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Abstract 

Background GC is a highly heterogeneous tumor with different responses to immunotherapy, and the positive 
response depends on the unique interaction between the tumor and the tumor microenvironment (TME). However, 
the currently available methods for prognostic prediction are not satisfactory. Therefore, this study aims to construct 
a novel model that integrates relevant gene sets to predict the clinical efficacy of immunotherapy and the prognosis 
of GC patients based on machine learning.

Methods Seven GC datasets were collected from the Gene Expression Omnibus (GEO) database, The Cancer 
Genome Atlas (TCGA) database and literature sources. Based on the immunotherapy cohort, we first obtained a list 
of immunotherapy related genes through differential expression analysis. Then, Cox regression analysis was applied 
to divide these genes with prognostic significancy into protective and risky types. Then, the Single Sample Gene Set 
Enrichment Analysis (ssGSEA) algorithm was used to score the two categories of gene sets separately, and the scores 
differences between the two gene sets were used as the basis for constructing the prognostic model. Subsequently, 
Weighted Correlation Network Analysis (WGCNA) and Cytoscape were applied to further screen the gene sets 
of the constructed model, and finally COX7A1 was selected for the exploration and prediction of the relationship 
between the clinical efficacy of immunotherapy for GC. The correlation between COX7A1 and immune cell infiltra‑
tion, drug sensitivity scoring, and immunohistochemical staining were performed to initially understand the potential 
role of COX7A1 in the development and progression of GC. Finally, the differential expression of COX7A1 was verified 
in those GC patients receiving immunotherapy.

Results First, 47 protective genes and 408 risky genes were obtained, and the ssGSEA algorithm was applied 
for model construction, showing good prognostic discrimination ability. In addition, the patients with high model 
scores showed higher TMB and MSI levels, and lower tumor heterogeneity scores. Then, it is found that the COX7A1 
expressions in GC tissues were significantly lower than those in their corresponding paracancerous tissues. 
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Meanwhile, the patients with high COX7A1 expression showed higher probability of cancer invasion, worse clinical 
efficacy of immunotherapy, worse overall survival (OS) and worse disease‑free survival (DFS).

Conclusions The ssGSEA score we constructed can serve as a biomarker for GC patients and provide important 
guidance for individualized treatment. In addition, the COX7A1 gene can accurately distinguish the prognosis of GC 
patients and predict the clinical efficacy of immunotherapy for GC patients.

Keywords Gastric cancer (GC), Biomarker, Prognostic model, Immunotherapy, COX7A1, Gene function

Introduction
Gastric cancer (GC) is one of the malignant tumors with 
high morbidity and mortality all over the world [1]. Data 
from the World Health Organization showed that among 
the global incidence of 1 million cases [2], GC has been 
listed as the fifth largest tumor burden in the world [3]. 
Moreover, GC is mostly in the middle and advanced 
stage when it is diagnosed, leading to its high mortality. 
The Global Cancer Report 2020 revealed that more than 
760,000 GC patients died each year worldwide, making 
it the fifth most common cause of cancer-related death 
[4, 5]. In the past few decades, auxiliary examination 
techniques (tumor markers, CT, MRI and ultrasound, 
etc.), surgical operation, radiotherapy, systematic chem-
otherapy, targeted therapy and immunotherapy have all 
made great progress [6], but unfortunately, the progno-
sis of GC patients is still very poor, especially in those 
with advanced stage, with the five-year survival rate less 
than 20% [7–10]. Some GC patients may have the similar 
tumor grades and the same pathological stages, but their 
survival outcomes may be completely different based on 
different gene expression characteristics [11]. In recent 
years, immune checkpoint inhibitors (ICIs), such as 
anti-CTLA-4 (cytotoxic T lymphocyte associated anti-
gen-4) inhibitors and anti-PD-1 (programmed cell death 
1)/PD-L1 (programmed cell death ligand 1) inhibitors, 
as well as the combined treatment with chemotherapy 
and immunotherapy, have made significant progress in 
many types of cancers [12]. At present, several ICIs have 
been allowed to be used for clinical treatment of GC 
patients with advanced stage [13, 14]. However, the over-
all response rate of GC patients to current ICIs is only 
20–40% [15]. Therefore, identifying effective biomarkers 
to screen out GC patients who may receive satisfied clini-
cal efficacy from immunotherapy is urgently needed.

Tumor mutation burden (TMB), neoantigen load 
(NAL), copy alternation number (CAN), mismatch repair 
deficiency (dMMR), microsatellite instability (MSI), 
tumor microenvironment (TME), especially the expres-
sion of PD-1/PD-L1 and mutation of some specific genes 
are considered to be predictive markers of immunother-
apy in GC patients [16–18]. However, these indicators do 
have limitations that hinder their clinical applications, 
such as spatio-temporal heterogeneity, low accuracy or 

less applicable population [19, 20]. Therefore, in the era 
of individualized medical treatment, it is imperative to 
find reliable and accurate biomarkers to enhance the clin-
ical efficacy of immunotherapy for GC patients.

Human COX7A1 gene encodes cytochrome C oxidase 
subunit 7A1 protein [21, 22], playing a role in a multi-unit 
heterologous complex (such as complex IV) of the mito-
chondrial respiratory chain. The complex IV consists of 
three catalytic subunits encoded by mitochondrial genes 
and multiple structural subunits [23]. In recent years, 
some researchers have found that COX7A1 is related 
to the metabolism and treatment of human cancer cells 
[24, 25]. COX7A1 has been widely studied in the field 
of lung cancer, and it has been confirmed that COX7A1 
can block autophagy by up-regulating NOX2 and down-
regulating PGC-1α. At the same time, the overexpres-
sion of COX7A1 can inhibit the proliferation and colony 
formation ability of human non-small cell lung cancer 
cells, which also depends on the regulation of autophagy 
[24]. The relationship between COX7A1 and ferropto-
sis has also been revealed in lung cancer. COX7A1 can 
increase the sensitivity of lung cancer cells to ferroptosis 
induced by cysteine deprivation by promoting the activ-
ity of tricarboxylic acid cycle and complex IV in mito-
chondrial electron transport chain [26]. Furthermore, 
COX7A1 is also a super enhancer (SE) gene [27]. Super 
enhancers (SEs), as a kind of cis regulatory element with 
super transcriptional activation, was first proposed by 
Richard A. Young from White Institute for Biomedical 
Research [28, 29]. Compared with the typical enhancer 
(TE), the span of the SEs region is usually 8–20 Kb, which 
is much higher than the 200–300  Bp span of the TEs. 
More importantly, SEs have higher density of transcrip-
tional activation related histone modifications (such as 
H3K27ac, H3K4me1, etc.), media complexes and bro-
modomain containing 4 (BRD4, which binds to histone 
acetylation modification sites) than TEs, making them 
have greater regulatory potential for tumor cells. Richard 
A. Young has mentioned that SEs are golden targets for 
targeted research. And in recent years, the drug clinical 
experimental researches on SEs advanced continuously 
and have achieved satisfactory results, such as those aim-
ing at SE gene family BRD2, BRD3 and BRD4, and those 
aiming at CDK7 target [30]. Therefore, the research 



Page 3 of 19Wang et al. European Journal of Medical Research          (2024) 29:180  

on SEs and drug targets may be the core field of tumor 
therapy in the future. However, SEs of COX7A1 have not 
been reported yet, so we decided to explore the potential 
function of COX7A1 in GC.

