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Abstract 

The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a cru-
cial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory 
chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have 
shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead 
to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabo-
lism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferriox-
amine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been 
shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural 
compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression 
levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mecha-
nisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, 
but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathol-
ogy, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of pro-
viding reference information for the development of new ferroptosis inhibitors and lead compounds for the treat-
ment of HF in the future.
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Introduction
Heart failure (HF) is a severe end-stage disease caused 
by various factors such as infection, fatigue, high blood 
pressure, myocardial ischemia, arrhythmias, and heart 
overload [1]. Epidemiologic studies have shown that by 

2030, the prevalence of heart failure in the United States 
is expected to increase by 46%, reaching 8 million adults, 
and treatment costs will increase by 127%, reaching 697 
billion US dollars, which amounts to approximately 244 
US dollars per American adult [2, 3]. Currently, China 
has approximately 15 million patients with heart failure, 
and with the aging of the population, an increase in car-
diovascular survivorship, and the lack of timely treat-
ment of diseases such as diabetes, chronic kidney disease, 
and other chronic diseases, the incidence of heart fail-
ure is increasing [4]. Currently, medical treatment is still 
the foundation of heart failure treatment, and classic 
basic drugs such as positive inotropic drugs, diuretics, 
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angiotensin-converting enzyme inhibitors, angiotensin 
receptor blockers, beta-receptor blockers, and aldos-
terone receptor antagonists are used in the treatment 
of heart failure. However, they cannot completely pre-
vent the development of heart failure [5, 6]. In addition, 
ultrafiltration treatment, heart resynchronization therapy 
(CRT), implantable cardioverter defibrillation (ICD), left 
ventricular assist device (LVAD), heart transplantation, 
coronary angiography, and other heart interventional 
therapies, catheter ablation, stem cell treatment, and 
gene therapy have been further developed [2], but their 
use is still relatively low [7, 8]. China still faces significant 
challenges in the prevention and control of heart failure, 
and the development of new targets and mechanisms 
for the occurrence and development of heart failure is 
expected to help reduce the readmission rate and mortal-
ity of heart failure.

Ferroptosis is a form of cell programmed death that is 
regulated by ferredoxin-dependent iron metabolism and 
is triggered by the toxicity of lipid peroxidation prod-
ucts on the cell membrane [9]. Research has shown that 
this unique cell death mechanism is driven by phospho-
lipid peroxidation dependent on iron and is regulated 
by various cell metabolic pathways (including oxidative 
stress, iron metabolism, mitochondrial activity, amino 
acid, lipid, and glucose metabolism) and various signal 
pathways related to disease [10]. The Xc-–GSH–GPX4 
pathway is the main route for regulating ferroptosis. The 
Xc-system can exchange cysteine and glutamate intracel-
lularly and extracellularly, and is composed of a homodi-
mer of the anion transporter family member 3 member 
2 (SLC3A2) and SLC7A11 [11]. Through the Xc-system, 
cysteine is transported into the cell for GSH synthesis, 
while glutamate within the cell can be transported out 
of the cell [12]. GSH has antioxidant properties and can 
participate in the generation of glutathione peroxidase 4 
(GPX4) [13]. GPX4 is an antioxidant enzyme that main-
tains the dynamic balance of the cell oxidative/ reductive 
state, mainly as a critical endogenous antioxidant inhib-
iting phospholipid peroxidation, with upstream GSH as 
its substrate [14]. Therefore, targeted inhibition of the 
Xc-system can lead to GSH depletion, GPX4 inactivation, 
promotion of malondialdehyde (MDA) production, and 
the accumulation of lipid ROS, resulting in ferroptosis 
[15, 16]. The commonly used ferroptosis inducer erastin 
can directly inhibit the Xc-system, consume cysteine, and 
inhibit GSH synthesis, thereby promoting cell ferropto-
sis [17]. The ferroptosis inducer RSL3 acts directly on 
cysteine to inhibit GPX4, promoting the accumulation of 
lipid ROS and causing ferroptosis [14].

The abnormal changes in iron content in the latest 
cardiomyocytes can have a significant negative impact 
on heart function and exacerbate heart failure (HF) 

[18]. Research has shown that iron deficiency is a typi-
cal feature of HF [19]; iron overload can cause tissue 
damage due to oxidative stress, and severe iron overload 
can cause refractory HF [20]. Therefore, targeting iron 
metabolism may become a key factor in treating HF and 
improving prognosis. Although the precise mechanism 
by which abnormal regulation of iron metabolism medi-
ates HF has not been fully explained, targeted protection 
drugs for HF are gradually being developed, especially 
focusing on natural compounds that regulate HF iron 
death and iron metabolism [21, 22]. These natural com-
pounds may provide ligands or core structures for future 
drug development targeting iron-related death processes, 
such as ferroptosis. Therefore, this study will not only 
provide a review of the normal iron metabolism process, 
summarize the potential mechanisms of iron metabo-
lism disorders and HF, and offer new ideas and strate-
gies for HF treatment and prognosis, but also review the 
currently reported natural compounds that regulate HF 
ferroptosis.

Overview of iron metabolism
Iron is the most abundant essential trace element in the 
human body, widely distributed throughout the various 
tissues and organs of the body. As a component of fer-
ric-sulfur clusters enzymes [such as cytochromes, nico-
tinamide adenine dinucleotide phosphate (NADPH), and 
succinate dehydrogenase], iron catalyzes the transport of 
oxygen, generates energy through oxidizing phosphoryla-
tion, and participates in the construction of enzymes that 
generate peroxides and nitric oxide, playing a crucial role 
in physiological and pathological processes. The body 
maintains the stability of iron ions by continuous absorp-
tion, circulation, utilization, excretion, and fine regula-
tory mechanisms.

Iron uptake, circulation, storage and excretion
Iron uptake and excretion
According to the different absorption mechanisms, iron 
in the diet can be divided into heme iron and non-heme 
iron [23]. Heme iron is mainly present in animal foods 
and is released from hemoglobin and myoglobin in meat 
foods. Non-heme iron is mainly present in plant foods. 
Heme iron has better bioavailability than non-heme iron. 
The specific absorption mechanism of heme iron is not 
very clear, and it may enter enterocytes through heme 
carrier protein 1 (HCP1) on the duodenal epithelium 
[24], releasing iron from heme by heme oxygenase-1 
(HO-1) [25]. Three-valent iron in non-heme iron needs 
to be reduced to ferrous iron by ferredoxin-like proteins 
(FDPs) at the brush border of the intestine, then absorbed 
by divalent metal transporter 1 (DMT1) and transported 
into the cell. In the blood, iron is mainly complexed with 
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transferrin (Tf), which is mainly internalized through 
high-affinity Tf receptors on the surface of cells [10]. 
An acidic environment in early lysosomes promotes the 
release of iron from Tf, which is then reduced to ferrous 
iron by the prostatic six-transmembrane epithelial anti-
gen of the prostate 3 (STEAP3) and transported into the 
cell cytoplasm through DMT1. The iron-free Tf/TfR1 
complex returns to the cell surface and dissociates [26]. 
In addition to these mechanisms, iron can also enter cells 
through calcium channels and zinc transporters [27].

The excretion of cellular iron is achieved through the 
expression of membrane iron transporters (ferropor-
tin, FPN) [28]. These are abundant in cells that maintain 
plasma iron levels (such as villous epithelial cells, mac-
rophages, and hepatocytes) [26], and also play an impor-
tant role in local iron regulation in other cells (such as 
cardiomyocyte). FPN is negatively regulated by ferrosta-
tin, which has been shown to bind to FPN1 and cause its 
internalization and degradation [29].

Iron storage and recycling
Unutilized or output iron is stored in ferritin, which 
is primarily present in the liver. The majority of iron 
required for erythrocyte production is recycled by mac-
rophages from aged or damaged erythrocytes. If there 
is a lack of supply, ferritinophagy, which is mediated by 
nuclear receptor coactivator 4 (NCOA4), is used to mobi-
lize the stored iron from the liver [26, 30]. The physiolog-
ical range of liver iron deposition is 300 mg to 1 g, but it 
can reach as high as 25 to 30 g in patients with hereditary 
hemochromatosis [31]. When the level of serum iron is 
at about 60% saturation beyond the buffering capacity of 
transferrin, non-transferrin-bound iron (NTBI) is pre-
sent, which is imported into hepatocytes through solute 
carrier family 39 member 14 (SLC39A14) [32].

