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Abstract 

Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential 
expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects 
their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently 
lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, 
we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC 
and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine 
learning algorithm, we identified four CDRLRs—ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT—that are 
strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model’s reliability 
and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed 
by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene 
function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) 
for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune 
microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sen-
sitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective 
is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaus-
tive study on cuproptosis and disulfidptosis.
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Introduction
Renal cancer is a common urologic malignancy, with 
81,800 new cases of renal and pelvic cancer and 14,890 
projected deaths according to the 2023 US cancer statis-
tics [1]. Renal cell carcinoma (RCC) constitutes approxi-
mately 85% of all renal tumors, with clear cell renal cell 
carcinoma (ccRCC) being the most prevalent subtype, 
accounting for 75% of RCC cases [2, 3]. Surgical removal 
of renal tissue is the main treatment modality for early-
stage ccRCC, and about 1/3 of ccRCC patients are already 
advanced at diagnosis, which often means high mortality, 
and metastasis rates [4]. ccRCC is characterized by a high 
degree of resistance to chemotherapy and a dense vascu-
lar distribution. Treatment commonly involves tyrosine 
kinase inhibitors (TKIs) targeting the VEGFR pathway 
[5]. Recent years have seen the validation of immuno-
therapy’s efficacy, with studies indicating that combining 
TKIs with immunotherapy yields better clinical out-
comes compared to monotherapy with targeted agents [6, 
7]. Immune checkpoint inhibitors in combination with 
targeted agents are now the first-line option of choice 
for advanced ccRCC [8]. Prognostic scoring systems for 
ccRCC have contributed significantly to clinical diagnosis 
and prognostic assessment, for which better prognostic 
models are urgently needed to guide immune combina-
tion targeted drug therapy and to assess and guide the 
direction of clinical treatment for ccRCC patients.

The mechanism of action of antitumor drugs largely 
depends on inducing cell death, with numerous small 
molecules targeting cell death pathways having been 
identified and utilized in clinical trials [9]. Unlike known 
cell death mechanisms such as apoptosis, autophagy, 
and ferroptosis, the emergence of cuproptosis and 
disulfideptosis provides new directions for understand-
ing cell metabolism and the tumor microenvironment 
(TME), laying the foundation for novel tumor treat-
ment strategies. Cuproptosis is defined as the process 
whereby copper ions induce proteotoxic stress. This 
occurs when copper ions bind to the lipid-acylated con-
stituents of the tricarboxylic acid cycle (TCA), instigat-
ing lipid-acylated protein aggregation. This aggregation 
subsequently results in the downregulation of iron-sulfur 
(Fe-S) cluster proteins, culminating in proteotoxic stress 
[10]. Disulfidptosis is a condition in which abnormal 
expression of SLC7A11 under glucose starvation causes 
a decrease in NADPH that counteracts disulfide toxicity 
and inadequate reduction of disulfide cystine, resulting 
in disulfide accumulation that generates disulfide stress, 
induces the disulfide bond between actin and cytoskeletal 
proteins to be stripped from the cytoplasmic membrane, 
and ultimately leads to cell death [11]. The discovery of 
cuproptosis and disulfidptosis represents a significant 
advancement in the identification of novel metabolic 

regulatory mechanisms in cancer [12, 13], potentially 
indicating new pathways for cancer therapy.

Cuproptosis and disulfidptosis are mechanisms of 
cellular demise intricately linked to the progression of 
various oncological pathologies, potentially serving as 
pivotal determinants of cancer prognoses [13, 14]. Stud-
ies conducted by Bian et al. [15] have posited that genes 
implicated in copper-mediated cytotoxicity may serve as 
viable prognostic biomarkers for ccRCC. Furthermore, 
research by Yuan et al. [16] underscores the significance 
of these genes in forecasting ccRCC patient outcomes in 
response to immunotherapeutic and targeted treatment 
modalities. Complementarily, Liu et  al. [11] have sub-
stantiated the occurrence of disulfidptosis within renal 
carcinoma cells and in  vivo animal models, facilitated 
by targeted pharmacological interventions. Prognos-
tic models currently in development, which incorporate 
disulfidptosis-associated genetic markers, are poised to 
enhance prognostic accuracy and inform drug response 
evaluations in clinical settings [17, 18]. Despite existing 
research integrating ferroptosis with cuproptosis [19], 
studies investigating their concurrent impact remain elu-
sive. Considering the pronounced association of ccRCC 
with both cuproptosis and disulfidptosis, it is hypothe-
sized that their amalgamation could unveil novel avenues 
for prognostic refinement and therapeutic approaches for 
afflicted individuals.

Long non-coding RNAs (lncRNAs) are involved in 
the regulation of tumor protein-coding gene expression 
through binding to chromatin-modifying proteins, tran-
scription factors, miRNAs, etc. [20]. lncRNAs regulate 
mitochondrial dynamics such as the TCA cycle, synthesis 
of cytoplasmic biological precursors, and in ccRCC cells 
through metabolic reprogramming to regulate cancer 
cell malignant transformation and control cellular energy 
expression [21, 22]. Machine learning, an offshoot of arti-
ficial intelligence, refines prediction models to forecast 
individual survival outcomes using extensive prognostic 
parameters [23]. Notably, the LASSO and Cox regression 
algorithms excel in accuracy and effectiveness for survival 
prediction modeling [24, 25]. The integration of machine 
learning with LncRNA analysis now markedly enhances 
prognostic and drug sensitivity assessments in oncology 
[26, 27]. Motivated by these advancements, we propose 
to leverage machine learning in investigating LncRNAs 
pertinent to cuproptosis and ferroptosis in ccRCC.