At present, there have been many reports on the con-
struction of prognostic models for GC, such as those 
based on genes related to Notch pathway [31], those 
based on angiogenesis-related genes [32], and those 
based on apoptosis-related genes [33]. These models 
were reported to be able to satisfactorily distinguish GC 
patients and describe the clinical and molecular charac-
teristics of these patients with different prognosis. How-
ever, these prognostic models do not further complete 
the screening of target molecules for potential applica-
tions. So in this study, novel modeling methods were 
applied to establish a complete screening strategy for 
exploration of target molecules related to GC immu-
notherapy, and the above ideas were verified by the fol-
lowing immunohistochemical staining. The specific 
workflow is shown in Fig.  1. In this study, we proposed 
a new process for screening genes related to the progno-
sis of immunotherapy, including identifying differential 
genes related to immunotherapy, constructing a prog-
nostic model based on ssGSEA algorithm, and screening 
candidate target genes based on WGCNA and Cytoscape. 

At the same time, the clinical specimens of GC tissues in 
Sun Ya-sen University Cancer Center were acquired to 
further demonstrate the reliability of our screening pro-
cess and the accuracy of our model, and also revealed the 
role of COX7A1 as a SE in predicting the prognosis of GC 
patients and the clinical efficacy of immunotherapy.

Method
Data collection
We downloaded the transcriptome FPKM (Fragments Per 
Kilobase per Million) data and clinical information data 
of GC/STAD patients (stomach adenocarcinoma) (includ-
ing age, sex, TNM stage, and follow-up data, etc.) from the 
official website of TCGA database (N = 375), and cleansed 
the data with Tidyverse package [34] in R software. At the 
same time, GC transcriptome data and clinical informa-
tion of GC patients were downloaded from GEO data-
base, such as GSE84437 (N = 433), GSE66229 (N = 300), 
GSE15459 (N = 191), GSE26253 (N = 432) and GSE26942 
(N = 202). The details of the data sets can be found in Addi-
tional file 1: Table S1. We re-annotated the gene informa-
tion in the GEO data sets using the sequence information 
GRCh38 (Genome Reference Consortium Human Build 
38) obtained from the latest version of the Human Genome 
Project. Finally, the Kim Cohort [15] (N = 45) is a GC 

Fig. 1 The specific workflow of our study
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cohort that has been treated with anti-PD-1, and their 
transcriptome data were downloaded for reprocessing and 
quantifying the expression profile [35]. The baseline char-
acteristics of GC patients in the above datasets are pre-
sented in Table 1.

Differential gene expression analysis
In bioinformatics, differential expression analysis is a com-
mon method to study the differences of gene expression 
in different biological samples under different conditions. 
Limma package [36] is widely used for differential expres-
sion analysis, which can be used to analyze RNA-seq and 
microarray data, with high accuracy, reliability, flexibility 
and expansibility. Based on the statistical model of Bayes-
ian method, limma package can not only control the error 
rate, but also find the differential expression of one or more 
genes between different groups, thus helping biologists to 
understand the mechanism of gene regulation and biologi-
cal processes. Therefore, limma package [36] in R software 
was used to compare GC patients who had no response to 
immunotherapy with those who had response for obtaining 
differential genes, and the Benjamini–Hochberg multiple 
correction method was applied to calculate the FDR (false 
discovery rate) value of each differential gene. FDR < 0.05 
and |  Log2 FC |> 1 were set as the criteria for screening dif-
ferential genes.

Construction of gene model related to prognosis 
and immunotherapy
Gene set variation analysis (GSVA) provides the estimation 
of pathway activity by transforming the input gene expres-
sion data matrix into the corresponding gene set expres-
sion data matrix. Then the expressed data matrix can be 
used with classical analysis methods, such as differential 
expression, classification, survival analysis, clustering or 
correlation analysis. However, single sample GSEA (Single 
Sample Gene Set Enrichment Analysis, ssGSEA) is a non-
parametric method, which calculates the gene enrichment 
score of each sample as the normalized difference of the 
empirical cumulative distribution function (CDF) of gene 
expression inside and outside the gene sets. So ssGSEA 
was performed to calculate enrichment scores for the 
above-mentioned two types of genes (HR < 1 in Cox regres-
sion analysis was defined as protective gene; HR > 1 in Cox 
regression analysis was defined as risky gene), and then a 
gene model related to the prognosis of immunotherapy was 
constructed by the following formula:

Functional enrichment analysis
ClusterProfiler is a powerful bioinformatics tool that 
supports the use of up-to-date gene annotation data 

ssGSEA Score = Score
(

protective gene
)

− Score
(

risky gene
)

to quickly explore the functional characteristics of 
thousands of species, including coded and non-coded 
genomic data. The tool provides a general interface, 
which can obtain gene function annotation informa-
tion from various sources and apply flexibly in different 
application scenarios. At the same time, Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) is an encyclope-
dia of genes and genomes, in which molecular functions 
are mainly presented as a network of interactions and 
responses in the form of KEGG pathways and modules. 
To explore the potential function of the appealing protec-
tive and risky gene sets, we performed KEGG enrichment 
analysis of the two gene sets based on Clusterprofiler 
package [37, 38], and screened out the statistically signifi-
cant pathways with P < 0.05, so as to explore the potential 
biological value of the gene sets.

Construction and evaluation of nomogram
Nomogram is widely used in cancer prognosis mainly 
because they can simplify statistical prediction models 
to a single numerical estimate of event probability, such 
as death or recurrence, which is tailored to individual 
patient conditions. After univariate Cox regression analy-
sis, following multivariate Cox regression analysis was 
performed to screen all independent prognostic factors 
to construct a prognostic Nomogram map to evaluate the 
probability of 1-, 3- and 5-year overall survival (OS) of 
GC patients in TCGA + GSE84437 using R package “rms”. 
The clinical factors included age, sex, T stage, N stage 
and ssGSEA score. Then the calibration curve was drawn 
by R package “regplot”, which is mainly used to compare 
the probability of predicting OS with the actual OS prob-
ability of Nomogram, and to evaluate the discriminant 
ability of line chart graphically.

Weighted correlation network analysis (WGCNA)
WGCNA is an algorithm based on high-throughput 
gene co-expression profile analysis, which is widely used 
to identify gene co-expression networks for various dis-
eases. Compared with traditional methods, WGCNA is 
superior in analyzing gene association patterns and asso-
ciating gene co-expression modules with clinical features. 
The construction of co-expression module based on 
WGCNA method includes the following main steps: first, 
the correlation coefficient matrix between genes was 
constructed, which is called adjacency matrix; then the 
adjacency matrix aij was used to calculate the connection 
strength between each pair of nodes through the follow-
ing formula.