Iron regulation
Maintaining the iron homeostasis in cells and organisms 
ensures sufficient iron supply and prevents the accumu-
lation of toxic iron. At the cellular level, the expression 
and translation of proteins involved in iron metabolism 
are regulated by iron response elements (IREs) and iron 
regulatory proteins (IRPs). IRE-binding proteins, includ-
ing ferritin, TfR1, DMT1, 5-aminolevulinate synthase 2 
(ALAS2, involved in heme biosynthesis), and hypoxia-
inducible factor 2α (HIF2α), regulate the expression of 
these proteins. IRP1 and IRP2 can recognize and bind to 
IREs with specific structures and sequences. When IRP1 
or IRP2 binds to IREs in the 5’ non-translated region, it 
blocks translation, while binding to IREs in the 3’ non-
translated region stabilizes mRNA and prevents endo-
nuclease degradation. When the intracellular iron level 
is low, IRPs lack the necessary iron–sulfur cluster for 

binding to IREs, and thus, binding to IREs can suppress 
ferritin translation and stabilize TfR1 mRNA, leading to 
decreased iron storage and increased iron absorption 
[33]. As the concentration of iron ions in cells increases, 
iron is bound to the iron–sulfur cluster, and binding to 
IRPs can prevent IRP-IRE interactions. At the whole-
body level, iron regulation is mainly dependent on hep-
cidin, a liver-derived sex steroid hormone that is an 
important regulator of iron homeostasis [34]. Hepcidin 
binds to FPN and internalized, followed by ubiquitination 
and transportation into the lysosomes for degradation 
[35]. This inhibition of iron export from cells prevents 
iron efflux. When the blood iron level increases, hepci-
din secretion increases, and FPN expression on the cell 
surface decreases, leading to decreased iron efflux from 
cells and reduced serum and cellular fluid iron levels 
[36]. In contrast, low hepcidin levels increase iron efflux 
from hepatocytes and macrophages, leading to increased 
serum iron concentration and transferrin saturation. The 
deficiency or excess of hepcidin can lead to correspond-
ing diseases. After acute myocardial infarction, hepcidin 
expression increases, and the specific loss of hepcidin in 
cardiomyocytes cannot improve heart function [37]. The 
decrease in hepcidin concentration or the reduction in 
hepcidin-FPN binding caused by hemochromatosis can 
lead to iron overload and extensive tissue damage [38]. 
Inflammatory responses also lead to an increase in hep-
cidin expression, and low iron levels are simultaneously 
observed [39]. Hepcidin responds mainly to increases in 
intracellular iron storage or inflammatory signals, and 
when iron overload occurs in hepatocytes, it can also 
suppress hepcidin production by inhibiting the BMP/
SMAD and IL-6/STAT3 signaling pathways [40].

Mechanism of ferroptosis
Ferroptosis is a novel type of cell death characterized 
by iron-dependent, nonapoptotic, and increased lipid 
ROS (ROS). It differs from traditional cell death in three 
aspects: (1) morphologically, mitochondria become 
smaller and cristae decrease, leading to increased mem-
brane density and increased tendency to rupture; (2) 
biochemically, there is an overload of iron, reduced GSH 
synthesis or consumption, decreased activity of GSH 
peroxidase 4 (GPX4), and inhibited System Xc-, leading 
to a disruption of the oxidative–reductive balance and 
accumulation of lipid peroxides; (3) genetically, multiple 
effectors participate in ferroptosis and are regulated by 
multiple metabolic pathways [41, 42]. The mechanisms 
of ferroptosis include iron overload, lipid peroxida-
tion, abnormal GSH–GPX4–ROS pathway, cancer sup-
pressor gene P53 (P53), NADPH/ferroptosis inhibitory 
protein 1/coenzyme Q10 (NADPH/FSP1/CoQ10) path-
way, and oxidative stress. These mechanisms lead to the 
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accumulation of lipid ROS, destroying the redox balance 
in the body, leading to cell ferroptosis (Fig. 1).

Iron overload
Iron is an essential trace element in human body and 
plays an important role in the function of cardiomyo-
cytes. Two Fe3 + ions (Fe3 +) bind to one transferrin (Tf) 
on the surface of cardiomyocyte cytosol, and the transfer-
rin receptor 1 (TFR1) on the membrane internalization 
transfers the Fe3 + ions into the cell [43]. Under physi-
ological conditions, Fe3 + ions are reduced to Fe2 + ions 
by the metal reductase 3 (STEAP3) and then stored in the 
dynamic iron pool [44, 45]. The Fe2 + ions are then trans-
ported to the cytoplasm by the divalent metal transporter 
1 (DMT1) and stored in the dynamic iron pool [46]. The 
dynamic iron pool can not only store Fe2 + ions but also 
store the required iron proteins. The ferric transport pro-
tein 1 (FPN1) is the only channel for Fe2 + ions to leave 
the cell. When there is an excess of Fe2 + ions, FPN1 
starts to play an autocrine role, and some Fe2 + ions 
are stored in the heavy chain 1 (FtH1) and light chain 
1 (FtL1) of ferritin. Experimental findings have shown 
that erastin and the GSH peroxidase 4 inhibitor (RSL3) 
can trigger ferroptosis. The mechanism involves increas-
ing the expression of TFR1, enhancing the transport of 
Fe2 + ions, and reducing the regulation of FtH1 and FtL1, 
leading to further release of Fe2 + ions, resulting in the 
accumulation of large amounts of Fe2 + ions in the cell 
[47]. Fe2 + ions can generate many hydroxyl radicals and 

a large amount of ROS through the Fenton reaction and 
the Haber–Weiss reaction, which are harmful to the cell 
and lead to cell ferroptosis [48].

Lipid peroxidation
Lipid peroxidation is one of the characteristics of fer-
roptosis, which is characterized by the accumulation of 
intracellular ROS that disrupts the oxidative–reductive 
balance and attacks cell membranes. The phospholipids 
in cell membranes are composed of lipid polyunsaturated 
fatty acids (PUFAs), which are easily oxidized. Recently, it 
has been reported that lipid peroxidation can damage the 
stability of the lipid bilayer and cause membrane disrup-
tion [49]. During the Fenton reaction, hydroxyl groups 
are produced, and the hydrogen in PUFAs is oxidized 
by hydroxyl groups to form lipid radicals [50]. Then, 
lipid radicals react with oxygen molecules to form a lipid 
peroxyl radical, which then reacts with nearby PUFAs 
to cause lipid peroxidation. This captures its hydrogen 
atoms and generates two new products called hydroper-
oxides and new lipid atomic groups, which lead to a chain 
reaction, generating many lipid peroxides, destroying the 
cell membrane, and causing ferroptosis [51]. 4-Hydrox-
ynonenal (4-HNE) and malondialdehyde (MDA) are 
key biological biomarkers for verifying the occurrence 
of ferroptosis and lipid peroxidation. They can react 
with nucleic acids and proteins to further damage cells. 
In addition, Fe2 + can act as a cofactor of lipoxygenase 
(LOX) to catalyze the peroxidation of PUFAs, producing 

Fig. 1 Summary of the mechanism of ferroptosis (GPX4: glutathione peroxidase 4; GSH: glutathione; SLC7A11: solute carrier family 7 member 11; 
SLC40A1: solute carrier family 40 member 1)
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lipid peroxides [52]. It has been found that 15-LOX can 
be enzymatically hydrolyzed on PUFAs to produce large 
amounts of hydrogen peroxide, and 15-LOX is composed 
of arachidonic acid (AA) or arachidonic acid. It is mainly 
distributed on the membrane phospholipids of erythro-
cytes, and it can spontaneously cause peroxidation in the 
presence of hydroxyl radicals. To bind to the phospholip-
ids on the membrane, PUFAs require the participation of 
phospholipase A2 long-chain family member 4 (PLCL4) 
and acyl-CoA synthetase long-chain family member 4 
(ACSL4), as well as CoA. Therefore, lipid peroxidation-
induced ferroptosis occurs. It has been reported that 
PLCL4 and ACSL4 participate in the peroxidation of 
PUFAs on the membrane and become biomarkers of fer-
roptosis [53].

System Xc‑/GSH/GPX4/ROS pathway exception
GSH and GPX4 play a key role in the process of ferropto-
sis. GSH is an essential antioxidant that is indispensable 
in ferroptosis, and it is mainly present in the cell in the 
reduced form (GSH) and the oxidized form (GSSG). GSH 
provides electrons to GPX4, which is used to degrade 
lipid peroxides. GPXs are enzymes that catalyze the deg-
radation of peroxides [54, 55]. As members of the GPX 
family, GPX4 together with GSH degrades lipid perox-
ides and reduces cell damage [56]. In physiological con-
ditions, cysteine residues located on the cell surface are 
transported into the cell by the cysteine-glutamate trans-
porter (System Xc-), while glutamate is transported out 
of the cell [57]. The cysteine is then converted to cysteine 
sulfone. Under the catalysis of glutamate cysteine ligase 
and glutathione synthetase, cysteine sulfone and gluta-
mate react to form GSH. GSH combined with GPX4 can 
significantly reduce the amount of excessive lipid per-
oxides and prevent ferroptosis. GPX4 inhibition of lipid 
peroxidation requires GSH assistance, and GSH synthesis 
depends on the decisive role of cysteine. When System 
Xc- transportation is inhibited, cysteine and glutamate 
cannot be transferred mutually, resulting in a decrease in 
intracellular cysteine production, followed by a decrease 
in GSH production, leading to an increase in the activ-
ity of GPX4, resulting in a decrease in the level of lipid 
peroxides and an increase in the occurrence of ferropto-
sis. Eratin can inhibit the cysteine-glutamate transporter 
and prevent the transportation of cysteine, resulting in a 
decrease in GSH production and an inhibition of GPX4 
activity, leading to an increase in the antioxidant ability 
and the occurrence of ferroptosis [58]. As a ferroptosis 
inducer, RSL3 is different from Eratin in that it does not 
affect the GSH concentration, but can directly inhibit 
the activity of GPX4 due to the cysteine residue at the 
active site of GPX4 interacting with RSL3. In addition, 
flavin proteins (mitochondrial-related apoptosis inducer 

2, MRE2) can protect GPX4 and prevent cell ferroptosis 
[59].