This study aims to develop a prognostic model 
of cuproptosis and disulfidptosis-related lncRNAs 
(CDRLRs) by analyzing real data of ccRCC patients 
in the TCGA database, combining cuproptosis and 
disulfidptosis-related genes, analyzing the TME, 
tumor mutational burden (TMB), and prognostic sur-
vival analysis to further analyze potential immune 
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checkpoint inhibitors and targeted drugs with high 
clinical value. Figure 1 depicts the flowchart delineating 
the process of this study.

Materials and methods
Data collecting
The RNA-seq data for ccRCC were obtained from The 
Cancer Genome Atlas (TCGA) database (https:// portal. 
gdc. cancer. gov) specifically the TCGA-KIRC dataset, 
which included details from 542 tumor samples and 72 
normal tissue samples (accessed on 23 March 2023). 
The data were evaluated utilizing the “limma” pack-
age [28] in R software (version: R-4.2.2). This analysis 
incorporated pertinent clinical information including 
patient age, gender, tumor stage, histological grading, 
survival results, and duration of follow-up. To extract 
the RNA-seq data, we used a Perl script [29] (version 
Strawberry-perl-5.30.0.1; https:// www. perl. org), and 
the extracted data were standardized to FPKM for-
mat. Genes with zero expression were excluded from 
the sample set. Additionally, somatic mutation data in 
mutation annotation format (MAF) were processed and 
visualized with the assistance of the “maftools” package 
[30].

Differential expression identification and association 
of CDRGs with CDRLRs
We extracted genes related to cuproptosis and disulfidp-
tosis-related genes (CDRGs) from various published 
sources [11, 31]. In total, 23 CDRGs were identified, 
with 13 being CDRGs: DLD, PDHB, ATP7B, ATP7A, 
DLAT, DLST, SLC31A1, DBT, FDX1, LIPIT1, LIAS, 
GCSH, and PDHA1, and the remaining 10 identified as 
disulfidptosis-related genes: GYS1, NDUFS1, OXSM, 
LRPPRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2, 
and SLC7A11. The correlation between cuproptosis and 
disulfidptosis was analyzed based on the STRING data-
base (https:// cn. string- db. org/), and the network diagram 
of CDRGs was plotted using Cytoscape (version: 3.9.1). 
The expression matrix of cuproptosis and disulfidpto-
sis-related lncRNAs was obtained using the R packages 
“BiocManager” and “limma” [28, 32], with selection cri-
teria of |Pearson R|> 0.5 and p < 0.001. The Sankey dia-
gram elucidating the relationship between CDRLRs and 
CDRGs was generated with the R packages “ggplot2” and 
“ggalluvial” [33].

Construction and validation of risk model for CDRLRs 
by machine learning algorithms
LASSO represents a machine learning algorithm rooted 
in regression. It incorporates a regularization func-
tion atop logistic regression, mitigating overfitting and 

Fig. 1 Research process flowchart

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.perl.org
https://cn.string-db.org/
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independently eliminating low correlation covariates 
to secure relatively substantial model variables. The 
LASSO-Cox regression algorithm, implemented via the 
“glmnet” R package, was utilized to scrutinize the cor-
relation between CDRLRs and the overall survival (OS) 
of ccRCC patients. A comprehensive integration of uni-
variate and multivariate Cox regression analyses enabled 
the identification of CDRLRs significantly related to OS. 
Subsequently, risk scores were computed for each patient 
using the ensuing formula:

The symbol “n” represents the quantity of ccRCC prog-
nosis-associated CDRLRs, “i” symbolizes the ith CDRLR, 
and the expressions of lncRNA and regression coeffi-
cients are denoted by Coefi and LncRNAexpri respec-
tively [34]. The training set, testing set, and the entire set 
were classified into high- and low-risk categories based 
on the median risk scores.

Nomogram plotting and Kaplan–Meier (K–M) survival 
analysis
To measure the model’s accuracy, Receiver Operating 
Characteristic (ROC) curves accompanied by C-index 
plots were generated using R packages “survminer”, “sur-
vival”, “timeROC”, “rms” and “pec” [35]. The R package 
“regplot” was employed to produce nomogram and cali-
bration plots, facilitating the prediction of patient prog-
nosis and the assessment of prognostic accuracy. The 
correlation between clinical characteristics and Kaplan–
Meier survival curves for high- and low-risk groups 
was delineated using the “survivor” and “survminer” R 
packages.

GO and GSEA analysis
We applied the R package “clusterProfiler” [36] to per-
form Gene Ontology (GO) and Gene Set Enrichment 
Analysis (GSEA) on the differentially expressed genes 
(DEGs) within the high- and low-risk groups. We consid-
ered a P-value less than 0.05 to signify significant enrich-
ment. We used “ggpubr” and “circlize” [37] to visualize 
the outcomes of the GO functional enrichment analysis, 
while we employed “enrichplot” to depict the results of 
the GSEA pathway analysis.