Vectors (bi and bj) are the expression values of genes, 
while the Pearson correlation coefficients of genes i and j 

Zij =
[

cor
(

bi, bj
)]

aij = Zijβ
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Table 1 Baseline characteristics of GC patients from public databases in this study

NA not available, CR complete response, PR partial response, SD stable disease, PD progressive disease

Cohorts TCGA 
(N = 375)

GSE84437
(N = 433)

GSE66229
(N = 300)

GSE15459
(N = 191)

GSE26253
(N = 432)

GSE26942
(N = 202)

Kim cohort
(N = 45)

Survival status

 Alive 224 (59.7%) 224 (51.7%) 148 (49.3%) 96 (50.3%) 265 (61.3%) 114 (56.4%) /

 Dead 150 (40.0%) 209 (48.3%) 152 (50.7%) 95 (49.7%) 167 (38.7%) 88 (43.6%) /

 NA 1 (0.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) /

Gender

 Female 134 (35.7%) 137 (31.6%) 101 (33.7%) 67 (35.1%) 152 (35.2%) 60 (29.7%) /

 Male 241 (64.3%) 296 (68.4%) 199 (66.3%) 124 (64.9%) 280 (64.8%) 142 (70.3%) /

Age

  < 56 63 (16.8%) 144 (33.3%) 76 (25.3%) 43 (22.5%) 253 (58.6%) 90 (44.6%) /

  >  = 56 308 (82.1%) 289 (66.7%) 224 (74.7%) 148 (77.5%) 179 (41.4%) 112 (55.4%) /

 NA 4 (1.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) /

Stage

 I 53 (14.1%) 18 (4.2%) 30 (10.0%) 31 (16.2%) 68 (15.7%) 51 (25.2%) 0 (0%)

 II 111 (29.6%) 206 (47.6%) 97 (32.3%) 29 (15.2%) 167 (38.7%) 36 (17.8%) 0 (0%)

 III 150 (40.0%) 209 (48.2%) 96 (32.0%) 72 (37.7%) 130 (30.1%) 63 (31.3%) 0 (0%)

 IV 38 (10.1%) 0 (0%) 77 (25.7%) 59 (30.9%) 67 (15.5%) 51 (25.2%) 45 (100.0%)

 NA 23 (6.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0.5%) 0 (0%)

Lauren classification

 Diffuse / / 135 (45.0%) 75 (39.3%) / 42 (20.8%) /

 Intestinal / / 146 (48.7%) 98 (51.3%) / 141 (69.8%) /

 Mixed / / 19 (6.3%) 18 (9.4%) / 7 (3.5%) /

 NA / / 0 (0%) 0 (0%) / 12 (5.9%) /

Stage T

 T1 19 (5.1%) 11 (2.5%) 0 (0%) / / / /

 T2 80 (21.3%) 38 (8.8%) 186 (62.0%) / / / /

 T3 168 (44.8%) 92 (21.2%) 91 (30.3%) / / / /

 T4 100 (26.7%) 292 (67.5%) 21 (7.0%) / / / /

 Tx 8 (2.1) 0 (0%) 2 (0.7%) / / / /

Stage N

 N0 111 (29.6%) 80 (18.5%) 38 (12.7%) / / / /

 N1 97 (25.9%) 188 (43.4%) 131 (43.6%) / / / /

 N2 75 (20.0%) 132 (30.5%) 80 (26.7%) / / / /

 N3 74 (19.7%) 33 (7.6%) 51 (17.0%) / / / /

 Nx 18 (4.8%) 0 (0%) 0 (0%) / / / /

Stage M

 M0 330 (88.0%) 433 (100.0%) 273 (91.0%) / / 187 (92.6%) 0 (0%)

 M1 25 (6.7%) 0 (0%) 27 (9.0%) / / 14 (6.9%) 45 (100.0%)

 Mx 20 (5.3%) 0 (0%) 0 (0%) / / 1 (0.5%) 0 (0%)

Chemotherapy

 Yes / / / / 432 (100.0%) 106 (52.5%) /

 No / / / / 0 (0%) 96 (47.5%) /

Overall response (immunotherapy)

 CR / / / / / / 3 (6.7%)

 PR / / / / / / 9 (20.0%)

 SD / / / / / / 15 (33.3%)

 PD / / / / / / 18 (40.0%)
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and aij are expressed as the connection strength between 
genes. At the same time, to ensure the scale-free network 
in the adjacency matrix, the appropriate soft threshold 
power β = 4 is selected to ensure the scale-free topol-
ogy. Then the hierarchical clustering of the weighted 
coefficient matrix was used to define the module. The 
functional modules in the co-expression network with 
defined genes were screened. Topology measurement 
(TOM) showed the concurrency of shared adjacent genes 
through the following formula.

The A in the formula was the weighted adjacency 
matrix described in the above formula. The dissimilarity 
measurement based on TOM is carried out for gene tree 
map and average linkage hierarchical clustering, and the 
similar expression profile was divided into the same gene 
module by dynamic tree cutting package. In addition, the 
minimum number of genes in each gene co-expression 
module was set to 100, and the cutting height threshold 
of merging similar gene modules was set to 0.3. Finally, 
Pearson correlation analysis was carried out to verify the 
correlation between gene co-expression module and clin-
ical parameters. Therefore, the key gene modules most 
significantly related to clinical parameters were identified 
by WGCNA algorithm for the following analysis.

Drug sensitivity analysis
Genomics of Drug Sensitivity in Cancer (GDSC) is a 
common data set [39] containing drug sensitivity data 
 (IC50) of 1000 cell lines to obtain information on drug 
sensitivity and drug resistance of GC cell lines. The 
OncoPredict package was developed by Maeser et al. [40] 
to predict the drug response of cancer patients in vivo, in 
which OncoPredict matched the tissue gene expression 
profile with the half maximal inhibitory concentration 
 (IC50) of the cancer cell line, and then applied the ridge 
regression algorithm to predict the drug response of the 
samples in the TCGA + GSE84437, GSE66229, GSE26253 
and GSE15459 cohort. By downloading the GDSC2 gene 
expression profile and corresponding drug response 
information using oncoPredict package, we generated a 
ridge regression model that can be applied to GC tran-
scriptome data, and then obtained the sensitivity score to 
predict the  IC50 of 5-Fu and Oxaliplatin.

