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Abstract 

Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system 
(CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation 
of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques 
are multiple focal regions of demyelination disseminated in the brain’s white matter, spinal cords, deep grey mat‑
ter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR‑α) that attenuates 
the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro‑
inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immu‑
noinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS 
neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, 
inflammatory‑signaling pathways, and neuroinflammation.
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Introduction
Multiple sclerosis (MS) is the most frequent inflamma-
tory and demyelinating disease of the central nervous 
system (CNS) [1]. MS disrupts motor and sensory neu-
ronal signal transmission, leading to motor and sensory 
deficits. It is characterized by symptoms, including vision 
loss in one eye, double vision, muscle weakness, and 
motor-sensory incoordination [2]. MS patients may have 
a prodromal phase characterized by cognitive impair-
ments, and neuropsychiatric symptoms continue for 
years before the manifestation of MS symptoms. Clinical 
presentations of MS are motor, sensory, and autonomic 
dysfunctions. A specific feature of MS depends on the 
site of lesions in the CNS, including visual loss due to 
optic neuritis, muscle spasm, hyperreflexia due to spi-
nal cord injury, ataxia due to cerebellar involvement and 
motor-sensory incoordination [3, 4]. Notably, 85% of MS 
patients presented with acute exacerbations, and 15% of 
MS patients presented with gradual motor-sensory dys-
function without a period of recovery [5–7]. The clini-
cal spectrum of MS includes CIS, RRMS, and SP/PPMS. 
According to Lublin, there are two main MS phenotypes: 
relapsing and progressive, additionally modified by the 
presence or absence of activity-relapses and new changes 
in MRI (i.e., RRMS active or inactive/stable, SP/PPMS 
active or inactive) [8–10].

MS may be progressive over time or relapsing forms in 
which the symptoms disappear and return. It has been 
reported that about one million people in USA will be 
affected by MS in 2022 [5]. MS affects about 2.8 million 
people worldwide [6]. MS is more common in women 
at 20–50 years [7]. Of note, MS was initially identified 
by Jean-Martin Charcot, a French neurologist, in 1868, 
who described multiple scars in the brain and spinal 
cord [8]. To better understand the MS pathophysiology, 
we focused on the lipids that play an influential role in 
the disease background. Lipids are not only consider-
ably involved in the formation of myelin sheath but are 
also involved in cell signaling, communication, and in 
transport in the CNS. Thus, lipids seem probable can-
didates for processes underlying the active and progres-
sive phase of MS and potential targets for new, effective, 
and stage-specific therapeutic interventions [9–12]. 
Previous studies illustrated that peroxisome prolifera-
tive activated receptor alpha (PPAR-α) agonists such as 
fenofibrate, gemfibrozil and ciprofibrate could attenuate 
the inflammatory reactions in MS. It has been reported 
that gemfibrozil attenuates experimental autoimmune 
encephalomyelitis (EAE), an animal model of relapsing–
remitting multiple sclerosis (RMS) in mice by inhibiting 
encephalitogenic of myelin basic protein (MBP)-primed 
T cells and switched the immune response from a Th1 to 
a Th2 profile independent of PPAR-α [13–16]. Likewise, 

ciprofibrate was proposed to be effective in different 
autoimmune diseases, including MS, by increasing the 
production of anti-inflammatory cytokines, inhibiting T 
cells specific for MBP and reducing microglial activity 
[16].

Oral administration of gemfibrozil, ciprofibrate, and 
fenofibrate repressed clinical signs of EAE by shifting 
the cytokine secretion of human T-cell lines by inhibit-
ing interferon-gamma (IFN-γ) and promoting IL-4 secre-
tion [17]. Similarly, fenofibrate inhibits differentiation of 
Th17 by inhibiting the expression of pro-inflammatory 
signaling [18–20]. These outcomes propose that PPARα 
agonists may be attractive nominees for use in human 
inflammatory conditions, such as MS. Compared with 
gemfibrozil,  fenofibrate produced significantly greater 
reductions in total cholesterol, triglycerides and signifi-
cantly more significant increases in high-density lipo-
protein (HDL). However, fenofibrate is less effective 
compared to new-generation pemafibrate in amelioration 
of lipid profile [18]. Moreover, fenofibrate has pleiotropic 
anti-inflammatory and antioxidant effects that may 
reduce inflammatory and oxidative stress disorders in 
different autoimmune disorders, as in MS [17]. Accord-
ing to these findings, this review aimed to clarify the 
mechanistic immunoinflammatory role of fenofibrate in 
mitigating MS neuropathology.

