos-
sibility that delirium may impact the progression of PD 
via comparable pathogenic mechanisms, such as neuro-
transmission abnormalities and neuroinflammation, it is 
vital to acknowledge that further research is warranted. 
Future studies with larger sample sizes are needed to ver-
ify the influence of delirium on the course of PD and to 
elucidate the true underlying drivers that contribute to its 
acceleration.

Parkinson’s disease is recognized as a risk factor for 
developing delirium, but the prevalence has been found 
to vary widely, with a range of prevalence of 0.3%–60 
in studies in different settings [21–23]. The overlapping 
symptoms between PD and delirium create diagnostic 
difficulties [5]. Delirium is commonly classified based 

on motor subtypes, namely hypoactive, hyperactive, or 
mixed [24, 25]. Hypoactive delirium is characterized by 
a reduction in psychomotor activity [26]. Cullinan et  al 
[27] found that delirium in patients with PD is common 
but often missed, especially in the hypoactive delirium 
subtype. Hence, it is crucial for clinicians and caregivers 
to meticulously identify susceptible risk factors for delir-
ium in patients with PD and implement timely preven-
tive measures. By doing so, there is a greater likelihood 
of early recognition and effective prevention of delirium.

Extensive research has recently focused on the causal 
relationship between delirium and PD [28, 29]. Some 
potential mechanisms may partly explain such asso-
ciation. The inflammatory response has been widely 
recognized as a significant contributor to acute brain 
dysfunction or delirium. Moreover, critical illness accom-
panied by acute inflammatory injury has been identi-
fied as a risk factor for PD [30–32]. A meta-analysis of 
152 observational studies has revealed elevated levels of 
PD-associated biomarkers, such as IL-6 and C-reactive 
protein [33]. The presence of shared biomarkers between 
delirium and PD suggests potential overlapping patho-
logical mechanisms during disease progression [27]. Fur-
thermore, these delirium-related biomarkers may also 
contribute to the detrimental course of PD, rather than 
solely being indicative of delirium itself. Moreover, vita-
min D deficiency, may lead to delirium and PD. Previous 
MR analysis and cohort studies have found an associa-
tion between low vitamin D concentrations and the onset 

Fig. 3  Leave-one-out analysis of the MR results between PD and delirium. A Delirium on PD. B AD on delirium. PD Parkinson’s disease, MR 
Mendelian randomization
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of delirium [34–36]. Previous studies have extensively 
documented the markedly high incidence of vitamin D 
deficiency among individuals suffering from PD and the 
notable predictive capacity of such deficiency for both 
the onset and progression of this condition [37–39]. 
Hence, we postulate that there exists a plausible asso-
ciation between vitamin D deficiency and an augmented 
susceptibility to delirium among PD patients.

However, it is important to note that our study spe-
cifically focused on evaluating the causal relationship 
between delirium and PD among patients with or with-
out PD. It’s important to note that the scope of our study 
does not encompass the course and progression of PD. 
While our findings did not indicate an increased risk 
of developing PD in relation to delirium, it is crucial to 
emphasize that this conclusion does not contradict the 
notion that delirium can potentially accelerate the risk of 
developing PD. Subsequent investigations should incor-
porate more extensive sample sizes to validate the influ-
ence of delirium on the progression of PD and to delve 
into the genuine underlying factors that facilitate the 
acceleration of PD progression (Additional file 1).

This study presents several notable research advan-
tages. Firstly, the implementation of the MR model 
effectively addresses confounding variables and reverse 
causation, providing more robust causal effect estimates 
compared to standard observational studies [40]. Addi-
tionally, the use of a large-sample GWAS dataset greatly 
enhances the statistical power compared to smaller sam-
ple sizes relying on individual data [15]. Secondly, the 
MR approach allows for simultaneous control of instru-
mental variable errors associated with both the exposure 
and outcome, while also accounting for bias introduced 
by linkage disequilibrium among instrumental variables 
[15]. Lastly, bidirectional MR studies have the distinct 
advantage of circumventing the effects of reverse causa-
tion and minimizing residual confounding.

Nevertheless, there are several limitations in our study. 
Firstly, since all data were sourced from individuals of 
European descent, the results may not be generalizable 
to populations of different ethnic backgrounds. Secondly, 
due to the unavailability of gender- or age-stratified data 
in the GWAS datasets used, we were unable to assess 
whether the associations between delirium and PD dif-
fer across gender or age groups. Further research should 
explore these potential variations when stratified GWAS 
pooled data become accessible. Third, despite the compre-
hensive sensitivity analyses conducted to test MR study 
hypotheses, complete elimination of the possibility of hor-
izontal pleiotropy among instrumental variables remains 
challenging [41]. Moreover, differences in gene annota-
tion analysis platforms across GWAS cohort studies may 
have contributed to the heterogeneity of this study [42]. 

Notably, our study did not incorporate an evaluation of 
delirium or its varying levels of severity. Consequently, we 
were unable to examine the association between PD and 
specific subtypes or the severity of delirium. This omis-
sion regarding delirium subtype or severity highlights the 
need for future research endeavors to address these criti-
cal factors. By incorporating such variables into the analy-
sis, a more comprehensive understanding of the interplay 
between PD and delirium can be attained.

Conclusions
Our bidirectional two-sample MR analysis showed no 
bidirectional causal relationship between delirium and 
PD. Nonetheless, future studies are needed to explore the 
potential mechanisms of the effect of PD on delirium, as 
well as to utilize larger sample sizes to confirm the effect 
of delirium on PD.
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