Oxidative stress
Oxidative stress is an important mechanism underly-
ing HF and also leads to ferroptosis in cells. Oxidative 
stress is primarily caused by an imbalance between oxi-
dation and reduction, which is caused by the accumula-
tion of lipid peroxides and the deficiency of antioxidants. 
An important signal pathway that regulates the oxidative 
stress response is the Nrf2/heme oxygenase-1 (HO-1) 
axis [60]. Nrf2 is a decisive factor in reducing lipid per-
oxidation, and some of Nrf2’s target genes participate in 
the oxidative stress response and iron metabolism, regu-
lating the System Xc- and GPX4, which play important 
roles in ferroptosis [61]. Nrf2 enhances the transport of 
System Xc- out of the cell, increases GSH synthesis, and 
increases the activity of GPX4, thereby strengthening 
the clearance of lipid peroxides, improving antioxidant 
ability, and suppressing cell ferroptosis. In animal exper-
iments, activation of the Nrf2/antioxidant response ele-
ment (Nrf2/ARE) signal pathway can increase the activity 
of superoxide dismutase (SOD) and glutathione peroxi-
dases (GPXs) and further enhance heart function, reduce 
ROS and other harmful substances that are harmful to 
cells, and suppress cardiomyocyte ferroptosis [62, 63]. 
HO-1 plays a regulatory role in the degradation of heme. 
The products of HO-1 degradation include Fe2 + , which 
can accumulate excessively and thereby initiate ferrop-
tosis. This is a major cause of heart damage caused by 
doxorubicin. In mice experiments, doxorubicin can reg-
ulate the upregulation of HO-1, iron overload, and lipid 
peroxidation, leading to ferroptosis. Administration of 
ferroptosis inhibitors can significantly alleviate the dam-
age caused to the heart by doxorubicin, suppress HO-1 
gene expression, and remove Nrf2-related factors. After 
removing Nrf2-related factors, the amount of iron over-
load in mouse cardiomyocytes caused by doxorubicin is 
reduced, thereby protecting heart function.

NADPH/FSP1/CoQ10 pathway
In 2019, researchers abroad reported the discovery of 
a mitochondrial apoptosis inducer 2 (AIFM2), which 
revealed that AIFM2 overexpression can effectively 
protect cells and is not influenced by ferroptosis induc-
ers. This study confirmed that AIFM2 can inhibit fer-
roptosis and redesignated AIFM2 as FSP1. Studies have 
shown that under normal conditions of GPX4 function, 
loss of FSP1 can lead to increased peroxidation of phos-
pholipids and cause ferroptosis [64]. The key reason for 
the inhibition of ferroptosis by FSP1 is CoQ10. CoQ10 
is a lipophilic antioxidant drug, and FSP1 catalyzes the 
reduction of CoQ10 to ubiquinone by NADPH, capturing 
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lipid peroxides and reducing them, thereby reducing the 
accumulation of lipid peroxides and suppressing cell iron 
apoptosis [42]. NADPH/FSP1/CoQ10 is a pathway with 
the same inhibitory effect on ferroptosis as GSH/GPX4.

Tumor suppressor P53
Since its discovery in 1979, p53 has remained a focus of 
interest in the field of oncological research [65]. In fact, 
p53 has important functions beyond cancer (such as 
development, stem cells, and some non-cancer diseases) 
[66]. p53 can be inducible by a wide range of intracel-
lular/extracellular stimuli and pressures (such as DNA 
damage, oncogenic activation, ribosomal or telomere-
related stresses, and nutrient deprivation), and acts as a 
regulator of a diverse set of downstream genes to produce 
various effects at the cellular and organismal levels (such 
as cell cycle arrest, DNA repair, senescence, apoptosis, 
and ferroptosis), thereby helping cells/organisms to resist 
stimuli. p53 can also function without depending on its 
transcriptional activity [67]. p53 primarily functions as 
a transcriptional regulator, activating or suppressing the 
transcription of multiple downstream target genes. The 
functions of these target genes mainly include inducing 
cell cycle arrest, DNA repair, regulating cell metabolism, 
cell senescence, cell apoptosis, and recently discovered 
inducing cell ferroptosis [68].

In 2015, JIANG et  al. discovered a tumor suppressor 
gene P53, which participated in the regulation of multiple 
cells and was possibly achieved by inhibiting the expres-
sion of solute carrier family 7 member 11 transporter 
(SLC7A11), a subunit of the SLC7A11, on the cysteine-
glutamic acid transporter receptor, thereby inhibiting 
the transport of cysteine into the cell, reducing the activ-
ity of glutathione peroxidase 4 (GPX4) to reduce lipid 
peroxides, and ultimately inducing cell ferroptosis [69]. 
This was the first discovery of P53 suppressing SLC7A11 
expression at the transcriptional level to promote fer-
roptosis and contribute to tumor suppression. Further 
research showed that acetylation of P53 K101 played 
an important role in suppressing SLC7A11 expression. 
Interestingly, the P53 3KR mutant retained the ability 
to induce ferroptosis while losing the ability to induce 
cell cycle arrest, senescence, or apoptosis. However, the 
P53 4KR mutant and a 非洲人来源 p53 SNP P47S lost 
the ability to induce ferroptosis and tumor suppres-
sion. These results indicate that ferroptosis induction 
may be the most important weapon of P53 in suppress-
ing tumors. The authors further discovered that P53 
could promote SAT1 expression to enhance the func-
tion of another member of the ALOX family, ALOX15, to 
enhance ferroptosis [70]. In addition, the p53-SLC7A11 
axis can also promote ferroptosis through a GSH-inde-
pendent mechanism. They found that the lipid peroxidase 

ALOX12 was a key regulatory factor in p53-dependent 
ferroptosis. However, SLC7A11 directly interacted with 
ALOX12 to limit its function. When P53 downregulated 
SLC7A11, ALOX12 was released. Free ALOX12 could 
oxidize the fatty acid chain of membrane phospholip-
ids, leading to ferroptosis [71]. A recent study found 
that phospholipase iPLA2β was an important factor in 
regulating ferroptosis induced by high levels of ROS [72]. 
Research also showed that P53 could regulate PHGDH to 
inhibit serine synthesis, which may affect GSH synthesis 
to promote ferroptosis [73]. Additionally, P53 could pro-
mote lncRNA PVT1 expression or directly interact with 
the mitochondrial iron transporter SLC25A28 to pro-
mote ferroptosis [74]. The two markers of ferroptosis, 
PTGS2 and CBS, were also proven to be targets of P53. 
These findings support the hypothesis that P53 promotes 
ferroptosis. In addition to SLC7A11, many other P53 
target genes also have the ability to promote iron death, 
and the pathological mechanisms often involve increased 
GSH consumption and polyunsaturated fatty acid peroxi-
dation [68]. Moreover, in a rat heart infarction model, it 
was found that proteasome-specific protease 7 (PSMC7) 
could activate the P53/TFR1 pathway to enhance iron 
uptake, leading to ferroptosis [75].

The relationship between ferroptosis core pathways is 
summarized in Fig. 2.

Disorders of iron metabolism leading to HF
HF is often accompanied by a disordered iron metabo-
lism, which in turn can affect the progression and prog-
nosis of cardiovascular disease. In recent years, the 
role of iron metabolism in the development of HF has 
attracted attention from researchers. Here is an overview 
of the relationship between iron metabolism abnormali-
ties and HF (Fig. 3).

HF is often accompanied by iron deficiency
Studies have shown that approximately 50% of patients 
with chronic HF (CHF) experience iron deficiency, which 
further increases the risk of CHF and mortality. There are 
three mechanisms underlying iron deficiency in CHF: 1) 
dietary reduction, gastrointestinal edema, and other fac-
tors leading to insufficient iron intake; 2) gastrointestinal 
bleeding caused by the use of antiplatelet aggregation 
and antiplatelet drugs, leading to increased iron loss; and 
3) increased iron regulatory protein (IRP) expression in 
CHF patients, causing the body to not release enough 
iron to meet the needs of the tissue [76]. The first two 
are called absolute iron deficiency, and the third is func-
tional iron deficiency. These three mechanisms can exist 
alone or simultaneously. The dysfunction of mitochon-
drial DNA repair caused by iron deficiency damage the 
cell’s energy supply and heart function. Melenovsky et al. 
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found that the iron content in the left ventricle myocar-
dium of human CHF patients was decreased, the activ-
ity of xanthine oxidase and malate dehydrogenase was 
decreased, the expression of ROS scavenger enzymes 
[such as catalase, glutathione peroxidase, and superoxide 

dismutase 2 (SOD2)] was decreased, and the energy pro-
duction and contractile function of cardiomyocyte were 
decreased, indicating that myocardial iron deficiency may 
lead to mitochondrial dysfunction [77]. Mice with TfR1 
gene deletion died within the second week after birth, 

Fig. 2 Summary of the relationship between ferroptosis core pathways (BH4 tetrahydrobiopterin, GCH1 recombinant GTP cyclohydrolase 1, GPX4 
glutathione peroxidase 4, DHFR dihydrofolate reductase, FSP1 ferroptosis-suppressor protein-1)

Fig. 3 Overview of the relationship between iron metabolism abnormalities and HF
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with heart enlargement, poor heart function, mitochon-
drial respiratory failure, and mitochondrial autophagy 
inhibition [78].