Pathophysiology of MS
The underlying pathophysiology of MS is the destruc-
tion of myelin sheath by immune cells or failure in the 
production of myelin [4]. The characteristic feature of 
MS neuropathology is the formation of myelin plaques, 
inflammation, and injury of neuronal myelin sheath [9]. 
Myelin plaque represents a clustering of inflammation, 
myelin breakdown, astrogliosis, oligodendrocyte injury, 
neurodegeneration, axonal loss, and remyelination [9]. 
Breakdown of immune response and regulation due to 
environmental factors and genetic predisposition induce 
MS neuropathology. Abnormal immune response in 
genetically susceptible subjects to some environmental 
factors triggers cell-mediated immunity with the devel-
opment of demyelination [9].

Of interest, MS is regarded as a hereditary disease, 
though different genetic variations may increase MS 
risk [10–12]. Different environmental factors trigger the 
development of MS, including early exposure to infec-
tious agents, which attenuate MS risk. Epstein–Barr virus 
(EBV), which causes infectious mononucleosis, is impli-
cated in the pathogenesis of MS by 32 folds [14]. Besides, 
smoking, organic solvents, obesity and certain diets may 
increase MS risk [15, 18]. However, gout and hyperurice-
mia are protective against the development of MS [17].
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CNS plaques in MS mainly affect the brain stem, basal 
ganglia, optic nerve, and spinal cord, though peripheral 
neurons are rarely affected [18, 19]. In the MS plaques, 
the inflammatory profile is characterized by infiltration 
of immune cells, including T lymphocytes, monocytes, B 
and plasma cells [20]. Three different types of MS plaques 
have been revealed, including type I (macrophages and 
T lymphocytes dominate lesions), type II (have addi-
tional accumulation of activated complement and immu-
noglobulins) and type III (in which there is additional 
apoptosis of oligodendrocytes and glial cells) [21, 22]. 
MS lesions seem identical in the affected patient but vary 
among patients, reflecting different stages of MS progres-
sion rather than different disease subtypes [23]. In MS, 
oligodendrocytes involved in the myelin sheath synthesis 
are mainly affected [24]. Myelin sheath is involved in gen-
erating action potential and transmitting electrical sig-
nals. Progressive loss of myelin sheath with axonal injury 
leads to neuronal dysfunction [25]. Partial remyelination 
may occur during the remission state, and demyelination 
is returned during the relapse state. These changes pro-
mote plaque formation in the multiple sites in the CNS. 
In addition, reactive astrocytosis in response to neuronal 
injury promote plaque formation [26].

On the other hand, inflammation plays an integral role 
in the pathogenesis of MS due to the uncontrolled acti-
vation of T lymphocytes [27]. Peripheral auto-reactive 
T lymphocytes trigger inflammatory changes in the MS 
[28]. However, the underlying mechanism for activating 

peripheral auto-reactive T lymphocytes is poorly iden-
tified. It has been shown that polyclonal activation of 
peripheral auto-reactive T lymphocytes by viral and 
bacterial antigens or molecular mimicry could be the 
possible mechanism [29]. Peripheral auto-reactive T lym-
phocytes can cross blood–brain barrier (BBB) through 
binding integrins on the immune cells and VCAM-1 on 
the endothelial cells [30–33]. Following entry of periph-
eral auto-reactive T lymphocytes, these cells bind MHCII 
expressed by dendritic and antigen-presenting cells, 
leading to disruption of myelin components and release 
of other CNS antigens with subsequent recruitment of 
other immune cells and production of specific myelin 
autoantibodies, which promote further injury and loss 
of myelin sheath [34–36]. The interaction between auto-
reactive T lymphocytes and myelin antigens triggers the 
release of pro-inflammatory and inflammatory cytokines 
with the production of antibodies [36]. These immune-
inflammatory reactions cause further injury of BBB that 
promotes entry of auto-reactive T lymphocytes and gen-
eration of soluble factors which attack synaptic regions, 
causing neuronal dysfunction [35, 36]. These neuro-
pathological changes lead to progressive loss of myelin 
sheath and axonal damage (Fig. 1).

Moreover, neurodegeneration is also intricate in 
MS neuropathology. Mounting evidence highlighted 
that  neurodegeneration  occurs early in both gray and 
white matter of MS patients [37–39]. In addition, axonal 
degeneration analysis in chronic inactive lesions of 

Fig. 1 Pathophysiology of MS
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secondary progressive MS patient spinal cords indicated 
a 61% reduction in axonal density [40]. Interestingly, gray 
matter atrophy rates have been correlated with worsen-
ing disability in MS. One of the mechanisms hypoth-
esized to explain the diffuse neurodegeneration found in 
MS patients involves mitochondrial dysfunction [40–43]. 
Diffuse mitochondrial dysfunction secondary to MS 
induces inadequate energy production and intracellular 
dysregulation. This dysfunction impairs anterograde and 
retrograde transportation along axons.