Immune infiltration analysis
To describe the tumor immune microenvironment, we 
estimated the abundance of Tumor Infiltration Immune 
Cell (TIIC) in each sample by CIBERSORT algorithm. 
CIBERSORT algorithm is an immunological calculation 

TOMi, j =
�N

K=1Ai,j · Ak ,j + Ai,j

min
(

Ki,Kj

)

+ 1− Ai,j

method based on gene expression characteristic matrix 
with various marked genes. It uses linear Support Vector 
Regression (SVR) machine learning method to decon-
volution gene expression. The original gene expression 
data from TCGA and GEO were normalized before CIB-
ERSORT analysis. Then, on the CIBERSORTx website 
(https:// ciber sortx. stanf ord. edu/), we downloaded the 
matrix of sample immune cell infiltration. It contains 
22 immune cell subtypes of TIIC (B cells naïve, B cells 
memory, Plasma cells, T cells CD8, T cells CD4 naïve, 
T cells CD4 memory resting, T cells CD4 memory acti-
vated, T cells follicular helper, T cells regulatory (Tregs), 
T cells gamma delta, NK cells resting, NK cells activated, 
Monocytes, Macrophages M0, Macrophages M1, Mac-
rophages M2, Dendritic cells resting, Dendritic cells acti-
vated, Mast cells resting, Mast cells activated, Eosinophils 
Neutrophils). At the same time, to improve the accuracy 
of the deconvolution algorithm, we consider the P value 
and root mean square error of CIBERSORT. The cor-
relation between COX7A1 expression and immune cell 
content was calculated by Spearman correlation test in 
TCGA + GSE84437, GSE66229 and GSE26253 cohorts.

Immunohistochemistry
SYSUCC Cohort, including paraffin-embedded GC and 
paracancerous tissues, was collected from Sun Yat-sen 
University Cancer Center. At the same time, we also 
collected 24 GC patients to form an Immune Cohort. 
The specific steps of immunohistochemistry are as fol-
lows: take out a proper amount of stained slides from 
the refrigerator at – 80 ℃ and bake them in an oven at 
60  ℃ overnight, then use xylene dewaxing and gradi-
ent alcohol hydration, and use sodium citrate buffer for 
antigen repair to expose antigenic determinants. Then 
hydrogen peroxide was used to block endogenous per-
oxidase and an appropriate amount of goat serum block-
ing solution (usually 50 ul) was used for serum blocking. 
After that, the COX7A1 antibody of Affinity Biosciences 
was diluted and incubated at 1:50 for 1  h (37 ℃). After 
PBS cleaning, the HRP labeled polymer (anti-rabbit) was 
added to incubate the second antibody. After cleaning 
the glass slides by PBS, DAB solution was prepared by 
mixing 1ml solution B and 20 ul solution C (50:1 ratio). 
Then add 50–70 ul DAB solution to each slide and incu-
bate for 1–3 min until the tissue was stained brown. Soak 
the slides in hematoxylin solution for 1–3 min until the 
nucleus was evenly stained dark blue. Then immediately 
put the slide into the tap water to stop dyeing. After that, 
the film was sealed and photographed under microscope, 
and the following IHC score criteria were used: positive 
IHC staining showed brown granules in the cytoplasm, 
cell membrane or nucleus. Then the dyeing intensity and 
dyeing area were evaluated to determine the score. Here, 

https://cibersortx.stanford.edu/
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the staining area score was calculated as the percentage 
of positive staining cells in the whole tissue section, rang-
ing from 0 to 100%. The score of staining intensity was 
as follows: 0 for negative staining (-); 1 for weak yellow 
staining; 2 for yellow staining; 3 for brown staining. The 
H score was calculated as the product of the percentage 
of dyeing area and the score of dyeing intensity, ranging 
from 0 to 3.

Patients and specimens
We collected wax blocks from 320 GC patients (includ-
ing 170 GC issues and 150 paracancerous tissues) and 
the clinical information of the corresponding patients 
from Sun Yat-sen University Cancer Center for external 
verification. These specimens did not receive any neo-
adjuvant therapy before operation, and all received GC 
surgery in Sun Yat-sen University Cancer Center from 
2007 to 2010. They were followed up every 3  months 
in the first 2 years and every 6 months in the following 
3 years. Each patient was followed up until December 31, 
2015. OS was determined from the operation date to the 
last follow-up or death, and disease-free survival (DFS) 
was determined from the operation date to the last fol-
low-up or cancer progression. At the same time, we also 
recruited 24 patients from Sun Yat-sen University Can-
cer Center to form an Immune Cohort, and the response 
to immunotherapy was evaluated by pathologists in our 
hospital according to tumor regression grade (TRG). The 
clinical information and the results of TRG evaluation of 
the 24 patients are detailed in Additional file 1: Table S2 
(Immune Cohort). This study was approved by the Eth-
ics Committee of Sun Yat-sen University Cancer Center, 
and all patients provided informed consent for the use of 
their information and samples for research purposes.

Statistical method
All bioinformatics statistical analysis was carried out by 
R software (R version 4.2.2). All P values have passed the 
double-tail test, and P < 0.05 is considered to be statisti-
cally significant. Wilcoxon test was used to compare the 
difference between ssGSEA score low score group and 
high score group. Spearman correlation analysis was used 
to estimate the correlation between quantitative variables 
of non-normal distribution. The survival curve was eval-
uated by Kaplan–Meier method and Cox proportional 
hazard regression model, and the difference was analyzed 
by log rank test, in which we used two R packages [41] of 
“survival” and “surminer” for survival analysis and regres-
sion analysis. Before Kaplan–Meier analysis, the best 
grouping method was used to divide gene expression into 
high expression group and low expression group. Here, 
“ggplot2” R package [42] was used to draw the survival 
curves.

See “Additional file  6” for “Single-cell Data Down-
load and Processing” and “Tumor Microenvironment 
Analysis”.

Results
Construction and verification of a gene model related 
to prognosis and immunotherapy
The transcriptional data of Korean GC immunotherapy 
cohort and the clinical information of patients were 
analyzed by limma package (12 patients in the response 
group and 33 patients in the non-response group). The 
differential expression genes in response group and 
non-response group were compared (| LogFC |> 1). The 
differential gene heat map showed 100 genes with the 
most significant differences (Fig.  2A), indicating that 
MIA-RAB4B and LINC01433 were significantly over-
expressed in the response group, while ROS1, WIF1 
and CYP1A1 were significantly lower in the response 
group. Next, we further screened the differential expres-
sion genes between the two groups and construct a 
model related to the prognosis of GC. We downloaded 
GC dataset from TCGA and GEO, and merged them 
after de-batch processing. Then univariate Cox regres-
sion analysis was applied to filter 455 genes related to 
the prognosis. The genes with HR < 1 were defined as 
protective genes (47 genes), and those with HR > 1 were 
defined as risky genes (408 genes). The specific gene sets 
are shown in Additional file 3: Table S3, and then the two 
types of genes are analyzed by KEGG enrichment analy-
sis. The results of enrichment analysis are also shown in 
Additional file 3: Table S3. Protective genes were mainly 
enriched in immunotherapy-related pathways such as 
“Response to infereron-gamma”, while risky genes were 
mainly enriched in immune microenvironment-related 
pathways such as “extracellular matrix organization” and 
“extracellular structure organization” (Fig.  2C, D). Then 
the immune response ssGSEA score was obtained by 
enriching the two kinds of gene sets by ssGSEA, and the 
gene model related to prognosis of immunotherapy was 
constructed. It is found that the prognosis of GC patients 
with high score was better than those with low score 
(P < 0.01, Fig.  2B). To verify the reliability of the model, 
we used GSE66229, GSE26942, GSE26253 and GSE15459 
of GEO dataset for external validation. We found that 
the OS, DFS and progression-free survival (PFS) of 
GC patients with high score in GSE66229, GSE26942, 
GSE26253 dataset were significantly higher than those 
with low score (all P < 0.01, Fig.  3A–G), which further 
verified that our immune response ssGSEA score could 
effectively distinguish the prognosis of GC patients. We 
additionally assessed the prognosis at different TNM 
stages, and the results are shown in Additional file 5: Fig. 
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S1. In most conditions, our model still showed an eligible 
predictive effect on patients at different TNM stages.