HF via ferroptosis during iron overload
Iron overload can be classified into two types: primary 
hemochromatosis (mutations in genes responsible for 
iron absorption and regulation), and secondary iron 
overload (therapeutic interventions, such as repeated 
blood transfusions to treat hemolytic anemia and exces-
sive iron supplementation to stimulate erythrocyte pro-
duction in dialysis patients). When the total amount of 
iron in the body is excessive, the amount of unstable iron 
pools in the cell increases, and ferritin is deposited in 
cardiomyocyte cells, leading to HF [79]. In 2012, Dixon 
et al. named this type of iron-dependent cell death lipid 
peroxidation-induced ferroptosis [80]. As a novel regula-
tory cell death mechanism, ferroptosis has become a new 
focus of research in the field of cardiovascular disease. 
Understanding the mechanisms by which ferroptosis 
occurs and develops in HF is a prerequisite for reduc-
ing the incidence and mortality of the disease. Iron death 
can be divided into two stages: the first stage is intracel-
lular iron overload, which generates a large amount of 
ROS through the Fenton reaction, and the second stage 
is an imbalance in the intracellular antioxidant system. 
Currently, research on ferroptosis is mainly focused on 
four aspects: 1) the System Xc-/glutathione (GSH)/glu-
tathione peroxidase 4 (GPX4) axis is considered the main 
route involved in ferroptosis. System Xc- is a transami-
nase located on the surface of the cell membrane that 
catalyzes the transfer of amino groups, forming a dimer 
composed of two subunits SLC7A11 and SLC3A2. It can 
transport cysteine into the cell in a 1:1 ratio and export 
glutamate outside the cell [81]. GPX4 can remove phos-
pholipid peroxides and prevent ferroptosis. GSH is an 
effective cofactor of GPX4, and GSH depletion can cause 
ferroptosis by increasing lipid ROS [82]. Inhibiting the 
activity of System Xc- will interfere with the uptake of 
cysteine into the cell, ultimately reducing GSH synthesis 
and decreasing the activity of GPX4, leading to ferrop-
tosis; 2) the ferroptosis-inhibiting protein 1 (FSP1, also 
known as AIFM2)-ubiquinone (CoQ10) pathway [83, 84]. 
Researchers have shown that in some cancer cell lines, 
even if there is no core anti-ferroptosis system composed 
of GPX4, the cell can resist ferroptosis. The authors 
identified FSP1 by genetic sequencing, which must be 
recruited to the lipid membrane after myristoylation to 
exert its reductase function [84]. The lipid membrane 
is rich in CoQ10, and its reduced form CoQH2 acts as 
an antioxidant to eliminate lipid peroxides [83]. The 
activity of FSP1 requires the support of NADPH cofac-
tor, so FSP1-CoQ10-NADPH forms an independent 

anti-ferroptosis system; 3) the GTP cyclohydrolase 1 
(GTPCH1)-tetrahydrobiopterin (BH4) pathway [85]. 
BH4 is an accessory factor involved in the production 
of aromatic amino acids and nitric oxide. GCH1 is the 
rate-limiting enzyme in BH4 synthesis. Using a CRISPR-
mediated whole-genome activation screen, Kraft et  al. 
found that GCH1 is the most prominent gene involved in 
suppressing ferroptosis [86]. Upregulation or downregu-
lation of GCH1 controls the endogenous production of 
antioxidants BH4, leading to the resistance or sensitivity 
of cancer cells to ferroptosis. Iron protein ferritin h (FtH) 
is a gene encoding the heavy chain of ferritin, which is 
specifically downregulated in cardiomyocytes after the 
induction of cardiomyopathy by doxorubicin. Fang et al. 
[87] found that the mitochondria in mice with doxoru-
bicin-induced myocarditis accumulate iron and undergo 
lipid peroxidation, leading to changes in mitochondrial 
morphology, depolarization of the mitochondrial mem-
brane, and reduction in ATP production. In follow-up 
studies, the team discovered that the expression of the 
functional subunit of the cysteine/glutamate transporter 
SLC7A11 on the cardiomyocyte membrane is downregu-
lated, leading to a lack of cysteine and GSH in the cell, 
which then triggers cardiomyocyte ferroptosis and mito-
chondrial failure [88]. SLC7A11/xCT inhibition prevents 
cardiomyocyte hypertrophy. The NCOA4-mediated 
autophagy process can selectively degrade iron protein 
ferritin, leading to an increase in free iron levels in the 
cell and the induction of ferroptosis [89]. In cells lack-
ing GPX4, DHODH expression is upregulated, leading 
to mitochondrial lipid peroxidation. DHODH also pro-
motes the regeneration of CoQ10, which captures lipid 
peroxides on the mitochondrial membrane [90]. Studies 
have shown that Herceptin can trigger ferroptosis and 
mitochondrial dysfunction in H9c2 cells [91]. TRIM21 
deficiency alleviates the heart toxicity caused by the 
chemotherapy drug doxorubicin [92].

HIFs activity is related to iron metabolism, which affects 
the coding regulation of HF‑related genes
Iron is an accessory factor of the prolyl hydroxylase 
domain (PHD) enzyme, which is involved in the degra-
dation of hypoxia-inducible factors (HIFs). As a result, 
the accumulation of HIFs and their related metabolic 
effects are often associated with iron deficiency. HIFs 
are α/β heterodimer transcription factors that medi-
ate various cellular and systemic responses to changes 
in oxygen availability in the body [93]. They regulate the 
transcription of genes involved in angiogenesis, energy 
metabolism, cell apoptosis, inflammation, and fibrosis 
[94]. When the heart is subjected to increased load, it 
undergoes compensatory hypertrophy, which is depend-
ent on heart vessel growth. Chronic heart hypertrophy 
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can lead to HF. Studies have shown that the heart pro-
motes heart vessel growth through HIF-1-dependent 
induction of angiogenesis factors, but sustained pressure 
overload leads to the accumulation of p53, which inhibits 
HIF-1 activity, resulting in damage to heart vessel growth 
and contractility, leading to HF [95]. Studies have shown 
that iron depletion at the cellular level inhibits the activ-
ity of PHD, leading to nuclear accumulation of HIF-1α, 
but the impact of this on mitochondrial function remains 
to be further studied [96]. PHD inhibitors upregulate 
iron regulatory proteins to improve iron absorption 
and increase the production of endogenous erythropoi-
etin and enzymes involved in iron metabolism, thereby 
improving iron utilization [97]. Another study showed 
that the gene encoding DMT1 is regulated by HIF-2α 
[97]. Furthermore, studies have used iron chelators to 
simulate hypoxia to investigate the relationship between 
HIFs and diseases [98, 99]. It has been found that over-
expression of Nr2f2 increases the expression of PGC-1α 
signals in mice with HF induced by diabetes, leading to 
exacerbated ferroptosis and mitochondrial dysfunction. 
Studies have found that Nr2f2 overexpression can aggra-
vate ferroptosis and mitochondrial dysfunction by modu-
lating PGC-1α signaling in mice with diabetes-induced 
HF. Digoxin protects against ferroptosis in doxorubicin-
induced cardiomyopathy rats by modulating HMGB1.

Calcium channels also become the way for cardiomyocytes 
to absorb iron
Despite the development of new iron chelators, iron 
overload still affects patient survival. Understanding the 
alternative pathways by which iron enters cells is ben-
eficial for the study of new treatments for iron overload 
diseases. Only iron bound to transferrin can enter cardio-
myocyte cells through TfR1. Non-transferrin-bound iron 
(NTBI) is transported into cardiomyocyte cells mainly 
through two transporters: DMT1 and L-type Ca2 + chan-
nels (LTCC). However, the expression of DMT1 mRNA 
in cardiomyocyte cells has been shown to decrease with 
increasing levels of intracellular iron in adult human 
hearts [100]. In 1999, Tsushima et al. first discovered that 
cardiomyocyte iron uptake is through L-type Ca2 + chan-
nels, and blocking this channel may be helpful in treating 
patients with high serum iron levels [101]. Overexpres-
sion of cardiomyocyte-specific LTCC leads to increased 
iron accumulation and oxidative damage in cardiomyo-
cyte cells, with a proportional increase in Ca2 + cur-
rent. LTCC blockers (such as amlodipine and verapamil) 
reduce iron accumulation in cardiomyocyte cells, reduce 
oxidative stress, and protect against diastolic and systolic 
dysfunction [102]. NTBI entering cardiomyocyte cells is 
rapidly oxidized and reduced to trivalent iron, which is 
then trapped in the cytoplasm and converted to insoluble 

ferric hemoglobin or reactive unstable iron pools causing 
oxidative damage via iron-mediated oxidation. Increases 
in cytoplasmic iron also lead to iron uptake into mito-
chondria, which are integrated into the Fe–S clusters 
and used for erythropoiesis [103]. The stability of iron 
in the mitochondria requires frataxin, which provides 
critical antioxidant defense against iron-dependent radi-
cals in the mitochondria [104]. Another potential path-
way involving iron absorption in the heart is the T-type 
Ca2 + channel (TTCC). Under physiological conditions, 
TTCC expression in the heart disappears after birth 
[105]. However, it can reappear in the heart under certain 
pathological conditions, including myocardial infarction, 
HF, and iron overload cardiomyopathy [106]. Research 
has shown that Fe2 + can inhibit Ca2 + current and can 
enter cardiomyocyte cells through TTCC under iron 
overload conditions [107]. Treatment with TTCC block-
ers (such as ethinylestradiol) can significantly reduce 
iron absorption in cultured cardiomyocyte cells and 
iron overload models in  vivo, improving heart function 
[108]. However, further research is needed in clinical and 
in vivo environments to confirm the role of these chan-
nels in heart iron absorption and their potential applica-
tion in preventing iron overload cardiomyopathy.