Furthermore, progressive inflammation and autoim-
munity trigger neurodegeneration in MS. Taken together, 
autoimmunity, demyelination, inflammation, and neu-
rodegeneration are involved in the pathogenesis of MS. 
Different studies revealed that fenofibrate is effective in 
reducing neurodegeneration in patients with diabetic 
retinopathy [5, 43–45] and experimental Parkinson dis-
ease (PD) model by inhibiting neuroinflammation and 
oxidative stress. In addition, fenofibrate has potent 
anti-inflammatory effects through direct inhibition of 
pro-inflammatory cytokines or indirectly by reducing 
dyslipidemia-induced inflammation. Furthermore, fenof-
ibrate can reduce autoimmunity and demyelination in 
MS through modulation of Th1/Th2 immune response. 
Thus, fenofibrate can modulate the components of MS 
neuropathology.

Acute attack of MS is treated by corticosteroids [43], 
and plasmapheresis is indicated when treatment with 
corticosteroid is ineffective. Chronic MS is managed by 
disease-modifying treatments, such as interferons, glati-
ramer, and mitoxantrone [45, 46]. However, lipid-based 
therapeutics linked with possible future-based therapeu-
tic interventions such as fenofibrate are proposed in the 
management of MS [54, 55].

Lipid dysregulation in MS
Furthermore, lipid dysregulation is associated with MS 
neuropathology as lipid molecules play a dual role in 
MS, both as target molecules of myelin destruction and 
as mediators of inflammation [56–58]. Altered lipid 
metabolism with systemic inflammation may contribute 
to immune activation. Evidence suggests that abnormali-
ties in the lipid-binding proteins of myelin and sphin-
golipid content that confers increased immunogenicity 
may cause the autoimmune response against the myelin 
sheath [59]. CNS is, after all, the second organ richer in 
lipid content after adipose tissue. In addition, soluble 
factors secreted by adipose tissue modulate inflamma-
tory responses and contribute to metabolic dysfunction, 
which may be important in MS pathophysiology. Inflam-
matory cytokines participate in proatherogenic changes 
in lipid metabolism by reducing HDL levels and impair-
ing anti-inflammatory and antioxidant functions.

Consequently, the protective actions of HDL can be 
limited in chronic inflammatory diseases, such as MS 
[60–63]. A case–control study illustrated that dysfunc-
tional HDL is correlated with inflammatory mediators 
in MS patients. Fenofibrate improves circulating HDL 
and reduces inflammatory disorders. Dyslipidemia with 
low HDL and high triglyceride (TG) correlated disease 
activity and disability in MS patients. It remains to be 
elucidated whether altered lipid metabolism contributes 
to harmful immune response, possibly through inflam-
mation, or is secondary to neurological disability in MS. 
A cohort study involving 492 MS patients revealed that 
serum lipid profile has modest effects on disease progres-
sion in MS. Worsening disability is associated with higher 
levels of LDL, total cholesterol and triglycerides. Higher 
HDL is associated with lower levels of acute inflamma-
tory activity [63–66]. Fenofibrate has a potent effect in 
regulating lipid profiles mainly TG, HDL and LDL. These 
observations indicated that dysregulation of lipid profile 
triggers abnormal immune response and increases the 
risk of autoimmunity as in MS. Fenofibrate through mod-
ulation of blood lipid can mitigate the detrimental effects 
of TG and LDL on MS neuropathology.

Potential beneficial effects of fenofibrate in MS
Pharmacology of fenofibrate
Fenofibrate is a chlorobenzophenone derivative drug 
(Fig. 2) used to manage hypertriglyceridemia and mixed 
hyperlipidemia [50, 51].

Fenofibrate was initially synthesized from clofibrate 
in France in 1974; it was known as precetofen, which 
was renamed fenofibrate according to the WHO no-
proprietary guideline [49]. Fenofibrate acts via activa-
tion of PPAR-α, leading to activation of lipoprotein 
lipase and reduction of apolipoprotein CIII, resulting 
in lipolysis and elimination of TG from plasma. Fenofi-
brate increases expression of apolipoprotein AI and AII, 
leading to reducing levels of LDL and VLDL with incre-
ment of HDL [50, 51]. Of interest is that fenofibrate use 
has been shown to be effective in managing diabetic 