TMB prognostic analysis and targeted drug prediction
Somatic mutation data of ccRCC patients were scruti-
nized employing the R package “maftools”. This facilitated 
the illustration of the somatic mutation landscape in 
both high- and low-risk groups, enabled the comparison 
of TMB variations between these groups, and provided 
further analysis within the context of patients’ prognosis. 

Risk Score =
∑n

i=1
(LncRNAexpi× Coefi)

The R package “oncoPredict” [38] was used to predict the 
IC50 values of targeted therapeutics available for ccRCC 
within the high- and low-risk cohorts.

TME analysis and immunotherapy prediction
The R packages “limma”, “ggpubr”, and “reshape2” were 
employed to construct violin plots with immune infiltra-
tion landscape maps for the high- and low-risk groups, 
thereby indicating the proportions of 22 types of tumor-
infiltrating immune cells and comparing their differences. 
Furthermore, the R packages “limma”, “BiocManager”, 
“ggpubr", and “reshape2” were utilized to illustrate the 
disparities in immune function between the high- and 
low-risk groups. The study included an analysis of ccRCC 
patients regarding five immune checkpoint inhibitors: 
Programmed Death 1 (PD-1 or PDCD1), Programmed 
Death Ligand 1 (PD-L1 or CD274), Cytotoxic T Lym-
phocyte Antigen 4 (CTLA-4), Interleukin 6 (IL-6), and 
Lymphocyte Activating 3 (LAG3). The latter is a scoring 
scheme developed through machine learning algorithms 
to identify and quantify the determinants of tumor 
immunogenicity and has been demonstrated to predict 
solid cancers’ responses to CTLA-4 and PD-1 antibody-
based immunotherapy [39]. The Cancer Immunome 
Atlas (TCIA, https:// tcia. at/ home) can be referred to for 
obtaining the Immunophenoscore (IPS) of ccRCC.

Cell line culture and RT‑qPCR
The human cell lines, 769-P and Caki-1, serve as specific 
models for ccRCC, whereas HK-2 functions as the nor-
mal control cell line. These cell lines are procured from 
Saibaikang, based in Shanghai, China. Each cell line was 
nurtured in a distinctive medium: HK-2 cells thrived in 
Dulbecco’s Modified Eagle Medium: Nutrient Mixture 
F-12 (DMEM/F12, Gibco, USA), 769-P in Roswell Park 
Memorial Institute 1640 medium (RPMI 1640, Gibco, 
USA), and Caki-1 in McCoy’s 5A (Modified) Medium 
(McCoy’s 5A, Gibco, USA). The media were fortified with 
10% fetal bovine serum (FBS, Excell Bio, Uruguay) and 
1% combined streptomycin and penicillin. Subsequently, 
the cells were incubated at 37  °C with 95% humidity in 
a dedicated cell incubator. Total RNA was isolated using 
TRIzol reagent (DP424, TIANGEN, Beijing, China) 
according to the manufacturer’s instructions. cDNA syn-
thesis was performed using total RNA using the Prime-
Script RT kit (RR047A, TaKaRa, Beijing, China). Gene 
expression was quantified using SYBR Premix Ex TaqII 
(RR820A, TaKaRa, Beijing, China). All primers for RT-
qPCR were synthesized by GENEWIZ Biotechnology 
Co., Ltd (Suzhou, China) (Additional file 1: Table S1). The 
PCR program was as follows: 40 cycles at 95 °C for 30 s, 
95  °C for 5 s and 60  °C for 34 s. GAPDH was used as a 

https://tcia.at/home
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standardized internal reference. Relative expression lev-
els were estimated using the  2−ΔΔCt method.

External database validation and Statistical analysis
CDRLRs were validated using the Kaplan–Meier Plot-
ter database [40] (accessed on 1st June 2023), a tool 
equipped for performing network survival analysis 
through both univariate and multivariate methods. Dis-
crepancies in proportions of clinical characteristics were 
analyzed using the chi-square test. Differences between 
Kaplan–Meier curves were identified using the log-rank 
test. The analysis of PCR data was conducted using an 
independent sample t-test, facilitated by GraphPad Prism 
8.0 software. A p-value less than 0.05 was deemed statis-
tically significant.

Results
Construction of a prognostic risk model for ccRCC based 
on CDRLRs
Using the STRING database, we constructed a network 
relationship map of CDRGs (Fig. 2A) and demonstrated 
the association of cuproptosis and disulfidptosis death-
related genes. In accordance with published literature 

and TCGA-KIRC data, 21 CDRGs were identified 
via co-expression analysis (Fig.  2B) (Additional file  1: 
Table S2). Following Pearson analysis, 247 eligible lncR-
NAs were established with parameters |Pearson R|> 0.5 
and p < 0.001 (Additional file  1: Table  S3). Univariate 
Cox regression analysis was applied to identify 108 lncR-
NAs significantly correlated with OS (p < 0.05, Fig.  2C). 
To prevent overfitting, LASSO regression was utilized, 
mitigating lncRNAs with a high correlation to progno-
sis. Subsequent multifactorial Cox regression resulted in 
the selection of four CDRLRs (Fig. 2D, E). The risk mod-
els were constructed using ACVR2B-AS1, AC095055.1, 
AL161782.1, and MANEA-DT (Additional file  1: 
Table  S4). The corresponding risk score equations for 
ccRCC patients are provided below:

Risk score = (−0.406602113479572× ExpACVR2B-AS1)

+ (−0.988256841487476× ExpAC095055.1)

+ (−0.526107034426687× ExpAL161782.1)

+ (0.988504048700137× ExpMANEA-DT)

Fig. 2 Identification of the prognostic CDRLRs and construction of prognostic risk model. A Protein–protein interactions among CDRGs 
based on STRING database. B The sankey relation between CDRGs and CDRLRs. C Forest plot showing univariate Cox regression analysis 
of prognosis-related CDRLRs (p < 0.05). D The LASSO regression coefficient spectrum. E Cross-validation of parameter selection in the LASSO model. 
F Heatmap of the correlation between CDRGs and 4 CDRLRs (*p < 0.05, **p < 0.01, ***p < 0.001)
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Subsequently, we generated a correlation heatmap to 
visualize the associations between four CDRLRs and 
CDRGs. This heatmap revealed that ten CDRGs—spe-
cifically, OXSM, NUBPL, NDUFS1, NCKAP1, LRPPRC, 
LIAS, GCSH, DBT, ATP7B, and ATP7A—showed a 
strong correlation with CDRLRs (Fig. 2F).

Intergroup validation of prognostic risk models
Median risk scores were computed based on CDRLRs. 
Subsequently, the training set, test set, and the entire 
set were divided into high- and low-risk groups for 
survival analysis. This revealed an increasing mortality 
rate among ccRCC patients in correlation with esca-
lating risk scores (Fig.  3A–F). In the low-risk group, 
ACVR2B-AS1, AC095055.1, and AL161782.1 exhib-
ited significant expression, whereas MANEA-DT was 
highly expressed in the high-risk group (Fig.  3G–I). 
This reinforced that ACVR2B-AS1, AC095055.1, and 
AL161782.1 are beneficial prognostic factors and 
MANEA-DT is a poor prognostic factor. The high-risk 

group demonstrated significantly lower OS compared 
to the low-risk group (Fig.  3J–L). These findings were 
confirmed in the three data sets.

Independent prognosis of risk scores
A comparison of survival probability among ccRCC 
patients in high- and low-risk groups, based on patient 
age, gender, histological grade, and tumor stage, revealed 
that the risk score effectively assessed prognosis across 
all these clinical characteristics (p < 0.01, Fig.  4A–H). 
Risk scores were indeed adept at predicting OS in ccRCC 
patients, independent of clinical characteristics. After 
univariate and multivariate Cox regression analyses, 
risk scores and clinical characteristics such as age, histo-
logical grade, and tumor stage emerged as independent 
prognostic factors in ccRCC patients (p < 0.01, Fig.  5A, 
B). Factors correlating negatively with prognosis were 
excluded, and nomogram plots were drawn based on 
independent prognostic factors (Fig.  5C). Calibration 
curves were subsequently used to verify the reliability of 
these findings, which revealed a C-index value of 0.783 

Fig. 3 Validation of the prognostic risk model in the training, testing, and entire groups. A–C Survival status distribution maps. D–F Distribution 
of association between risk score and survival status between high- and low-risk groups. G–I Risk heatmap of the four CDRLRs. J–L Kaplan–Meier 
survival curves between high- and low-risk groups



Page 7 of 17Chen et al. European Journal of Medical Research          (2024) 29:176  

(95% CI 0.7750–0.816) (Fig. 5D). The 1-year, 3-year, and 
5-year subject operating characteristic curves (ROC) 
were then plotted, with an area under the curve (AUC) of 
0.725, 0.718, and 0.762, respectively (Fig. 5E). When the 
AUC values of clinical characteristics within each group 
were compared, the risk score’s AUC was 0.718, second 
only to tumor stage (Fig. 5F). The 10-year Concordance 
index further validated these findings (Fig.  5G). These 
results suggest that the risk score surpasses other clinical 
characteristics, except tumor stage, as a factor in assess-
ing prognosis. Thus, the risk score can effectively serve as 
a biomarker for predicting ccRCC patient prognosis.

GO and GSEA of high‑ and low‑risk groups
From the high- and low-risk groups, we identified 683 
DEGs that met the selection criteria (Padjust < 0.05, |log2 
(fold change)|≥ 1) (Additional file  1: Table  S5). These 
DEGs were used for functional and pathway enrich-
ment analyses to explore potential biological differences 
between the groups (Fig. 6A). The Gene Ontology (GO) 
enrichment analysis showed an enrichment of biological 
processes (BP), such as antigen binding and immunoglob-
ulin receptor binding. Cellular components (CC) involv-
ing the immunoglobulin complex and the external side 
of the plasma membrane were also enriched, along with 
molecular functions (MF) like humoral immune response 
and immunoglobulin production (Fig.  6B) (Additional 
file 1: Table S6). Utilizing Gene Set Enrichment Analysis 
(GSEA), we identified differences in pathways between 
the risk groups, with 89 signaling pathways significantly 

enriched (p < 0.05) (Additional file 1: Table S7). The high-
risk group displayed significant enrichment in the top 
five pathways: complement and coagulation cascades, 
drug metabolism by cytochrome P450, metabolism of 
xenobiotics by cytochrome P450, retinol metabolism, 
and steroid hormone biosynthesis (Fig. 6C). Conversely, 
the low-risk group exhibited enrichment in the following 
top five pathways: endocytosis, insulin signaling pathway, 
neurotrophin signaling pathway, pathways in cancer, and 
valine leucine and isoleucine degradation (Fig. 6D). These 
enrichment patterns may offer valuable insights into the 
prognostic differences observed between the high- and 
low-risk groups.