Regulation of NRF2‑ferroptosis pathway on HF
Nrf2 is a transcriptional factor that is widely distributed 
throughout the body. In the process of ferroptosis, almost 
all genes that regulate ferroptosis are related to Nrf2 reg-
ulation, which mainly includes genes that regulate glu-
tathione (GSH) synthesis, system xc–induced cysteine 
supply, glutathione reductase, and GPX4, the activity of 
which is crucial for the activity of GPX4. NADPH regen-
eration, including glucose-6-phosphate dehydrogenase, 
phosphoglycerate dehydrogenase, and malic enzyme, 
and iron regulation, including iron excretion and storage, 
heme synthesis (degradation), and ferritin synthesis [109, 
110]. Nrf2 physically binds to the mitochondria and can 
track and respond to changes in mitochondrial function. 
It also interacts with peroxisome proliferator-activated 
receptor gamma coactivator 1 (PGC-1), which regulates 
mitochondrial biogenesis and autophagy [111]. Silence 
of the mouse Nr2 gene has been shown to damage mito-
chondrial function, while activation of the Nrt2 gene 
improves mitochondrial function and resistance to stress 
[112]. Therefore, Nrf2 is closely involved in the process 
of ferroptosis and is an important regulator of the oxida-
tive and anti-oxidative balance. Normally, Nrt2 binds to 
the negative regulator Kelch-like ECH-associated protein 
1 (Keap1) in the cytosol, and Keap1 continuously phos-
phorylates and degrades Nrf2 through ubiquitination 
and proteasome degradation. This maintains low levels 
of Nrf2 signaling. In states of increased oxidative stress, 
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Nrf2 and Keap1 dissociation and Nrf2 nuclear transloca-
tion are accelerated [113]. In the nucleus, Nrf2 interacts 
with the antioxidant response element (ARE) in the pro-
moter region of target genes and transcribes them. Nrf2 
thus participates in the regulation of cardiovascular dis-
ease [114, 115]. A study has shown that mice with knock-
out of the Nrl2 gene develop faster HF, with higher levels 
of atrial natriuretic factor (ANF) and B-type natriuretic 
peptide (BNP), indicating that Nrf2 protects cardiomyo-
cytes from damage [116]. Literature has reported that 
overexpression of Nrf2 can reduce ROS production, 
myocardial hypertrophy, and myocardial cell fibrosis in a 
mouse model of aortocaval compression, indicating that 
Nrf2 plays an important role in cardiovascular physi-
ological changes [117, 118]. The regulatory mechanism 
of the Nrf2-ferroptosis pathway in HF is mainly mediated 
by Hmox1, a heart-protective protein, but overexpres-
sion of which can lead to HF. Administration of doxoru-
bicin-induced HF can be activated by Nrf2, transported 
to the nucleus, and combined with the ARE to activate 
transcription, leading to the upregulation of Hmox1, the 
release of free iron, and the accumulation of lipid per-
oxides in the mitochondria, resulting in ferroptosis and 
ultimately leading to HF. Studies have shown that the 
model of ferroptosis induced by doxorubicin is mediated 
by Hmox1, and the expression of Hmox1 is regulated by 
multiple transcriptional factors, such as Nrf2, AP-1, and 
YY1. However, only the Nrf2-mediated regulatory pro-
cess exhibits resistance to ferroptosis [119]. Therefore, 
suppressing ferroptosis or controlling the upregulation of 
Hmox1 is conducive to alleviate doxorubicin-induced HF.

The mechanism of non‑coding RNA‑mediated ferroptosis 
involved in HF
circSnx12 targets miR-224-5p to participate in fer-
roptosis during HF [120]. The TLR4/NADPH oxidase 
4 pathway plays a role in promoting cell death through 
autophagy and ferroptosis during HF [121]. OMA1-
mediated integrated stress response can prevent ferrop-
tosis in mitochondrial cardiomyopathy [122]. Inhibition 
of long noncoding RNA ZFAS1 via sponge miR-150-5p 
weakens ferroptosis and activates CCND2 against dia-
betic cardiomyopathy [123]. miR-375-3p regulates fer-
roptosis via GPX4-mediated pathway to promote heart 
fibrosis [124]. The neutrophil-like cell membrane-encap-
sulated long noncoding RNA AABR07017145.1 functions 
as a therapeutic agent for heart hypertrophy by suppress-
ing ferroptosis through blocking CMEC [125].

Iron overload caused by endoplasmic reticulum heme 
degradation triggers ferroptosis in myocardial ischemia–
reperfusion injury [126]. Zheng et al. found that thoracic 
aorta constriction (TAC) can cause ferroptosis in mouse 
cardiomyocyte and induce HF. CircSnx12 and FTH1 

expression were downregulated in the heart tissue of 
HF mice, while miR-224-5p expression was upregulated. 
These findings suggest that the expression of circSnx12, 
miR-224-5p, and FTH1 is related to HF. circSnx12 over-
expression can protect cardiomyocytes and reduce their 
sensitivity to ferroptosis. In contrast, miR-224-5p overex-
pression can antagonize the protective effect of circSnx12 
overexpression on cardiomyocyte ferroptosis. circSnx12 
maintains the intracellular iron metabolism homeosta-
sis by competing with FTH1 for miR-224-5p binding, 
and regulates ferroptosis in mouse cardiomyocyte of HF 
[127].

Treatment strategies
While studying the mechanisms of iron metabolism and 
cardiovascular disease, therapeutic strategies that adjust 
iron metabolism and improve myocardial iron content 
are also being actively studied. Targeting iron dysme-
tabolism and its pathogenic processes may become a new 
therapeutic strategy for treating HF.

Iron deficiency treatment strategy
Functional iron deficiency and absolute iron deficiency 
can coexist, and functional iron deficiency can promote 
absolute iron deficiency by continuously damaging iron 
intake [128]. Absolute iron deficiency treatment focuses 
on improving iron storage, improving anemia, and opti-
mizing iron absorption, while functional iron deficiency 
treatment focuses on controlling potential diseases.

Oral iron supplementation
A statistical study has shown that iron supplementation 
can reduce the hospitalization rate of patients with HF, 
enhance heart function, and improve quality of life [129]. 
Oral iron supplements commonly used include ferrous 
salts (such as ferrous sulfate) and dextran iron, lactofer-
rin, and ferritin complex, etc. However, the use of ferrous 
salts for treatment may be influenced by gastrointestinal 
adverse reactions [130]. A new oral therapy that com-
bines ferric ions with carriers to optimize absorption 
while reducing gastrointestinal side effects is currently 
being studied. In a Phase III clinical expansion study, 
mefenamic acid–ferric hydroxide was effective and well 
tolerated in patients with iron deficiency anemia associ-
ated with inflammatory bowel disease [131]. Research 
has shown that a new type of nanoparticle iron supple-
ment (dietary ferritin-like particles of ferric hydroxide 
and hexanoic acid succinic acid iron) can be safer and 
more effective than ferrous sulfate as an oral iron supple-
ment and has the potential to treat iron deficiency ane-
mia in humans [132].
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Intravenous iron administration
When oral iron supplements are not tolerated, ineffec-
tive, cannot be used, or require rapid supplementation of 
depleted iron stores, intravenous iron supplementation 
is required [133]. Compared to oral supplementation, 
intravenous supplementation is faster and more effec-
tive, requiring fewer doses, and has less gastrointestinal 
side effects, and absorption is not affected by inflamma-
tion or other factors [134]. Carboxylated maltose iron is 
the preferred formulation because it seems to increase 
blood hemoglobin parameters more rapidly and effec-
tively [135]. Lopez-Vilella et al. conducted a study on 565 
outpatients with diagnoses of chronic HF for more than 
5  years, and found that intravenous administration of 
carboxylated maltose iron improved the ejection fraction 
and clinical status of patients with iron deficiency and 
chronic HF [136].

Reduce hepcidin
As mentioned earlier, when there is an iron deficiency, 
the secretion of hepcidin decreases, leading to increased 
cell iron excretion and reduced plasma iron levels. Stud-
ies have shown that vitamin D [137] and heparin [138] 
can inhibit the production of hepcidin, providing poten-
tial value for the treatment of iron deficiency. With 
further research on the hepcidin signaling pathway, tar-
geted inhibitors of soluble hemojuvelin (HJV) and bone 
morphogenetic protein receptors (BMPR) as well as 
inhibitors of IL-6/JAK/STAT signaling have become ther-
apeutic options for treating iron deficiency [139].

Treatment strategies for iron overload
Iron overload leads to saturation of transferrin and ferri-
tin, increasing non-transferrin-bound iron (NTBI), which 
accelerates iron deposition in tissues, especially in excita-
ble tissues containing high levels of Ca2 + channels. High 
levels of Ca2 + channels in the heart tissue will transmit 
Fe2 + ions into the cell through oxidative–reductive reac-
tions, producing excessive free radicals that disrupt the 
cell’s oxidative–reductive balance and cause oxidative 
stress. Free radicals then combine with various cell com-
ponents to produce toxicity in the heart [140, 141]. NTBI 
can also directly activate fibroblasts and promote their 
proliferation and differentiation into myofibroblasts, 
leading to increased fibrosis in heart tissue [142].

Phlebotomy and iron chelators
Treatment of iron overload requires reducing systemic 
iron levels or preventing iron from entering tissues. 
Blood transfusion and iron chelators are two common 
methods for reducing systemic iron [143]. When hemo-
globin is within the normal range (no anemia) and eryth-
rocyte production is not affected, blood transfusion is 

used. This method is mainly used to treat primary hemo-
chromatosis. When patients with iron overload have 
anemia, iron chelators are used to remove excessive iron 
from the body. Continuous development of orally bio-
available drugs with good long-term efficacy and safety 
has become a goal for the treatment of iron overload. 
In addition, different treatment strategies may be used 
depending on the mode of action.