The correlation between immune response ssGSEA score 
and several known markers for immunotherapy
To further explore the relationship between immune 
response ssGSEA score and immunotherapy, we down-
loaded the genomic data of TCGA and sorted out the 
scores of TMB, MSI and MATH related to the efficacy of 
immunotherapy. In the immune index of TMB, we can 
see that the TMB score of the GC patients with higher 
immune response ssGSEA score was also significantly 
higher than that of the GC patients with lower scores 
(P < 0.001, Fig.  4A), indicating that the GC patients 
with higher scores had more gene mutations and had 
greater potential for immunotherapy. At the same time, 
the immune response ssGSEA score of GC patients 
was positively correlated with the TMB score (R = 0.48, 
P < 0.001, Fig.  4B). Among the GC patients analyzed in 

two subgroups, we found that the GC patients with high 
TMB score and high immune response ssGSEA score 
had the best prognosis. On the contrary, the GC patients 
with lower TMB and lower immune response ssGSEA 
score had worse prognosis (P < 0.001, Fig.  4C). Among 
the immunotherapy indexes of MSI, the GC patients with 
higher immune response ssGSEA score had a higher MSI 
score (P = 0.0059, Fig. 4D). At the same time, the immune 
response ssGSEA score was positively correlated with 
the MSI score (R = 0.29, P < 0.001, Fig. 4E), which further 
indicated that the immune response ssGSEA score was 
consistent with the related indexes of clinical efficacy of 
immunotherapy. At the same time, in the double sub-
group analysis, the GC patients with high MSI score and 
high immune response ssGSEA score had the best prog-
nosis, whereas the GC patients with low MSI score and 
low immune response ssGSEA score had the worst prog-
nosis (P < 0.001, Fig. 4F). In terms of tumor heterogeneity, 
the GC patients with higher immune response ssGSEA 

Fig. 2 Screening of differential expression genes and construction of prognostic model for GC. A Differential gene heat map of response 
and non‑response groups; B The survival curve of high and low risk groups of GC patients obtained by model scoring; C, D Bubble diagrams 
for KEGG enrichment analysis of protective and risky genes
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score had lower MATH score (P < 0.001, Fig.  4G), indi-
cating that these patients were not prone to immune 
tolerance and have a better effect on immunotherapy; at 
the same time, the immune response ssGSEA score was 
negatively correlated with the MATH score (R = − 0.093) 
(R = −  0.093, P = 0.077, Fig.  4H), but with no statistical 
difference (P = 0.077), which may be due to the limited 
sample size. In the two-subgroup analysis, the prognosis 
of GC patients with low MATH score and high immune 
response ssGSEA score was better, on the contrary, the 
prognosis of GC patients with high MATH score and low 
immune response ssGSEA score was the worst (P = 0.035, 
Fig. 4I).

Prediction of survival probability of GC patients 
by nomogram
To evaluate the survival probability of each GC patient, 
we used GC cohort from TCGA and GSE84437 from 
GEO to construct a line chart model to predict the sur-
vival of GC patients. Multivariate Cox regression analysis 
was used to screen variables with significant prognosis 
and clinical significance, including age, sex, T stage, N 
stage and model score. The detailed score of each varia-
ble is shown in the line chart (Fig. 5A). By calculating the 
score of each variable and calculating the total score, we 
can predict 1 year, 3 year and 5 year OS of GC patients. 
At the same time, the calibration curve was used to eval-
uate the prediction performance of Nomogram, and our 
prediction calibration curve was close to the standard 

curve (Fig. 5B–D), indicating that the prediction ability of 
the line chart was better.

COX7A1 screened by WGCNA and cytoscape analysis
To further screen the molecular markers related to 
immunotherapy of GC, we used the GC data set from 
TCGA and GSE84437 from GEO for WGCNA. And 
β = 4 was selected as the best soft threshold to ensure 
that the network was scale-free (Fig. 6A). The correlation 
between the expression of gene set and the classification 
of gene model related to prognosis of immunotherapy 
was calculated. The genes under the pink module have 
the most significant expression correlation in the high 
and low score groups (| R |= 0.31, Fig.  6B). Therefore, 
the genes in the pink module were selected for further 
screening of molecular markers related to immuno-
therapy, and we used the genes in the pink module to 
intersect with the previously obtained differential genes, 
and finally obtained 835 meaningful genes for further 
screening. As the super-enhancer plays a more and more 
important role in the occurrence, development and treat-
ment of tumor, we downloaded the super-enhancer gene 
set from the SEdb website and filter the part belonging to 
the stomach, and finally obtained 13,218 gastric SEs, and 
then the corresponding gene expression was extracted 
from our transcriptome data set. Then, to explore the 
expression correlation between the SEs and our screened 
gene set, we analyzed the correlation and set the filter-
ing standard as the absolute value of the correlation coef-
ficient greater than 0.8 (P < 0.0001). Finally, 31 SEs were 

Fig. 3 Immune response ssGSEA score can predict the OS, DFS and PFS of GC patients. A, B Survival analysis (OS and DFS) between high and low 
score groups of GC patients in GSE66229; C, D Survival analysis (OS and PFS) between high and low score groups of GC patients in GSE26942; E, F 
Survival analysis (OS and PFS) between high and low score groups of GC patients in GSE26253; G Survival analysis (OS) between high and low score 
groups of GC patients in GSE15459
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obtained which were highly related to the expression of 
our screened gene set (Fig. 6C).