Fig. 2 Chemical structure of fenofibrate
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retinopathy [52]. In addition, fenfibrate use in T2DM 
patients reduces the risk of amputation by 37% regard-
less of glycemic control [53]. Fenofibrate is subjected to 
drug interaction with bile acid sequestrants, immuno-
suppressant agents, warfarin, and statins. The most com-
mon adverse effects of fenofibrate are myalgia, headache, 
arthralgia, and renal stone. Fenofibrate is contraindicated 
in patients with renal impairment, liver dysfunction, gall-
bladder diseases, hypothyroidism, and hypersensitivity 
[50, 51]. Due to its anti-inflammatory and antioxidant 
effects, fenofibrate was suggested for treating different 
neurodegenerative disorders. PPAR-α is expressed in 
the brain and other organs and plays a significant role in 
oxidative stress, energy homeostasis, mitochondrial fatty 
acids metabolism and inflammation. PPAR-α contributes 
to the regulation of genes coding proteins that are intri-
cate in glutamate homeostasis and cholinergic/dopamin-
ergic signaling in the brain.

Furthermore, PPAR-α regulates the expression of genes 
coding enzymes engaged in amyloid precursor protein 
(APP) metabolism. It activates gene coding of α secretase, 
which is responsible for the non-amyloidogenic path-
way of APP degradation [67–69]. It also down-regulates 
β secretase (BACE-1), the main enzyme responsible 
for amyloid beta (Aβ) peptide release in AD. In AD the 
expression of genes of PPAR-α and PPAR-γ coactivator-1 
alpha (PGC-1α) is significantly decreased. PPARs are 
altered not only in AD but in other neurodegenerative/
neurodevelopmental and psychiatric disorders [69–71]. 
PPAR-α downregulation may decrease anti-oxidative and 
anti-inflammatory processes. It could be responsible for 
the alteration of fatty acid transport, lipid metabolism 
and disturbances of mitochondria function in the brain 
of AD patients. Specific activators of PPAR-α may be 
important for the improvement of brain cell metabolism 
and cognitive function in neurodegenerative and neu-
rodevelopmental disorders [71]. However, the potential 
mechanism of fenofibrate in MS is not fully elucidated.

Role of fenofibrate in MS
PPAR-α agonists have been used over decades to treat 
human metabolic disorders with little toxicity, making 
them an attractive candidate for use in the management 
of MS. PPAR-α agonists, such as fenofibrate, can alter 
the phenotype of myelin autoreactive T cells and their 
encephalitogenicity [62, 72].

It has been shown that PPAR-α is expressed in T cells, 
and its ligands inhibit T-cell proliferation, release of IL-2 
and regulation of inflammatory response [63]. Fenofi-
brate can attenuate autoimmune response in mice with 
experimental Sjogren syndrome through modulation of 
T-cell’s immune response. PPAR-α-deficient mice had 
abnormal immune responses to inflammatory mediators, 

such as prostaglandins and leukotrienes. Expression of 
adhesion molecules, cyclooxygenase-2 (COX-2) and IL-6 
are inhibited by PPAR-α ligands [65]. PPAR-α ligands 
inhibit expression of NF-κB through increasing expres-
sion of NF-κB inhibitor (IκBα) [66]. PPAR-α ligand 
WY14643 blocks IgG interaction with myelin oligoden-
drocyte in mice [66]. PPAR-α ligands such as fenofi-
brate have anti-inflammatory effects by increasing the 
release of anti-inflammatory cytokines [67]. Interestingly, 
PPAR-α ligands promote Th2 cytokine production [68].

It has been revealed that fenofibrate can reduce 
the inflammatory reactions in MS through inhibition 
expression of IL-2 in lipopolysaccharide (LPS)-induced 
microglia activation [47]. Moreover, fenofibrate inhib-
its microglial expression of CD14, which plays a critical 
role in TLR signaling, signifying a mechanism by which 
fenofibrate suppresses the release of pro-inflammatory 
molecules [47]. Prominently, fenofibrate suppression 
of EAE was associated with decreased expression of 
IL-12 family cytokine mRNAs and mRNAs encoding 
TLR4, CD14, and MyD88 known to play critical roles 
in MyD88-dependent TLR signaling [47]. These find-
ings propose that fenofibrate may modulate the develop-
ment of EAE by inhibiting the production of IL-12 and 
MyD88-dependent-signaling pathway [47].