Inhibition of ferroptosis
Research has shown that ferroptosis inhibitors, iron che-
lators, mitochondrial reductases, HO-1 inhibitors, and 
low-iron diets can effectively prevent and treat ferrop-
tosis-mediated HF (HF) [79]. GSH, ferrostatin-1, liprox-
statin-1, ascorbic acid (AsA), vitamin E, and CoQ10 are 
lipid antioxidants that inhibit ferroptosis. Specifically, a 
mitochondrial antioxidant (Mito-TEMPO) can effectively 
prevent ferroptosis and protect heart function. Most iron 
chelators mainly bind Fe2 + outside the cell, while right 
isomerase and ciclopirox (CPX) can bind Fe2 + inside 
the cell. Acyl-CoA synthetase long-chain family mem-
ber 4 (ACSL4) can convert arachidonic acid and aldos-
terone into arachidonic acid CoA and aldosterone CoA, 
respectively, and participate in the synthesis of negatively 
charged membrane phospholipids. However, long-chain 
polyunsaturated fatty acids (PUFAs) on the membrane 
are often oxidized, especially under the induction of fac-
tors such as RSL3, leading to cell ferroptosis [53]. Rosigli-
tazone and pioglitazone can protect cells from ferroptosis 
by inhibiting the activation of long-chain PUFAs medi-
ated by ACSL4 [144]. Additionally, kalirigrigin can alle-
viate ferroptosis in mice with preserved ejection fraction 
and improve HF [145]. The SGLT-2 inhibitor engegridin 
improves myocardial function and fibrosis in non-dia-
betic mice treated with adriamycin, and reduces proin-
flammatory cytokines [146]. Activating the Nrf2/HO-1 
signaling axis has also been shown to inhibit ferroptosis 
and prevent lung ischemia–reperfusion injury [147], but 
its application in HF still needs further study. Treatment 
with atorvastatin improves heart function and remod-
eling by reducing ferroptosis in isoproterenol-induced 
HF [148]. LV16A, a protein kinase 43 (PK43) agonist, 
reverses LV dysfunction and ferroptosis in HF caused by 
myocardial infarction, preserving ejection fraction [149]. 
Edaravone reduces ferroptosis by inhibiting excessive 
autophagy following myocardial infarction, preserving 
heart function [150].

Antioxidants
Iron overload leads to an increase in ROS production, 
which not only damages cell components, but also serves 
as a potential basis for the development of diseases [151]. 
Many studies have shown that antioxidants can reduce 
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heart oxidative stress, reduce heart iron deposition, and 
improve heart function induced by iron overload [152, 
153]. A clinical trial conducted for 3 months showed that 
oral N-acetyl-L-cysteine (NAC), a thiol antioxidant, can 
be used as a complementary therapy for patients with 
HF [89]. Mice with knockout of the HJV gene showed 
increased heart iron deposition and mortality, as well as 
increased oxidative stress and myocardial fibrosis, lead-
ing to late-stage iron overload cardiomyopathy. Treat-
ment with resveratrol could suppress the iron-mediated 
oxidative stress and myocardial fibrosis, while activat-
ing the p-Akt and p-AMPK signaling pathways [154]. In 
addition to antioxidant monotherapy, the combination of 
antioxidants and iron chelators can enhance therapeutic 
effects by reducing tissue iron accumulation and reduc-
ing oxidative stress under conditions of iron overload, 
improving organ function [155, 156].

Calcium channel blockers
Iron ions can also enter the heart through Ca2 + chan-
nels. Therefore, calcium channel blockers (such as 
amlodipine and verapamil) can be used to reduce iron 
accumulation in the heart and prevent iron overload-
induced HF. Calcium channel blockers can promote 
myocardial microvascular perfusion by dilating coro-
nary arteries and improving coronary endothelial func-
tion. Calcium channel blockers such as amlodipine also 
have antioxidant properties, which can help counteract 
the oxidative effects of iron overload [157]. When used 
in combination with iron chelators, amlodipine is more 
effective in reducing cardiac iron overload than iron che-
lators alone [158]. Verapamil can reduce the increase in 
serum ferritin and cardiac iron deposition induced by fer-
rous sulfate, improve oxidative stress, and protect against 
the cardiac functional and structural changes caused by 
iron overload [159]. Mitochondrial calcium uniporter 
(MCU) blockers exert a protective effect by prevent-
ing ROS generation, mitochondrial depolarization, and 
reducing mitochondrial swelling caused by iron overload, 
which may be an effective therapy for preventing cardiac 
mitochondrial dysfunction caused by iron overload [160].

Increase hepcidin
During iron overload, hepcidin secretion increases, lead-
ing to decreased cellular iron efflux and lower plasma 
iron levels. Therefore, hepcidin mimetics may be a poten-
tial therapeutic approach [161]. Studies have shown that 
this approach is more suitable for maintenance therapy, 
as these drugs do not reduce iron stores in the liver. 
Increasing hepcidin production by increasing positive 
regulators (such as BMP6) or inhibiting negative regula-
tors of hepcidin signaling is also a therapeutic strategy for 
iron overload [162].

Tissue inhibitors of metalloproteinases
Tissue inhibitors of metalloproteinases (TIMPs) can also 
mediate cardiac remodeling, hypertrophy, and fibro-
sis in heart disease. Studies have shown that TIMP3 is a 
key regulator of iron-mediated cardiac injury, and mice 
lacking TIMP3 exhibit severe cardiac structural changes 
and functional impairment after iron overload treat-
ment [163]. Therefore, exploring the mechanisms of iron 
metabolism and developing new drugs targeting iron 
metabolism are of great significance for the treatment of 
heart disease.

Molecular mechanism of natural products 
regulating ferroptosis and improving HF
Natural compounds
Berberine
Berberine (BBR) is an isoquinoline alkaloid isolated from 
the Coptidis Rhizoma. It has been found to possess vari-
ous pharmacological effects, including anti-infective, 
anti-diabetic, anti-aging, anti-cancer, antioxidant, and 
cardioprotective properties [164, 165]. BBR pretreat-
ment can reduce myocardial infarction (MI) volume and 
improve heart function by inhibiting cardiac fibrosis, 
inflammatory response, cardiomyocyte apoptosis, and 
oxidative stress damage [166, 167]. Yang et al. found that 
in H9c2 cardiomyocytes, BBR reduced erastin and RSL3-
induced loss of cell viability. Additionally, BBR reduced 
ROS accumulation and lipid peroxidation in iron-over-
loaded cells. Furthermore, quantitative polymerase chain 
reaction results showed that Ptgs2 mRNA decreased in 
BBR-treated cells. In rat neonatal cardiomyocytes, BBR 
also reduced RSL3-induced loss of cell viability. These 
results suggest that BBR inhibits iron toxicity by reducing 
ROS production and lipid peroxidation in iron-treated 
cardiac cells [168].

Resveratrol
Resveratrol is a non-flavonoid polyphenol organic com-
pound with various pharmacological effects, such as 
antioxidant, anti-inflammatory, anticancer, and car-
diovascular protective activities [169, 170]. Studies have 
shown that resveratrol can attenuate oxidative stress 
damage, reduce Fe2 + levels, and inhibit ferroptosis 
induced by oxygen glucose deprivation/reoxygenation 
(OGD/R) in an I/R model of H9c2 cells [169]. In a myo-
cardial I/R model of diabetic rats, I/R activates ubiqui-
tin-specific protease 19 (USP19) and Beclin1, leading to 
ferroptosis, while resveratrol can inhibit iron death by 
downregulating USP19/Beclin1 and upregulating GPX4 
and FTH1, thus reducing myocardial cell I/R injury. A 
recent analysis showed that resveratrol can alleviate myo-
cardial damage by inducing KAT5/GPX4 and inhibit-
ing iron death in myocardial infarction [171]. Zeng et al. 
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found that resveratrol can protect against MI/R injury 
by reducing oxidative stress and attenuating ferroptosis, 
suggesting its potential as a preventive drug for MI/R 
injury [172].

Baicalin
Baicalin is a flavonoid derivative isolated from the tradi-
tional Chinese medicine Scutellaria baicalensis Georgi, 
with significant pharmacological activities, including 
anti-inflammatory, immunomodulatory, and antioxidant 
effects [173, 174]. Baicalin improves cardiac function and 
myocardial fibrosis in rats with myocardial infarction, 
possibly through the p38 phosphorylation and TGFβ1/
Smad2 pathway, exhibiting a protective effect against 
MI/R injury [175]. Fan et al. found that baicalin improves 
ST-segment elevation on electrocardiogram, coronary 
blood flow, left ventricular systolic pressure, infarct 
area, and pathological changes in rats with MI/R injury, 
and inhibits the decrease of cell viability induced by 
OGD/R in H9c2 cells. Lipid peroxidation, iron overload, 
TfR1 activation, and nuclear receptor coactivator factor 
4-mediated iron autophagy, enhanced in both in vivo and 
in vitro models, can be reversed by baicalin treatment. In 
addition, overexpression of ACSL4 weakens the protec-
tive effect of baicalin on H9c2 cells. These results indicate 
that baicalin regulates ferroptosis by inhibiting ACSL4, 
preventing MI/R injury, and providing a new potential 
target for preventing MI/R injury [176].