The correlation between COX7A1 and immune response 
ssGSEA score and its survival analysis
Based on our review of the literature, we selected 
COX7A1 for further analysis due to its high expression 
in the gene set of interest. COX7A1, a key component 
of cytochrome oxidase, plays a crucial role in the energy 

metabolism of tumor cells, making it our focus of study. 
We found that the lower immune response ssGSEA 
score, the higher the expression of COX7A1, and there 
was a significant statistical difference between them, 
which was verified in three data sets, namely GSE66229, 
GSE26253 and TCGA + GSE84437 (all P < 0.001, Fig. 6D), 
showing the reliability of further screening molecular 
markers through our immune response ssGSEA score. 
To verify whether the COX7A1 expression has the same 

Fig. 4 The correlations between immune response ssGSEA score and TMB, MSI and MATH scores. A The difference of TMB scores between GC 
patients with high and low immune response ssGSEA score; B The correlation between immune response ssGSEA score and TMB score; C OS 
of patients with different TMB score and immune response ssGSEA score; D The difference of MSI scores between GC patients with high and low 
immune response ssGSEA scores; E The correlation between immune response ssGSEA score and MSI score. F OS of patients with different MSI 
score and immune response ssGSEA score; G The difference of MATH score between GC patients with high and low immune response ssGSEA 
score; H The correlation between immune response ssGSEA score and MATH score; I OS of patients with different MATH score and immune 
response ssGSEA score
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effect on the OS and DFS of GC patients as our immune 
response ssGSEA score, we performed survival analysis 
of COX7A1. As we expected, in TCGA + GSE84437 and 
GSE15459 datasets, the OS of GC patients with high 
expression of COX7A1 was significantly worse than those 
with low expression of COX7A1 (both P < 0.001, Fig. 6E, 
F). In GSE66229 and GSE26253 data sets, the OS and 
DFS of GC patients with high expression of COX7A1 
were worse than those with low expression of COX7A1 
(all P < 0.05, Fig. 6G, H).

High expression of COX7A1 leads to chemotherapy 
resistance of 5‑Fu and oxaliplatin
Then, to further explore the correlation between the 
COX7A1 expression and the drug sensitivity of commonly 
used chemotherapeutic drugs in GC patients, we calcu-
lated the drug sensitivity scores of TCGA + GSE84437, 
GSE26253, GSE15459 and GSE66229 using oncoPre-
dict package, and reached a consistent conclusion, that 
is, in GC patients with high expression of COX7A1, the 
drug sensitivity of GC patients to 5-Fu and Oxaliplatin 
decreased; on the contrary, GC patients with low expres-
sion of COX7A1, drug sensitivity to 5-Fu and Oxaliplatin 

increased (all P < 0.001, Fig. 7A–D), suggesting that those 
patients with low expression of COX7A1 can choose 5-Fu 
or Oxaliplatin-based chemotherapy, while others should 
avoid using these two drugs with little clinical efficacy.

COX7A1 regulates tumor infiltration of immune cells 
and then affects the immune microenvironment
To further explore the relationship between COX7A1 
and immunotherapy in GC patients, we used ciber-
sort deconvolution algorithm to calculate the con-
tent of 22 kinds of immune cells in GC patients with 
TCGA + GSE84437, GSE66229 and GSE26253 data sets, 
and calculated the correlation between the expression 
of COX7A1 and the content of these immune cells. We 
found that in the three data sets, the COX7A1 expression 
was negatively correlated with the content of activated 
memory  CD4+ T cells and positively correlated with the 
content of resting memory  CD4+ T cells and resting mast 
cells (partly P < 0.05, Fig.  8A–C). At the same time, the 
COX7A1 expression was negatively correlated with the 
content of M1 macrophages (P = 0.006), and positively 
correlated with the content of M2 macrophages (partly 
P < 0.05, Fig. 8D, E). This may explain the poor prognosis 

Fig. 5 The construction Nomogram and the calibration curves. A Line chart (including age, sex, T and N stages, risk score); B–D Calibration curves 
for GC patients with OS of 1‑year, 3‑year and 5‑year
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Fig. 6 Construction of gene co‑expression network and screening of COX7A1. A The network topology analysis of all kinds of soft threshold used 
to check the scale‑free topology (the adjacency matrix was defined using the soft threshold of β = 4); B The correlation analysis between gene set 
module and immune response ssGSEA score; C The network map of the correlation between the SEs and the screened gene drawn by Cytoscape; 
D The differential expression of COX7A1 between GC patients with high and low immune response ssGSEA score; E The difference of OS 
between groups of high and low expression of COX7A1 in TCGA + GSE8443; F The difference of OS between groups of high and low expression 
of COX7A1 in GSE15459; G The difference of OS and DFS between groups of high and low expression of COX7A1 in GSE84437; H The difference of OS 
and DFS between groups of high and low expression of COX7A1 in GSE262537

Fig. 7 The correlation between the COX7A1 expression and the drug sensitivity to 5‑Fu and Oxaliplatin in A TCGA + GSE84437, B GSE66229, C 
GSE15459 and D GSE26253
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of patients with high expression of COX7A1 from the 
perspective of macrophages, which needs to be further 
verified in basic cell experiments. To further explore the 
immune microenvironment of GC patients, we addition-
ally applied the ESTIMATE algorithm to calculate the 
Immune Score and Stromal Score, and it was found that 
those patients with high expression of COX7A1 were 
associated with higher Immune Score and Stromal Score, 
indicating their poor prognosis (Additional file 5: Fig. S2). 
Additionally, based on single-cell data, it is found that the 
COX7A1 expression was positively correlated with the 
content of Fibroblasts and Endothelial cells (Additional 
file 5: Fig. S3).

Low expression of COX7A1 in tumor tissues may promote 
the invasion and metastasis
To further explore the role of COX7A1 gene in gastric 
cancer, pathological sections and immunohistochemi-
cal staining of tumor and paracancerous area were per-
formed in 170 GC patients in Sun Yat-sen University 
Cancer Center. The clinical information of the patients 
is detailed in Table  2 (SYSUCC Cohort). Through the 
analysis of immunohistochemical data, we found that the 
expression of COX7A1 in tumor tissue was significantly 
lower than that in paracancerous tissue (both P < 0.001, 
Fig. 9A). At the same time, we also reached a consistent 
conclusion in public data in TCGA and GSE66229 (both 
P < 0.001, Fig.  9B), that is, COX7A1 was significantly 
lower in tumor tissues than in paracancerous and normal 
tissues. And through the immunohistochemical image, 
COX7A1 protein was mainly concentrated in the normal 
glandular area, and the expression was very low in the 
cancerous tumor glands (Fig.  9C). Then, in the analysis 
of COX7A1 and clinical information, we found that the 
expression of COX7A1 was higher in elderly patients 
(over 56 years old) and gastric cancer patients whose 
tumors invaded the whole layer of gastric wall (both 
P < 0.05, Fig. 9D), indicating that COX7A1 may be related 
to the invasion and metastasis of gastric cancer patients. 
On the other hand, there was no significant difference 
between COX7A1 and vascular tumor thrombus, lymph 
node metastasis, nerve invasion, differentiation and 
staging (Additional file  5: Fig. S4A–E). Then, using the 
follow-up data, we found that GC patients with higher 
expression of COX7A1 had shorter OS and DFS (both 
P < 0.05, Fig.  9E) than patients with low expression. To 
further explore stage-specific patterns, we additionally 

investigated the influence of COX7A1 on prognosis by 
TNM stage (Additional file 5: Fig. S5), showing accepta-
ble prediction value. Due to the obviously limited number 
of patients in stage I, we grouped stage I and II together, 
and stage III and IV together. Furthermore, among these 
patients, through multivariable Cox regression analysis, 
COX7A1 was considered to be an independent prog-
nostic factor for OS and DFS (both P < 0.05, Additional 
file 4: Table S4). Finally, in our Immune Cohort, those GC 
patients with higher expression of COX7A1 had shorter 
OS and DFS (Additional file 5: Fig. S6); and COX7A1 in 
patients with TRG 2 or 3 was higher than that in patients 
with TRG 0 or 1 (P = 0.073, Wilcox. test) (Additional 
file  5: Fig. S4F), but there was no significant difference 
between the two groups, which was considered to be the 
reason for the insufficient sample size.