Immune cell infiltration and immunotherapy sensitivity
Significant differences were observed in TME scores, 
notably ESTIMATE scores (p < 0.001) and immune scores 
(p < 0.001), among ccRCC patients, with the high-risk 
group presenting notably higher scores than the low-
risk group (Fig.  7A). To explore potential relationships 
in immune cell infiltration between the risk groups, we 
compared 22 immune cell enrichment scores and 29 
immune-related function enrichment scores (Additional 
file  1: Tables S8 and S9). Using the CIBERSORT algo-
rithm, we created an immune infiltration landscape for 
the high- and low-risk groups. The correlation box line 
plot illustrated significant associations between multiple 
immune cells and risk scores (Fig. 7B). High-risk groups 
showed enrichment of T cells CD8, T cells follicular 
helper, and T cells regulatory (Tregs) (p < 0.001), while 

Fig. 4 Kaplan–Meier survival curve analysis of high- and low-risk groups in ccRCC patients with different age (A, B), gender (C, D), histological grade 
(E, F), and tumor stage (G–H)
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the low-risk group exhibited a significant upregulation 
of T cells CD4 memory resting, Macrophages M1, Mac-
rophages M2, and Mast cells resting (p < 0.001, Fig. 7C). 
Our immune function analysis indicated that the risk 
models demonstrated significant discrepancies across 
multiple immune function scores, including the check-
point (p < 0.001, Fig. 7D). Guided by these immune func-
tion analyses, we compared the differential expression 
of five key immune checkpoints (PD1, PD-L1, CTLA-4, 

IL-6, LAG3) using the IPS. Results showed that except 
for PD-L1, which was highly expressed in the low-risk 
group, all other checkpoints were overexpressed in the 
high-risk group (p < 0.001, Fig.  7E–I). This suggests the 
IPS’s potential in predicting the immune response to 
checkpoint inhibitors in ccRCC patients based on risk 
score grouping. The immune efficacy, predicted by PD-1 
and CTLA-4 expression in the TCIA database, yielded 
significantly different risk scores in the ctla4(−) pd1( +), 

Fig. 5 Independent prognostic value assessment of risk scores and clinical characteristics. A Univariate Cox regression analysis of risk scores 
and clinical characteristics. B Multivariate Cox regression analysis of risk scores and clinical characteristics. C Nomogram of 1, 3 and 5-year 
OS of ccRCC patients after excluding unrelated variables (*p < 0.05; **p < 0.01; ***p < 0.001). D Calibration curves for OS at 1, 3 and 5 years. E 
ROC validation curve for 1, 3 and 5 years-OS risk model in ccRCC patients. F Prognostic function comparison of risk model and other clinical 
characteristics. G Risk model and other clinical characteristics for 10-year concordance index
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ctla4( +) pd1(−), and ctla4( +) pd1( +) groups (p < 0.05). 
Higher scores were found in the high-risk group, indicat-
ing that high-risk ccRCC patients demonstrated a height-
ened sensitivity to PD-1 and CTLA-4 single-agent and 
dual-agent combination immunotherapies (Fig. 7J–M).

TMB prognostic analysis and potential drug sensitivity
To explore somatic mutations within the high- and 
low-risk groups, TCGA-KIRC mutation data were 
downloaded and categorized. The results demon-
strated identical 15 driver genes with the highest muta-
tion frequencies in both groups, with STED2 and BAP1 
hypermutations being more prevalent in the high-risk 
group (Fig.  8A, B). Although no statistically signifi-
cant association was found between the risk groups 
and TMB (p = 0.11, Fig.  8C), both TMB grouping and 
TMB + risk grouping significantly differentiated survival 
statuses of ccRCC patients (p < 0.001, Fig.  8D, E). Here, 
the High-TMB + high risk group exhibited the lowest 

overall survival rate, while the Low-TMB + low risk group 
showed the highest. Thus, a combination of the risk score 
and TMB presents a promising prognostic marker for 
patients. Several common drugs were selected to analyze 
their sensitivity in the risk groups. The results indicated 
that Alpelisib, Ipatasertib, Lapatinib, Selumetinib, and 
Pictilisib demonstrated higher sensitivity in the low-risk 
group, whereas AZD4547 showed high sensitivity in the 
high-risk group (p < 0.0001, Fig. 8F–K).