Cyanidin‑3‑O‑glucoside
Cyanidin-3-O-glucoside (C3G), belonging to anthocya-
nins, is a flavonoid widely distributed in plants, especially 
in black rice, black bean, and purple sweet potato [177, 
178]. C3G is one of the main components of mulberry 
anthocyanins, which have been widely used in food and 
health products. Anthocyanins have various therapeutic 
effects, such as antioxidation, anti-atherosclerosis, anti-
insulin resistance, and regulation of blood lipids, among 
which C3G is the main active ingredient [179, 180]. Stud-
ies have shown that C3G can reduce myocardial infarct 
size, alleviate pathological changes, inhibit ST-segment 
elevation, and reduce the expression of proteins related 
to oxidative stress and iron death in the rat model of 
myocardial ischemia–reperfusion (I/R). C3G can also 
inhibit the expression of USP19, Beclin1, nuclear recep-
tor coactivator 4, and microtubule-associated protein 1 
light chain 3II/LC3I. In addition, in H9c2 cells induced 
by OGD/R, C3G can reduce oxidative stress, downregu-
late LC3II/LC3I, decrease the number of autophago-
somes, downregulate TfR1 expression, upregulate FTH1 
and GPX4 expression, and promote K11 ubiquitination 
of Beclin1. Therefore, C3G can reduce MI/R injury by 

inhibiting ferroptosis in vivo and in vitro according to the 
results of this study [181].

Naringenin
Naringenin is a natural flavonoid compound with mul-
tiple pharmacological effects, including antibacterial, 
anti-inflammatory, antioxidant, anticancer, anti-tumor, 
and anti-atherosclerosis activities. Studies have shown 
that naringenin inhibits ferroptosis in MI/R injury [182, 
183]. It exerts cardioprotective effects by alleviating 
pathological damage, inflammation, and lipid peroxida-
tion induced by I/R in rat myocardial tissue. Naringenin 
activates the Nrf2/SLC7A11/GPX4 axis by upregulat-
ing Nrf2, SLC7A11, GPX4, FTH1, and ferroportin-1, 
and downregulating NOX1 NADPH oxidase to inhibit 
ferroptosis. At the cellular level, the ferroptosis inducer 
erastin can counteract the protective effect of naringenin 
on I/R-induced H9c2 cardiomyocytes [184].

Gossypol acetic acid
Gossypol acetic acid (GAA) is a natural product 
extracted from cottonseed, which can inhibit oxida-
tive stress damage [185, 186]. Studies have shown that 
GAA can attenuate MI/R injury by inhibiting ferrop-
tosis in OGD/R-mediated H9c2 cells; in H9c2 and rat 
cardiomyocytes treated with ferroptosis inducers eras-
tin, RSL3, and Fe-SP, GAA can protect H9c2 cells from 
ferroptosis induction by reducing the production of 
malondialdehyde and ROS, chelating iron content, and 
downregulating Ptgs2 mRNA levels. GAA can also pre-
vent cardiomyocyte death and lipid peroxidation induced 
by OGD/R. In isolated rat hearts, GAA can significantly 
reduce infarct size, decrease lipid peroxidation, lower 
PTGS2 and ACSL4 mRNA levels, decrease ACSL4 and 
Nrf2 protein levels, and upregulate GPX4 protein levels. 
Therefore, GAA may play a cytoprotective role in fer-
roptosis-induced cardiomyocyte death and MI/R injury 
[187].

Astragaloside IV
Astragaloside IV (AS-IV) is one of the main active com-
ponents of Astragalus membranaceus, a widely used 
traditional Chinese herb [188, 189]. AS-IV has been 
reported to possess multiple pharmacological effects, 
such as protecting the heart, antioxidation, anti-inflam-
mation, anti-tumor, anti-apoptosis, and regulating blood 
glucose levels. AS-IV has therapeutic effects on various 
cardiovascular diseases, including improving myocardial 
fibrosis, inhibiting inflammatory reactions, anti-oxidative 
stress, regulating myocardial cell energy metabolism, 
enhancing myocardial contractility, and preventing myo-
cardial cell apoptosis [190, 191]. Tian et  al. found that 
AS-IV can reverse doxorubicin-induced myocardial 
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injury in rats, possibly by activating the Nrf2/GPX4 path-
way to alleviate myocardial ferroptosis induced by DOX 
[192].

Ophiopogonin D (OPD)
OPD is a bioactive steroidal glycoside extracted from 
Ophiopogon japonicus, which has pharmacological 
effects such as anti-inflammatory, antioxidant, cough 
suppressant, and anti-thrombotic activities [193, 194]. 
In terms of HF, OPD significantly improves myocardial 
injury caused by hypoxia, and its mechanism may be 
related to regulating GSH metabolism, inhibiting myo-
cardial oxidative stress, and endoplasmic reticulum stress 
levels [195]. Lin et  al. found that OPD could treat ISO-
induced rat HF and induce changes in CYP2J3 expression 
in cardiac tissue. At the cellular level, OPD can induce 
the expression of CYP2J2 and CYP2J3, and this induc-
tion is mediated by PXR. In addition, it was found that 
the two isomers of OPD, OPD and OPD’, have different 
pharmacological effects on H9c2 cells. OPD can reverse 
OPD’-induced ferroptosis, thereby protecting myocardial 
cells [196].

Artesunate
Artemether is the preferred drug for treating compli-
cated malaria, with various biological activities including 
anti-inflammatory, immune modulation, anti-fibrotic, 
and anti-lipid peroxidation effects [197]. It can reduce 
hypoxia/reoxygenation-induced H9c2 cell apoptosis and 
myocardial ischemia/reperfusion injury through anti-
inflammatory, anti-apoptotic, and antioxidant effects 
[198], and significantly inhibit endoplasmic reticulum 
stress by blocking the PERK/eIF2α/ATF4/CHOP path-
way, thereby alleviating ulcerative colitis-induced intesti-
nal barrier inflammation and pathological damage [199]. 
Hong et al. found that artemether could inhibit OGD/R-
induced inflammation, iron accumulation, and lipid 
peroxidation in myocardial cells, alleviate ferroptosis, 
enhance cell viability, and relieve cell damage by inhibit-
ing the PERK/ATF4/CHOP pathway activation [200].

Luteolin
Luteolin is an important flavonoid compound found in 
various natural plants, with multiple pharmacological 
activities such as anticancer, antioxidant, antibacterial, 
and anti-inflammatory effects [201, 202]. Luteolin may 
exert cardioprotective effects in ischemia/reperfusion 
(IR) by inhibiting oxidative damage, cell apoptosis, and 
autophagy, possibly through the activation of the AKT/
mTOR/STAT3 signaling pathway [203]. Ma et  al. found 
that luteolin can inhibit oxidative stress and attenuate 
Ang II-induced cardiomyocyte hypertrophy, possibly by 

enhancing Nrf2 nuclear transcription and activating the 
Nrf2/Gpx4 pathway, thus inhibiting ferroptosis [204].

Puerarin
Puerarin is one of the main monomers of total flavonoids 
from Pueraria lobata, and is an isoflavone phytoestrogen 
with important pharmacological effects, minimal adverse 
reactions, and high safety [205, 206]. It has been reported 
that puerarin exhibits various pharmacological activi-
ties, including anti-inflammatory, anti-oxidative stress, 
anti-apoptosis, and anti-autophagy effects, which are 
beneficial for alleviating myocardial ischemia/reperfu-
sion injury and treating ischemic cardiovascular diseases 
[207, 208]. Jiang et  al. found that puerarin could inhibit 
sorafenib-induced myocardial ferroptosis, and has a good 
protective effect against the cardiotoxicity of sorafenib. 
β-Carotene can antagonize the cell-protective and lipid 
peroxidation-inhibiting effects of puerarin, and the main 
molecular mechanism underlying the inhibition of endo-
plasmic reticulum stress by puerarin may be through 
scavenging lipid ROS [209]. Liu et al. found that puerarin 
can prevent pressure overload-induced HF by alleviating 
ferroptosis [210].

Schizandrin B
Schisandrae Chinensis Fructus has the functions of 
astringency, thirst-quenching, kidney-nourishing, and 
tranquilizing [211]. It has a complex chemical composi-
tion and exhibits good pharmacological effects such as 
anti-oxidation, anti-tumor, liver protection, and anti-
inflammation. Schizandrin B, a component of Schisan-
drae Chinensis Fructus, has been found to possess 
anti-inflammatory, anti-oxidative, and anti-tumor prop-
erties [212, 213]. Currently, it has been widely used in the 
treatment of liver disease, tumors, cardiovascular disease, 
sepsis, and neurological disorders, showing remarkable 
therapeutic effects against inflammation-related diseases 
such as rheumatoid arthritis, pneumonia, cardiovascular 
disease, and sepsis [214, 215]. Yang et al. found that Schi-
zandrin B can inhibit ferroptosis and alleviate myocardial 
injury in diabetic mice, and its mechanism of action may 
be related to the activation of the Nrf2/HO-1/GPX4 sign-
aling pathway [216].

Salvianolic acid B
Salvianolic acid B is a highly active component in Dan-
shen water extract, which has anti-oxidative, anti-inflam-
matory, and anti-fibrotic effects. It has been studied as a 
potential drug for cardiovascular disease for many years 
[217, 218]. Studies have found that salvianolic acid B 
can increase the expression of Cx43 protein in the inter-
ventricular septal defect rabbit myocardium [219], and 
Cx43 can reduce mitochondrial reactive oxygen species 
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production and protect against doxorubicin-induced car-
diac injury [220]. Liu et al. found that salvianolic acid B 
could protect the heart of MI rats by upregulating the 
expression and phosphorylation of Cx43 protein, improv-
ing its distribution in myocardium, and resisting cellular 
ferroptosis [221].