Fenofibrate has the ability to inhibit differentiation 
of Th17 significantly compared to other PPAR-α ago-
nists, such as bezafibrate. Fenofibrate blocks IL-21 and 
STAT3 expression is required for Th17 differentiation 
[48]. It has illustrated that fenofibrate mitigates non-
lipid-associated autoimmune diseases, such as autoim-
mune colitis and MS [48]. It has been hypothesized that 
fenofibrate reduces the differentiation of Th17 cells and 
inhibits transforming growth factor-β  (TGF-β) and IL-
6-induced differentiation of Th17 cells. However, other 
PPARα agonist’s bezafibrate did not affect Th17 differen-
tiation, indicating that this effect of fenofibrate might be 
PPARα  independent [48]. A case–control study revealed 
that prolonged use of fenofibrate reduces inflammatory 
biomarkers, including IL-6 and CRP, in patients with 
dyslipidemia [54], signifying possible fenofibrate effects 
on systemic inflammation. Janssen et  al. [55] observed 
that IL-6 is involved in the pathogenesis of MS by acti-
vating T cells [55]. It has been observed that fenofibrate 
and other PPAR-α agonists activate the neurons’ myeli-
nation by increasing expression of sterol regulatory ele-
ment binding factors (SREBF), which increase sterol 
biosynthesis [56]. PPARα can stimulate SREBF signaling 
via multiple mechanisms, including increasing SREBF 
expression, enhancing SREBF proteolytic cleavage, and 
increasing SREBF activity through the recruitment of 
transcriptional co-activators [56]. Gemfibrozil activates 
PPARα and increases the expression of myelin in human 
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oligodendrocytes. PPARα activation can also stimulate 
SREBF signaling. Fibrates have been considered as poten-
tial therapeutics for diseases associated with impaired 
oligodendrocytes, such as MS, adrenoleukodystrophy, 
and traumatic brain injury [56]. Therefore, fenofibrate 
and gemfibrozil promote myelination by activating 
SREBFs in MS. Of note, SREBFs are reduced in MS [57]. 
Fenofibrate and other PPAR-α agonists have been shown 
to inhibit microglia are involved in MS neuropathology 
[58].

Collectively, fenofibrate could be effective in manag-
ing MS by its anti-inflammatory effect and modulation of 
SREBFs. Accordingly, fenofibrate regulates two important 
aspects, including neuroinflammation and neurodegen-
eration, which are highly intricate in MS neuropathology.

Effect of fenofibrate on neuroinflammation in MS
Neuroinflammation is associated with the progression 
of different neurodegenerative disorders. T and B cells in 
the CNS trigger inflammatory disorders and the develop-
ment of neuroinflammation. Neuroinflammation in the 
early stage of MS can cause synaptopathy independent of 
the demyelination process, and this may explain cogni-
tive dysfunction in the early phase of MS patients [73]. 
In the late phase of MS, exaggeration of immune distur-
bance and development of neuroinflammation promote 
MS pathogenesis. It has been shown that cholinergic 
activity is reduced in MS patients, which regulates the 
activity and response of immune cells. Reduction of ace-
tylcholine level in the immune cells promotes the release 
of pro-inflammatory cytokines with the development of 
neuroinflammation [74, 76]. Therefore, attenuation of 
neuroinflammation could be a therapeutic strategy in the 
mitigation of MS neuropathy.

Different preclinical studies revealed a potential role 
of fenofibrate against the development and progres-
sion of neuroinflammation. Fenofibrate inhibits neuro-
inflammation in traumatic brain injury by suppressing 
oxidative stress in rats. Fenofibrate has a neuroprotec-
tive effect against the development and progression of 
MS by inhibiting mitochondrial dysfunction, oxidative 
stress, and neuroinflammation that contribute mutually 
to neurodegeneration [77]. The underlying mechanism 
for fenofibrate role against the development of neuroin-
flammation is related to the inhibition of inflammatory-
signaling pathway, antioxidant and anti-inflammatory 
effects. Remarkably, fenofibrate activates neuronal nico-
tinic cholinergic receptors with subsequent inhibition of 
neuroinflammation [78]. These findings indicated that 
fenofibrate may reduce MS pathogenesis by modulating 
neuroinflammation.

Toll-like receptors (TLRs) are innate immune sensors 
that alert the immune system to the presence of external 

pathogens [79, 80]. Activation of TLR triggers the release 
of pro-inflammatory cytokines and activation of adaptive 
immune response to eliminate invading pathogens. TLR 
can detect danger signals, which are products of inflam-
mation and tissue injury. TLRs are highly expressed by 
immune cells in the CNS and are involved in the MS neu-
ropathology [81]. Of note, TLR agonists participate in the 
amplification of harmful inflammatory responses. It has 
been established that PPAR-α agonists have reciprocal 
interactions with TLRs, as activation of PPAR-α inhibits 
expression of TLRs via several mechanisms. Fenofibrate 
inhibits the expression of CD14, which increases the 
expression of TLR and the release of pro-inflammatory 
cytokines. In addition, fenofibrate inhibits the release of 
IL-12 and the expression of the MyD88–TLR4-signaling 
pathway [47]. Therefore, PPAR-α agonist fenofibrate can 
inhibit the primary immune response in MS neuropa-
thology by inhibiting TLRs and their effectors.