Differential expression and prognostic validation 
of CDRLRs in ccRCC 
To further examine CDRLRs’ expression in ccRCC, 
we utilized two ccRCC cell lines (769-P, Caki-1), with 
normal renal tubular epithelial cells (HK-2) as a con-
trol. RT-qPCR evaluated the mRNA expression lev-
els of the four key CDRLRs in these cell lines. The 
findings demonstrated a significantly higher expres-
sion of AC095055.1 in both 769-P (p < 0.05) and 

Fig. 6 Identification and analysis of the biological functions and pathways of DEGs of CDRGs. GO enrichment analysis of A circle and B bar graphs 
showing the BP, CC, and MF groups of DEGs. C, D GSEA plots significantly enriched top five pathways between high- and low-risk groups
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Caki-1 (p < 0.01) cell lines compared to the HK-2 cell 
line (Fig.  9B). However, AL161782.1 showed signifi-
cant expression only in the 769-P cell line (p < 0.0001, 
Fig.  9C). Conversely, ACVR2B-AS1 (p < 0.01) and 
MANEA-DT (p < 0.0001) expressions were signifi-
cantly lower in 769-P and Caki-1 cell lines compared 
to HK-2 (Fig.  9A, D). To corroborate the independent 

prognostic role of CDRLRs in ccRCC patients, we 
performed a prognostic analysis of ACR2B-AS1 
and MANEA-DT using the KM Plotter database 
(AC095055.1 and AL161782.1 were not found in the 
database). The results identified ACR2B-AS1 as a 
protective prognostic factor (HR = 0.48 (0.35–0.65), 
p < 0.0001), while MANEA-DT (HR = 2.05 (1.51–2.79), 

Fig. 7 TME and sensitivity to immune checkpoint inhibitors analysis of high- and low-risk groups. A Association of high- and low-risk groups 
with stromal, immune, and ESTIMATE algorithm scores (***p < 0.001). B Immune cell infiltration landscape. C Differences in immune cell 
infiltration between high- and low-risk groups. D Differences in immune function scores between high- and low-risk groups. Boxplot of PD1 
(E), PD-L1 (F), CTLA-4 (G), IL-6 (H), and LAGE (I) expression in different risk groups. Four types of IPS classification based on risk score grouping 
[CTLA4-neg-PD1-neg (J), CTLA4-neg-PD1-pos (K), CTLA4-pos-PD1-neg (L), and CTLA4-pos-PD1-pos (M)]
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Fig. 8 TMB and sensitivity to targeted drugs analysis of high- and low-risk groups. A Genes with the top 20 mutation frequencies in the high-risk 
group. B Genes with the top 20 mutation frequencies in the low-risk group. C Boxplot of TMB and risk group correlations. D The relationship 
between TMB and Kaplan–Meier survival. E Kaplan–Meier survival with TMB status and risk level. Differences in drug sensitivity across risk groups 
for F Alpelisib, G Ipatasertib, H Lapatinib, I Selumetinib, J Pictilisib, and K AZD4547
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p < 0.0001) indicated a poor prognosis (Fig. 9E, F). This 
prognosis based on CDRLRs aligns with the survival 
analysis results from external databases.

Discussion
ccRCC is the most common type of renal cell carci-
noma, characterized by high heterogeneity, frequent 
recurrence, a significant risk of metastasis, and a poor 
prognosis [41]. Approximately 30% of patients present 
with advanced metastasis at the time of diagnosis [42], 
and the disease often shows resistance to both radio-
therapy [43, 44] and systemic treatments, which signifi-
cantly impacts patient survival and prognosis. Recent 

advances in immunotherapy and targeted therapeutic 
mechanisms have revolutionized treatment options for 
ccRCC [45]. ccRCC is a malignant tumor characterized 
by high immune infiltration and dense vascular distribu-
tion [46, 47], Regulating specific metabolic pathways in 
renal cancer, including ccRCC, can modulate immune 
cell responses and inflammatory characteristics [48–51]. 
Immune cells within the TME can inhibit tumor growth 
by eliminating cancer cells but may also protect certain 
cancer cell subpopulations, contributing to drug resist-
ance [52–54]. Recent research has shown that activating 
or inhibiting cuproptosis-related metabolic pathways can 
alter the TME composition of ccRCC, thereby impacting 

Fig. 9 Validation of CDRLRs in cell lines and prognostic validation of external database. A–D RT-qPCR validation of CDRLRs expression levels 
in normal and clear cell renal cell carcinoma cell lines and expression levels of four CDRLRs in HK-2, 769-P, and Caki-1 cells (*p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001). E, F OS analysis of ACVR2B-AS1 and MANEA-DT from the Kaplan–Meier Plotter database
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the overall treatment response [55, 56]. Additionally, 
models of renal cancer subtypes based on disulfidpto-
sis, utilizing transcriptomic analysis and characteriza-
tion of immune infiltration, demonstrate the potential 
of disulfidptosis biomarkers in predicting the efficacy 
of targeted and immunotherapeutic drugs [57]. How-
ever, given the abundance of biometric sequencing data 
for tumor patients and the complexity of clinical char-
acteristics, manual analysis is insufficient for discerning 
underlying correlations. Machine learning algorithms, as 
an innovative approach within the field of artificial intel-
ligence, have revolutionized the analysis of large datasets, 
offering promising prospects in advancing the subtype 
analysis, mechanistic research, and treatment strategies 
for renal cancer [58, 59]. Han et al. [60] have differenti-
ated renal cancer subtypes using radiographic imaging 
combined with machine learning algorithms to assess 
prognosis. Similarly, Li et al. [61] explored the association 
between radiomics models and VHL gene mutation char-
acteristics to understand their correlation further. Pre-
vious studies have used machine learning to investigate 
ferroptosis-related lncRNAs and build prognostic models 
for ccRCC patients [62]. Bai et al. [26] and Zhao et al. [63] 
have similarly employed machine learning to study cop-
per-related lncRNAs and disulfide-related genes, respec-
tively, and construct survival models for ccRCC and 
bladder cancer. These models provide valuable guide-
lines for cancer immunotherapy and targeted therapy. 
Currently, the development of cancer prognostic models 
that integrate the analysis of ferroptosis, cuproptosis, and 
disulfidptosis is at the forefront of oncological research, 
aiming to predict drug sensitivity and validate crucial 
factors through in vitro experimentation [64, 65]. In this 
study, we utilized a machine learning algorithm, LASSO 
regression, to construct a risk-prognosis model based on 
CDRLRs. We then combined this risk score with TMB 
and TME for further analysis, to assess targeted drug 
sensitivity. Additionally, by applying an immune immu-
nophenoscore algorithm, we evaluated the susceptibil-
ity to immune checkpoint inhibitors, offering significant 
contributions to the therapeutic direction of ccRCC and 
addressing the existing gap in CDRLR-related research.