Discussion
GC is one of the most common malignant tumors in 
the world [43]. The latest statistics on the disease show 
that GC is currently listed as the second largest cause of 
cancer-related death in the world [44, 45]. Although GC 
has improved in recent years, the prognosis of GC is still 
poor because of large tumor heterogeneity, limited treat-
ment, low early diagnosis rate and so on [46]. In recent 
years, with the application of sequencing technology, 
many studies have shown that driving gene mutations 
and molecular pathological typing affect the progno-
sis of cancer. In addition, due to the lack of novelty and 
rich validation, the existing clinical prognostic models 
have not been widely accepted. At the same time, even 
though breakthroughs have been made in the diagnosis 
and treatment of GC in the past few years, surgery is still 
the main treatment option for GC patients. And because 
a large number of patients were initially diagnosed in late 
stage, the prognosis of GC patients is still poor. There-
fore, there is an urgent need to distinguish high-risk GC 
patients and identify possible molecular targets for the 
benefit of GC patients.

Immunotherapy broke the traditional concept of surgi-
cal treatment, chemotherapy and targeted therapy in the 
treatment of GC, and significantly improved the survival 
rate of some patients [47]. However, even so, only less 
than 25% of GC patients can benefit [48]. Therefore, it 
is an important clinical problem to find biomarkers that 
can accurately predict the response to immunotherapy, 
to formulate corresponding individualized treatment 

(See figure on next page.)
Fig. 8 Analysis of the correlation between the COX7A1 expression and the content of tumor infiltrating immune cells. The correlation 
between the COX7A1 expression and the content of A resting  CD4+ memory T cells, B activated  CD4+ memory T cells, C resting mast cells, D M1 
macrophages and E M2 macrophages
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Fig. 8 (See legend on previous page.)
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plans, and to prevent injuries to patients caused by exces-
sive and inappropriate treatment. At present, biomarkers 
used to predict the efficacy of PD1/PD-L1 monoclonal 
antibodies include combined positive score (CPS) [15], 
MSI [49] and TMB [50]. However, all these biomarkers 
focus on the inherent characteristics of the tumor, thus 
ignoring the assessment of the tumor microenvironment 
on which tumor growth depends, resulting in the lack of 
effectiveness of its prediction.

In our study, we downloaded data sets related to GC 
from TCGA, GEO and clinical trials of immunother-
apy for GC. According to these data sets, we selected 
455 prognosis-related genes that were different in the 
effectiveness of immunotherapy, and then continued 
ssGSEA analysis and took the difference between the two 
gene sets to get the immune response ssGSEA score to 
build the model. The prognostic effect of the immune 
response ssGSEA score obtained by the immunotherapy 
prognosis-related gene model was effectively verified in 
the training set of TCGA + GSE84437 and the verifica-
tion set cohort of GSE66229, GSE26253 and GSE15459. 
To expand the clinical use of the model, we gener-
ated a new line chart, including the clinicopathological 

characteristics and model risk score of GC patients. 
The calibration curve also proves that our line chart has 
a good linear fit for predicting prognosis. Then, we also 
evaluated the correlation between the model score and 
the commonly used molecular markers for predicting the 
efficacy of immunotherapy for GC, such as TMB, MSI 
and MATH. The results show that our model score is 
consistent with the effect of these markers on the prog-
nosis of GC patients, which also provides a theoretical 
basis for the clinical application of immune response 
ssGSEA score. Then, we use the established model for 
further molecular screening, using WGCNA to construct 
gene co-expression network, cytoscape software to ana-
lyze and select the corresponding modules, and to search 
the corresponding literature for the selected genes, 
and finally select COX7A1 as the molecule for further 
research. We first evaluated the relationship between 
the expression of COX7A1 and our model, and found 
that the lower the expression of COX7A1 in GC patients 
with higher immune response ssGSEA score, indicat-
ing that COX7A1 may be a poor prognostic factor; then 
we analyzed the prognosis of COX7A1, and proved that 
COX7A1 was a poor prognostic factor in multiple data 
sets, while patients with high expression of COX7A1 were 
resistant to 5-Fu and oxaliplatin. At the same time, we 
explored the immune mechanism of COX7A1 affecting 
the prognosis of GC patients. According to the analysis 
of multiple data sets based on Cibersort deconvolution 
algorithm, COX7A1 may affect the immune microenvi-
ronment of GC patients by up-regulating resting  CD4+ T 
cells, thus affecting the prognosis of GC patients [51, 52]. 
But what is puzzling is that COX7A1 can also up-regulate 
the increase the content of  CD8+ T cells, which may be 
due to the fact that COX7A1 can up-regulate the expres-
sion of some immunosuppressive molecules or immu-
nosuppressive cells such as Treg, thus interfering with 
the normal anti-tumor effect of  CD8+ T cells, so it also 
creates conditions for the treatment of PD1/PDL1. If it 
can relieve the immunosuppressive state of high expres-
sion of COX7A1, it can better play the role of  CD8+ T 
cells in killing tumor cells. This part is worthy of our fur-
ther verification in the following experiments [53, 54]. 
Finally, we explored the clinical application of COX7A1. 
We found that the expression of COX7A1 in tumor tis-
sues was significantly lower than that in paracancerous/
normal gastric tissues in both TCGA + GSE84437 and 
GSE66229 cohorts of GC, which was also verified in the 
tissue microarray of clinical patients in our hospital. We 
also explored the clinical value of COX7A1 in GC. In the 
correlation analysis of clinical data, we found that the 
higher the expression of COX7A1 in GC patients whose 
pathological sections invaded the whole layer, which sug-
gested that COX7A1 may be a protein molecule related to 

Table 2 Baseline characteristics of the 170 GC patients with 
immunohistochemistry data from Sun Yat‑sen University Cancer 
Center

NA not available

SYSUCC Cohort H score_high
(N = 76)

H score_low
(N = 94)

P‑value

Age 0.211

  < 56 33 (43.4%) 51 (54.3%)