Furthermore, different inflammatory-signaling path-
ways, including NF-κB and nod-like receptor pyrin 
three receptor (NLRP3) inflammasome, are involved in 
the pathogenesis of MS [82–87]. NF-κB is a DNA-bind-
ing protein necessary for transcription of chemokines 
and pro-inflammatory cytokines. Particularly, immune 
deregulation encourages the commencement of NF-κB 
with consequential neuronal injury, neuroinflammation, 
and development of neurodegeneration [88–91]. NLRP3 
inflammasome is involved in the activation of caspase-1 
and maturation of IL-1β and IL-18 [92–94]. Diverse 
stimuli including NF-κB trigger NLRP3 inflammasome. 
NLRP3 inflammasome is intricate in the pathogenesis 
of neuroinflammation and development of neurode-
generation [95–100]. NF-κB is exaggerated in MS, lead-
ing to immune dysregulation and induction release of 
pro-inflammatory cytokines. Inhibition of the NF-κB-
signaling pathway by teriflunomide, fingolimod and 
dimethyl fumarate may reduce MS severity [100–102]. 
Chen et  al. [103] observed that native and memory B 
cells from MS patients have a higher level of phosphoryl-
ated NF-κB, which was inhibited by mycophenolate. In 
addition, glatiramer attenuates the activation of NF-κB 
by CD40, which is over-activated in MS [103]. Likewise, 
NLRP3 inflammasome is also exaggerated and linked 
with the severity of MS [104]. NLRP3 inflammasome 
within activated microglia promotes the expression and 
release of IL-1β and IL-18. Evidence from preclinical and 
clinical findings illustrated that aberrant activation of 
NLRP3 inflammasome is associated with the pathogen-
esis of MS [104]. Over-activation of NLRP3 inflamma-
some in MS is evident by increasing IL-1β CSF levels in 
severely affected patients [105]. Targeting NLRP3 inflam-
masome by specific inhibitors can reduce MS severity 
[105].
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Fenofibrate has a potent anti-inflammatory effect 
against the development of pulmonary inflammation by 
inhibiting the expression of NF-κB and NLRP3 inflam-
masome [106]. Notably, fenofibrate prevents retinal 
injury and disruption of retinal blood barrier by inhibit-
ing the NF-κB-signaling pathway [107]. Besides, fenofi-
brate can reduce diabetic retinopathy by inhibiting the 
expression of NLRP3 inflammasome [108–111]. Thus, 
fenofibrate might effectively reduce MS pathogenesis 
by targeting the most common inflammatory-signaling 
pathways, including NF-κB and NLRP3 inflammasome 
[112–116].

Interestingly, TLRs, the release of pro-inflammatory-
signaling pathways and inflammatory mediators are 
involved in the development and progression of neuro-
inflammation in MS. Inhibition of TLRs and release of 
pro-inflammatory by fenofibrate result in momentous 
suppression of neuroinflammation in MS [117–121].

Effect of fenofibrate on neurodegeneration in MS
It has been illustrated that mitochondrial dysfunction 
and deregulation of neuronal energy balance secondary 
to MS induce inadequate ATP production and intracel-
lular dysregulation [122–126]. This dysfunction impairs 
anterograde and retrograde transportation along axons, 
leading to progressive neurodegeneration in MS [125–
127]. Moreover, mitochondrial dysfunction contributes 
to the loss of neurons and axons in MS due to uncon-
trolled activation of microglia and associated neuronal 
injury [80]. Impairment of mitochondrial permeability 
transition pore by  Ca2+ dyshomeostasis and ROS is the 
central mechanism for the development of mitochon-
drial dysfunction in MS [81]. Pathological opening of 
mitochondrial permeability transition pore in response 
to nitrogen species,  Ca2+ and ROS, induces an influx 
of many solutes into the mitochondrial matrix, lead-
ing to matrix expansion and mitochondrial rupture with 
eventual cell deaths [81]. Merlini et al. [82] revealed that 
mitochondrial dysfunction is regarded as an essential 
trigger of programmed axon death in MS. Uric acid and 
serum lactate are considered as potential biomarkers of 
mitochondrial dysfunction [83]. A case–control study 
that included 32 MS patients, and 20 healthy controls 
showed that lactate serum level but not serum uric acid 
was increased in MS patients compared to the controls 
[83]. It has been proposed that mitochondrial dysfunc-
tion alters lymphocyte homeostasis, leading to a defec-
tive apoptotic process of auto-reactive T cells, allowing 
them to perpetuate within the CNS and continue the 
inflammation cycle in MS patients [84]. Activation of Th1 
cells and their lymphokines, such as interferon-gamma 
(INF-α) and IL-2, which induce the transformation of 
B-lymphocytes to plasma cells produce autoantibodies 