Copper ions, which are integral to human physiologi-
cal processes as cofactors for key metabolic enzymes, are 
regulated by a network of copper-dependent proteins 
to maintain low levels within the body [66]. Notably, 
tumor tissues and serological copper ion levels are typi-
cally higher in cancer patients than in normal controls. 
While dysregulation of copper homeostasis may trigger 
cytotoxic responses, altered copper ion levels can also 
influence cancer development [67]. Cancer cells often 
show preferential induction in copper carriers, and the 
application of copper ion carriers and copper chelators 

in anticancer therapy has shown promise for induc-
ing cancer cell death by modulating copper metabolism 
[68]. ccRCC is characterized by metabolic reprogram-
ming. Wettersten et  al. [69] revealed hierarchical meta-
bolic reprogramming in ccRCC tumor tissues through 
proteomics and metabolomics. Studies have shown that 
the regulation of the TCA cycle and fatty acid synthesis 
correlates with tumor aggressiveness and survival rates in 
ccRCC patients [70, 71]. Cuproptosis, a cell death mecha-
nism characterized by protein lipoylation in the TCA 
cycle [72], has been shown by Nanni et  al. [73] to offer 
cancer preventive effects through controlling metabolic 
extracts related to copper ion regulation, affecting mito-
chondrial and DNA damage pathways linked to cuprop-
tosis. Genes associated with cuproptosis have been 
identified as potential predictors for prognosis, immuno-
therapy, and targeted therapy in ccRCC patients [15, 74]. 
Disulfidptosis results from metabolic reactions caused 
by the toxicity of disulfide bonds and the accumulation 
of cysteine under conditions of glucose starvation follow-
ing SLC7A11 dysfunction [11]. SLC7A11, a key protein 
in regulating cancer cell metabolism, allows most cancer 
cells to intake cystine, reduce it to cysteine, and then use 
it for glutathione synthesis for antioxidation. Yan et  al. 
[75] discovered that overexpression of SLC7A11 can 
modulate oxidative stress in metastatic cancer cells and 
inhibit tumor metastasis. Notably, 90% of ccRCC cases 
involve the loss of both alleles of the VHL gene [76], 
and VHL-deficient ccRCC exhibits a specific depend-
ency on cysteine for glutathione synthesis, making it 
a therapeutic target. Activating the Src-p38 signaling 
pathway leads to cysteine-deprivation-induced necrosis, 
but this mechanism becomes inactive upon VHL resto-
ration [77]. While the FDA has approved targeted agents 
such as sunitinib for ccRCC treatment, these agents 
carry significant cytotoxicity [78]. Belzutifan, approved 
by the FDA for immunotherapy in renal cell carcinoma 
associated with VHL syndrome [79], can also be used in 
combination with the multi-targeted anticancer agent 
cabozantinib for immunotherapy-resistant clear cell renal 
carcinoma [80]. Even though immune inhibitors have 
been widely applied in ccRCC patients, their potential for 
drug resistance warrants significant attention [81]. Con-
sequently, cuproptosis and disulfidptosis exhibit immu-
nogenic properties that regulate immune cell infiltration 
and modulate tumor metabolism. Extensive research 
has demonstrated a potential association between these 
two cell death mechanisms and the prognosis and drug 
resistance in ccRCC patients. A comprehensive and in-
depth investigation of cuproptosis and disulfidptosis 
within ccRCC patients could enhance prognostic predic-
tions and aid in circumventing specific drug resistance 
mechanisms.
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In our research, we leveraged the STRING database 
to clarify the relationship between cuproptosis and 
disulfidptosis. We then employed machine learning algo-
rithms to investigate the correlation between the clinical 
prognosis of ccRCC patients in the TCGA database and 
CDRLRs. The culmination of our study was the develop-
ment of a prognostic model anchored on ACRR2B-AS1, 
AC095055.1, AL161782.1, and MANEA-DT. ACRR2B-
AS1 is a long non-protein coding RNA. Recent stud-
ies have identified ACVR2B-AS1 as an OS-independent 
prognostic factor in digestive system tumors, including 
gastric and hepatocellular carcinomas, leading to the 
construction of prognostic models based on this lncRNA 
[82, 83]. Our study is the first to confirm the independ-
ent prognostic significance of ACVR2B-AS1 in ccRCC. 
AL161782.1 has been utilized in creating relevant prog-
nostic models for m6A and cuproptosis mechanisms in 
ccRCC-related studies. However, comprehensive studies 
on two lncRNAs, MANEA-DT and AC095055.1, remain 
scarce. Our research pioneers the validation of ACRR2B-
AS1 and MANEA-DT as independent prognostic factors 
for ccRCC through RT-qPCR experiments at the mRNA 
level using cell lines, complemented with data from 
external databases.