  >  = 56 43 (56.6%) 43 (45.7%)

Stage 0.121

 I + II 52 (68.5%) 54 (57.4%)

 III + IV 22 (28.9%) 40 (42.6%)

 NA 2 (2.6%) 0 (0%)

Pathological type 0.096

 Moderately differentiated 21 (27.6%) 15 (16.0%)

 Poorly differentiated 55 (72.4%) 79 (84.0%)

Invasion depth 0.21

 Muscle layer and above 7 (9.2%) 16 (17.0%)

 Full layer 69 (90.8%) 78 (83.0%)

Lymph metastasis 0.889

 No 25 (32.9%) 33 (35.1%)

 Yes 51 (67.1%) 61 (64.9%)

Nerve invasion 0.86

 No 20 (26.3%) 27 (28.7%)

 Yes 56 (73.7%) 67 (71.3%)

Vascular tumor thrombus 0.647

 No 32 (42.1%) 44 (46.8%)

 Yes 44 (57.9%) 50 (53.2%)
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invasion and metastasis, which needs further verification 
in cytological experiments.

The role of COX subunits in many cancers has also 
been studied [55–57]. For example, Mishra et  al. used 
the available microarray database to compare the expres-
sion of different COX subunit genes in human lung ade-
nocarcinoma tissue and normal lung tissue. The results 
showed that the expression of COX7A1 in cancer tissue 
was much lower than that in normal lung tissue, suggest-
ing that COX7A1 may inhibit the occurrence and devel-
opment of lung cancer [55]. At the same time, COX7A1 
was found to be able to inhibit lung cancer cell prolif-
eration and colony formation and promote apoptosis 
[24]. In addition, the overexpression of COX7A1 blocks 
autophagy by down-regulation of PGC-1α and up-reg-
ulation of NOX2 [24]. Further analysis shows that the 
effect of COX7A1 on cell viability depends partly on the 
inhibition of autophagy [26]; and it was further revealed 
that overexpression of COX7A1 could enhance the 
activity of complex IV in TCA cycle and mitochondrial 
electron transport chain, thus increasing the sensitiv-
ity of lung cancer cells to ferroptosis induced by cysteine 

deprivation [26]. On the other hand, COX7A1 blocks 
autophagy flux and inhibits mitochondrial kinetics, mito-
chondrial biogenesis and mitochondrial autophagy, thus 
affecting the activity of complex I and II in mitochondrial 
electron transport chain [24]. COX7A1 may up-regulate 
the expression of immunosuppression-related proteins 
through tumor-related pathways, thus forming an immu-
nosuppressive microenvironment, which requires further 
cytological experiments to verify the potential mecha-
nism of our differential response of COX7A1 to immuno-
therapy in GC patients.

In this study, the higher the expression of COX7A1 
in GC tissue, the worse the prognosis; but on the other 
hand, the expression of COX7A1 in tumor tissue is lower 
than that in normal tissue. The same biological model has 
also been reported in other tumor studies, for example, 
in breast cancer, the expression of MAPT in tumor tis-
sues is significantly higher than that in normal glandular 
tissues, and the OS and DFS of breast cancer patients 
with high MAPT expression are significantly higher than 
those of tumor patients with low MAPT expression. The 
article explains that the possible reason is that the change 

Fig. 9 The Correlation between differential expression of COX7A1 and clinical information. A The differential expression of COX7A1 
between tumor tissues and normal tissues of GC patients; B The COX7A1 expression in tumor tissues and normal tissues in TCGA and GSE66229; 
C Immunohistochemical map of tumor tissues and normal tissues of GC patients (5 × microscope); D The correlation between COX7A1 expression 
with the age and the depth of pathological invasion in GC patients; E The correlation between COX7A1 expression with OS and DFS in GC patients
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of MAPT expression affects the sensitivity of breast can-
cer cells to chemotherapeutic drugs, which also has a cer-
tain guiding significance for our research. We can explore 
whether the change of COX7A1 expression will change 
the sensitivity of chemotherapeutic drugs or immuno-
therapy for GC, which is worthy of further validation 
through studies with larger sample sizes and cytological 
experiments.

Previous studies have also found that M1 and M2 
macrophages play an important role in the occurrence 
and development of tumors [58]. M2 macrophages 
can promote tumor growth and metastasis [59], but 
M1 macrophages can promote inflammation, lead-
ing to tumor-associated macrophage (TAM) infiltra-
tion, and then inhibit the vitality of tumor cells [60]. In 
our study, consistent with the above ideas, it is believed 
that COX7A1 may promote M2 differentiation and 
inhibit M1 differentiation. Moreover, it is found that 
the COX7A1 expression is positively correlated with the 
Immune Score, Stromal Score and the content of rest-
ing  CD4+ memory T cells, and negatively correlated with 
the content of activated  CD4+ memory T cells, indicat-
ing that COX7A1 may inhibit the activation of  CD4+ 
memory T cells to result in poor prognosis. Addition-
ally, the COX7A1 expression was preliminary found to be 
positively correlated with the content of Fibroblasts and 
Endothelial cells, indicating COX7A1 may plays a role 
in chemotherapy resistance, which will serve as a break-
through for our further research.

However, this study also has some limitations. First, 
bioinformatics research for this work is conducted partly 
on publicly available data sets. Second, we need to ensure 
that the results of this survey are accurate using clinical 
trial participants in a prospective study design. Second, 
although immunohistochemical experiments have been 
carried out to verify the results of model screening, large-
scale protein sequencing analysis will be a better choice. 
Third, we analyzed the effects of the established model 
on MSI, TMB and tumor heterogeneity, but the underly-
ing mechanism is still unclear. Therefore, to better under-
stand the potential mechanism of the established model 
and screened COX7A1 molecules on immunotherapy 
response to GC, further cytological and animal experi-
mental studies in vivo and in vitro are needed.

Conclusions
Our results show that the immune response ssGSEA 
score established based on genes of differential immu-
notherapy response can well distinguish the prognosis 
of GC patients, and the immune response ssGSEA score 
is in good agreement with the commonly used immune-
related indexes (TMB, MSI and MATH). The COX7A1 
gene was obtained by further molecular screening using 

immune response ssGSEA score, and the predictive effect 
of COX7A1 on the prognosis of GC patients was verified 
in several data sets: GC patients with high expression of 
COX7A1 in GC tissues had poor prognosis; the COX7A1 
expression in the tumor tissues was significantly lower 
than that in the paracancerous/normal tissues; and the 
COX7A1 expressions were higher in patients with older 
age and deeper invasion. In terms of drug sensitivity, GC 
patients with low expression of COX7A1 were more sen-
sitive to 5-Fu and Oxaliplatin. Tumor infiltration immune 
cell analysis for COX7A1 showed that COX7A1 may 
affect the clinical efficacy of immunotherapy by promot-
ing M2 macrophages differentiation and inhibiting M1 
macrophages differentiation.
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