against myelin antigens [84]. Therefore, mitochondrial 
dysfunction could be a primary cause for MS progression 
through alteration of lymphocyte activity, or a secondary 
outcome due to oxidative stress caused by MS. Thus, mit-
igation of mitochondrial dysfunction could be effective 
mechanistic way to prevent the progression of MS.

On the other side, PPAR-α agonists have an important 
role in the modulation of mitochondrial function in dia-
betic patients [85]. Of interest, fenofibrate improves insu-
lin sensitivity by enhancing mitochondrial β-oxidation 
[86]. In a similar way, fenofibrate inhibits mitochondrial 
dysfunction in burn patients [86]. In addition, fenofibrate 
enhances neurogenesis via modulation of mitochondrial 
biogenesis in experimental ischemic reperfusion injury 
[87]. The protective effect of fenofibrate against the 
development of mitochondrial dysfunction is mediated 
by increasing the expression of mitochondrial uncou-
pling protein two, which protects mitochondria from the 
harmful oxidative stress by reducing the generation of 
ROS [88]. However, a higher concentration of fenofibrate 
may induce the development of mitochondrial dysfunc-
tion via inhibition of mitochondrial respiratory chain 
complex I [89]. Therefore, the appropriate dose of fenofi-
brate could be effective against MS through the modula-
tion of mitochondrial dysfunction.

In addition, oxidative stress plays an integral role in the 
pathogenesis of MS via the enhancement of the demy-
elination process and neurodegeneration [73]. ROS 
promotes peripheral activation of T cells and the devel-
opment of autoreactive T cells. ROS triggers microglia 
activation and induces neuronal apoptosis [73]. Inflam-
matory reactions in MS can provoke oxidative stress 
bursts in the activated macrophages and microglia, lead-
ing to neuronal demyelination. In turn, oxidative stress 
and released ROS enhance the propagation of inflam-
mation and neurodegeneration in MS [74]. Therefore, 
there is positive feedback activation between oxida-
tive stress and inflammation in a vicious cycle in MS. A 
case–control study showed that biomarkers of oxidative 
stress were increased in patients with RRMS compared 
to healthy controls [75]. These findings proposed that 
oxidative stress can aggravate inflammatory reactions 
and contribute to more neuronal injury and progression 
of MS. Therefore, the use of antioxidants may hinder the 
development and progression of MS. Carlson and his col-
leagues proposed that antioxidants may play a beneficial 
role in human MS despite conflicting findings in animal 
MS model [76]. Evidence from preclinical and clinical tri-
als showed that the use of antioxidant alpha lipoic acid 
reduces brain atrophy and improves the clinical course 
of MS [77]. It has been demonstrated that PPAR-α ago-
nists have potent antioxidant effects and can ameliorate 
different neurodegenerative disorders, including AD [78]. 
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PPAR-α agonist GW7647 inhibits lipid peroxidation, 
oxidative stress, and inflammation in mouse AD models 
[78]. An experimental study illustrated that fenofibrate 
improves antioxidant capacity and attenuates hypergly-
cemia-induced oxidative stress [79]. Oyagbemi et al. [79] 
revealed that PPAR-α agonist clofibrate attenuates oxida-
tive stress in rats. Therefore, fenofibrate, through inhibi-
tion of oxidative stress and potentiating of endogenous 
antioxidant capacity, can mitigate MS pathogenesis.

Indeed, the propagation of neurodegeneration in MS 
and other neurodegenerative diseases is related to the 
reduction of neuroprotective brain-derived neurotrophic 
factor (BDNF) [61]. It has been illustrated that BDNF 
level is reduced in MS due to progressive neurodegenera-
tion process [61]. A case control study on 22 MS patients 
compared to 19 healthy controls revealed that BDNF 
serum levels were reduced in MS patients compared to 
the controls [61]. However, a recent study observed that 
BDNF serum levels were not significantly reduced in MS 
patients compared to healthy controls [69]. A systemic 
review and meta-analysis involving 30 studies (689 MS 
patients and 583 healthy controls) revealed that BDNF 
serum level was reduced in MS patients compared to 
healthy controls [70].