The cuproptosis and disulfidptosis-related risk scores 
displayed superior prognostic evaluation capability when 
compared to other clinical attributes, exhibiting 1-, 3- 
and 5-year AUC values exceeding 0.7. This highlights the 
robust reliability of risk scores in predicting the prognosis 
of ccRCC patients. The high-risk group, classified based 
on median risk score, was notable for high CD8 + T cell 
infiltration, significant mutations in the BAP1 gene, and 
worse prognosis compared to the low-risk group. These 
observations largely align with the subtype group charac-
teristics noted in prior studies [47, 84, 85]. Immune func-
tion scores revealed a substantial increase in immune 
checkpoint function scores within the high-risk group 
compared to the low-risk group. Consequently, sig-
nificant expression differences in five crucial immune 
checkpoints between high and low-risk groups were con-
firmed. The high-risk group demonstrated high expres-
sion in all immune checkpoints except CD274, suggesting 
an increased sensitivity to immunotherapy. Further anal-
ysis of the immunophenoscore of these targets revealed 
a notable response in ccRCC patients to combined PD-1 
and CTLA-4 immune therapies. This indicates that dual-
target immunotherapy in ccRCC patients, based on risk 
score assessments, may be beneficial. The prognostic 
superiority of combined PD-1 and CTLA-4 inhibitors as 
a first-line treatment for advanced RCC has been clini-
cally validated [86, 87]. Although clinical data on immu-
notherapy’s prognostic influence in ccRCC patients are 
sparse, it provides valuable direction for subsequent 

clinical trials. In the context of targeted drug sensitiv-
ity, the PI3K inhibitor Alpelisib was subjected to screen-
ing. Rugo et  al. [88] observed a significant reduction 
in adverse effects and improved progression-free sur-
vival with Alpelisib in conjunction with the fulvestrant 
regimen. Though Curigliano et  al. [89] found minimal 
changes in the pharmacokinetics of Alpelisib combined 
with everolimus ± exemestane for renal cell carcinoma, 
our model presents novel insights for the application 
of Alpelisib. Ipatasertib, an Akt inhibitor, in combina-
tion with chemotherapy, or Lapatinib, an EGFR/HER-2 
tyrosine kinase inhibitor, has shown efficacy. Ipatasertib, 
an Akt inhibitor, has demonstrated good tolerability and 
safety when combined with chemotherapy or hormonal 
treatments for prostate cancer, though its effect on renal 
cell carcinoma remains unexplored [90, 91] Lapatinib, an 
EGFR/HER-2 tyrosine kinase inhibitor, exhibits better 
overall tolerance compared to hormonal therapy among 
advanced RCC patients who have progressed following 
initial cytokine treatment. Moreover, it offers survival 
benefits to EGFR (3 +) patients. Selumetinib, a selective 
MEK1 inhibitor, coupled with Everolimus, can attenuate 
angiogenesis during renal cell carcinoma proliferation 
by reducing VEGF secretion, consequently enhancing 
antitumor activity [92]. Rausch et  al. [93] achieved a 
significant reduction in cell line metabolic activity and 
induction of apoptosis in renal cell carcinoma utilizing 
optimized low-dose combinations of AZD4547 (an FGFR 
signaling pathway inhibitor) and pictilisib (a pan-phos-
phatidylinositol 3-kinase inhibitor). Notably, distinct sen-
sitivity differences between AZD4547 and pictilisib have 
been observed across different risk groups, underscoring 
the need for in-depth investigation into the mechanisms 
of cuproptosis and disulfidptosis.

Our study is subject to several limitations. Firstly, there 
is an inherent bias in the transcriptomics and clinical 
data available in public databases, necessitating the sup-
port of additional external clinical trial data to strengthen 
our retrospective analysis. Secondly, our investigation 
into the genes associated with cuproptosis and disulfidp-
tosis lacks empirical experiments to verify the mecha-
nisms and functional relationships. Lastly, our research 
only extends to external validation of differential expres-
sion for the lncRNAs involved in our model at the cel-
lular and protein levels. In the future, we aim to enhance 
the generalizability and reliability of our model through 
integrative approaches such as radiomics and histopath-
omics, among other multi-omics studies.

Conclusions
In this study, we devised a cuproptosis and disulfidp-
tosis-related prognostic risk model for ccRCC patients 
using machine learning algorithms. The reliability of 
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four CDRLRs as key prognostic factors was corrobo-
rated through external databases and experiments. 
This process further facilitated the prediction of the 
sensitivity to immune and targeted drugs and implied 
guidance for prognostic assessment and personalized 
treatment for ccRCC patients.
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