Moreover, the fenofibrate neuroprotective effect can 
attenuate hippocampal insulin resistance and improve 
cognitive function in rats by increasing the expression 
of BDNF [48, 59, 127–130]. The neuroprotective effect 
of fenofibrate is mediated by increasing expression of 
BDNF in animal model studies [60]. In addition, fenofi-
brate upregulates the expression of hippocampal BDNF, 
which attenuates the neurodegeneration process in MS 
[60]. BDNF regulates microglia function toward trophic 
phenotype and prevents microglia-induced neurodegen-
eration [71, 131–134]. Notably, naturally derived phy-
toconstituents, including curcumin, cannabinoids, and 
genistein, reduce neurodegenerative diseases by increas-
ing expression of BDNF [72]. These observations suggest 
that PPAR-α agonists such as fenofibrate can reduce MS 
neuropathology by improving the expression of BDNF.

Notoriously, autophagy plays a critical role in neu-
rodegenerative diseases and could be beneficial in the 
early stage and detrimental in the late stage, as in AD 
and PD [90]. Autophagy is an essential intracellular deg-
radative pathway to maintain normal cellular homeosta-
sis by eliminating toxic proteins and injured organelles 
[115, 128, 135–138]. Defective autophagy in neurons 
induces the development of neurodegeneration [90]. 
Autophagy regulates adaptive and innate immunity, 
and autophagy abnormality triggers abnormal immune 
response [139–146]. Neuron function mainly depends 
on autophagy for its survival and homeostasis [147–149]. 
Defective autophagy contributes to the development and 

progression of MS. The autophagy process acts as a dou-
ble-edged sword and could be protective or detrimental 
[150–155]. For example, increasing autophagy of T and 
B cells promotes the development of neuroinflammation, 
and inhibition of autophagy in this regard might be effec-
tive in treating MS. However, the induction of autophagy 
in neurons and glial cells improves the remyelination 
process [90, 91].

Interestingly, restoration of normal autophagy func-
tion in the early MS prevents the progression of disease 
severity [91, 156]. Autophagy-related genes are increased 
in T cells of MS brains [92]. These findings suggest a con-
troversy regarding the role of autophagy in MS. Inter-
estingly, restoration of normal autophagy function in 
early MS prevents the progression of disease severity 
[91]. Thus, targeting neuronal autophagy is important to 
enhance the remyelination process.

Different studies confirmed that fenofibrate improves 
the autophagy process [93, 158]. For example, fenofibrate 
attenuates cardiac injury in diabetic mice by increasing 
the expression of neuroprotective SIRT1 and autophagy 
function [93, 159–163]. In addition, fenofibrate attenu-
ates acute kidney injury by regulating the autophagy 
process through the expression of adenosine monophos-
phate protein kinase (AMPK) [94, 164]. Both AMPK and 
SIRT1 activate the autophagy process [95, 165]. There-
fore, fenofibrate through modulation of the autophagy 
process may attenuate the development and progression 
of MS.

Fenofibrate can attenuate MS neuropathology through 
modulation of different pathways, including oxidative 
stress, autophagy, mitochondrial dysfunction, inflamma-
tory-signaling pathways, and neuroinflammation.

Conclusion
MS is the most common inflammatory and demyelinat-
ing disease of the CNS. The fundamental pathophysiol-
ogy of MS is the destruction of myelin sheath by immune 
cells or failure in the production of myelin. The char-
acteristic feature of MS neuropathology is the forma-
tion of CNS plaques, which are multiple focal regions 
of demyelination distributed in the brain’s white matter 
and spinal cords as well as in the deep grey matter and 
cerebral cortex. Notably, PPAR-α activator fenofibrate 
can attenuate the inflammatory reactions in MS by inhib-
iting the differentiation of Th17 and the expression of 
pro-inflammatory-signaling. Fenofibrate can reduce MS 
neuropathology by increasing the expression of BDNF. 
Fenofibrate, through inhibition of oxidative stress and 
potentiating of endogenous antioxidant capacity, can 
mitigate MS pathogenesis. Appropriate doses of fenofi-
brate could be effective against MS through modula-
tion of mitochondrial dysfunction, autophagy process, 
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inflammatory-signaling pathways, and neuroinflamma-
tion. Fenofibrate can reduce MS neuropathology through 
modulation of different pathways, including oxidative 
stress, autophagy, mitochondrial dysfunction, inflam-
matory-signaling pathways, and neuroinflammation. 
Therefore, preclinical and clinical studies are warranted 
to elucidate the precise role of fenofibrate in treating MS.
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