Apigenin
Apigenin is a common natural flavonoid compound, 
which is abundant in vegetables and fruits commonly 
consumed in daily life [222, 223]. It mainly involves 
signaling pathways such as phosphoinositide 3-kinase/
protein kinase B (PI3K/AKT), signal transducer and acti-
vator of transcription 3 (STAT3), WNT, and mitogen-
activated protein kinase/extracellular signal-regulated 
kinase (MAP/ERK) [224, 225]. Liu et al. found that Api-
genin could improve acute myocardial I/R injury by 
inhibiting ferroptosis and apoptosis. Acute myocardial 
I/R injury is associated with ferroptosis, and Fer-1 signifi-
cantly reduces this injury. Apigenin improves ferroptosis-
associated acute myocardial I/R injury by activating the 
AMPK/Nrf2/HO-1 signaling pathway [226].

Thymoquinone
Thymoquinone is a natural monomer extracted from 
the seeds of Nigella sativa, a plant of the Ranunculaceae 
family, which is low-toxicity and highly efficient, possess-
ing a range of biological activities including anti-tumor, 
anti-inflammatory, anti-oxidative stress, anti-fibrosis, 
protection against ischemia–reperfusion injury, antiviral, 
analgesic, anti-anxiety/convulsant, and radioprotective 
effects [227, 228]. Luo et  al. found that thymoquinone 

can alleviate DOX-induced cardiotoxicity, which may be 
achieved by activating the Nrf2/HO-1 signaling pathway 
to relieve ferroptosis in mouse cardiac cells, thereby miti-
gating DOX-induced cardiotoxicity [229].

The mechanism of natural compounds is summarized 
in Table  1 and the structures of natural compounds are 
shown in Fig. 4.

Traditional Chinese medicine prescription
Qidi Qiangxin capsule (QDQXC)
Wang et al. found that the main mechanisms of QDQXC 
in treating chronic HF include enhancing myocardial 
contractility, improving water and sodium retention, 
inhibiting the overactivation of the neuroendocrine sys-
tem, regulating myocardial fibrosis, inhibiting apoptosis 
of myocardial cells, suppressing inflammatory factors, 
improving myocardial energy metabolism, and protect-
ing endothelial function [230]. Analysis showed that 
QDQXC can exert its pharmacological effects through 
multiple pathways and signaling pathways, improving 
heart function in patients with HF. Liu et al. found that 
QDQXC can alleviate oxidative damage in H9c2 cardio-
myocytes induced by doxorubicin, inhibit the occurrence 
of ferroptosis, and may reduce doxorubicin-induced fer-
roptosis in H9c2 cardiomyocytes by upregulating the 
expression of system xc- and GPX4 through the Nrf2 
signaling pathway [231].

Yiqi Huoxue Fang (YQHXF)
YQHXF has various pharmacological effects, includ-
ing scavenging of oxygen free radicals, anti-oxidative 
stress, anti-atherosclerosis, and cardioprotection [232]. 

Table 1 Summary of the mechanism of natural compounds

Natural compounds Function Reference

Berberine Inhibits iron toxicity by reducing ROS production and lipid peroxidation in iron-treated cardiac cells [168]

Resveratrol Reduce oxidative stress and attenuating ferroptosis [172]

Baicalin Regulate ferroptosis by inhibiting ACSL4 [176]

Cyanidin-3-O-glucoside Upregulate FTH1 and GPX4 expression [181]

Naringenin Activates the Nrf2/SLC7A11/GPX4 axis by upregulating Nrf2, SLC7A11, GPX4, FTH1, and ferroportin-1, 
and downregulating NOX1 NADPH oxidase to inhibit ferroptosis

[184]

Gossypol acetic acid Decrease ACSL4 and Nrf2 protein levels, and upregulate GPX4 protein levels [187]

Astragaloside IV Activate the Nrf2/GPX4 pathway to alleviate myocardial ferroptosis induced by DOX [192]

Ophiopogonin D Regulate ferroptosis, thereby protect myocardial cells [196]

Artesunate Inhibit the PERK/ATF4/CHOP pathway activation [200]

Luteolin Enhance Nrf2 nuclear transcription and activate the Nrf2/Gpx4 pathway [204]

Puerarin Alleviate ferroptosis [210]

Schizandrin B Activate the Nrf2/HO-1/GPX4 signaling pathway [216]

Salvianolic acid B Upregulate the expression and phosphorylation of Cx43 protein [221]

Apigenin Activate the AMPK/Nrf2/HO-1 signaling pathway [226]

Thymoquinone Activate the Nrf2/HO-1 signaling pathway [229]
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Wang et  al. found that YQHXF improved cardiac func-
tion, reduced myocardial inflammatory cell infiltra-
tion, and alleviated myocardial fibrosis and ventricular 
remodeling in rats with acute myocardial infarction. This 
effect may be attributed to the downregulation of AMPK 
and Beclin1 protein phosphorylation, upregulation of 
SLC7A11 and GPX4 protein expression, and inhibition 
of autophagy and ferroptosis after myocardial infarction, 
leading to inhibition of ventricular remodeling [233].

Shexiang Baoxin Wan (SXBXW)
SXBXW has the effects of promoting blood circulation, 
relieving pain, and clearing the mind and eliminating 
turbidity [234, 235]. SXBXW can quickly dilate coro-
nary arteries and has good efficacy for patients with sta-
ble angina pectoris [235]. In addition, modern research 
has found that Moschus Heart-Protecting Pill has mul-
tiple effects, such as inhibiting myocardial remodeling, 
improving vascular endothelial function, promoting vas-
cular neogenesis, reducing plaques, and improving myo-
cardial ischemia–reperfusion injury [236, 237]. Ye et  al. 

found that SXBXW can alleviate ferroptosis of myocar-
dial cells by regulating the miR-144-3p/SLC7A11 signal-
ing pathway [238].

Lu Hong Fang (LHF)
LHF, as a traditional Chinese medicine formula, has the 
characteristics of complex composition, diverse action 
pathways and targets, and is mainly used to treat angina 
pectoris, asthma, and other related conditions [239]. Pre-
vious clinical research has shown that Lu Hong Fang can 
effectively improve clinical symptoms of HF after myo-
cardial infarction and regulate coronary microcirculation 
[240]. LHF pretreatment can increase the GSH content 
in the serum of rats with reperfusion injury [241], and 
alleviate MIRI. Cai et  al. found that LHF can alleviate 
myocardial ischemia–reperfusion injury, and its mecha-
nism may be related to the upregulation of the SLC7A11/
GPX4 pathway, activation of the Keap-1/Nrf2/ARE anti-
oxidant signaling pathway, and inhibition of ferroptosis 
[242, 243].

Fig. 4 The structures of natural compounds
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Yu Xue Bi (YXB)
Research has shown that the main active ingredients of 
YXB are quercetin, cryptotanshinone, tanshinone IIA, 
and ferulic acid [244]. YXB has been found to have a pro-
tective effect on myocardial cell damage, and through 
screening of its active ingredients using an H9c2 myocar-
dial cell injury model, the main active ingredients of YXB 
in protecting against myocardial cell damage were iden-
tified. Huang et al. found that YXB may inhibit myocar-
dial cell ferroptosis and improve myocardial hypertrophy 
by activating the DJ-1/GPX4 signaling pathway, thereby 
exhibiting anti-HF effects [245].

The mechanism of traditional Chinese medicine pre-
scription is summarized in Table 2.

Other products
Currently, research shows that iron metabolism in hemo-
globin and its precursors or derivatives plays a crucial 
role in ferroptosis [246]. Heme, the precursor of hemo-
globin, is a type of porphyrin compound that contains 
an iron ion. It plays a vital role in various biological pro-
cesses, including oxygen transport, electron transfer, 
gene expression regulation, circadian rhythm, and signal 
transduction [42]. Heme is known to be generated in the 
mitochondrial matrix, and heme proteins and heme regu-
latory proteins are widely distributed throughout various 
subcellular compartments [44]. Given the hydrophobicity 
and oxidative properties of free heme, cells must possess 
specific pathways to safely transport heme from the mito-
chondria to the extramitochondrial environment. Recent 
studies have discovered that iron porphyrin serves as 
a biological target for hydrogen molecules, acting as a 
hydrogen molecular sensor and catalyst. Experimental 
results demonstrate that both the free and protein-bound 
forms of iron porphyrin selectively neutralize the highly 
toxic hydroxyl radical (·OH) through catalytic hydrogen-
ation, thus mediating the antioxidant, anti-inflammatory, 
and anti-aging effects of hydrogen molecules. In oxygen-
deficient microenvironments, such as hypoxic areas 
within tumors, iron porphyrin catalyzes the reduction 
of CO2 to CO, resulting in the in-situ mediation of CO 
signaling pathways and, ultimately, achieving anticancer 

and immune-regulatory therapeutic effects. Consider-
ing that iron porphyrin predominantly accumulates in 
mitochondria and red blood cells, this discovery effec-
tively explains the mitochondrial regulatory effects and 
systemic inflammatory regulation effects of molecular 
hydrogen. These findings confirm CO as a downstream 
signaling molecule of hydrogen, providing a satisfactory 
explanation for the diverse biological effects of hydrogen 
that rely on features specific to the microenvironment of 
lesions [247]. Other research also reported that molecu-
lar hydrogen can activate the transcription factor Nrf2, 
alleviating oxidative stress through hydrogen-targeted 
porphyrins [248]. Early studies have discovered the selec-
tive clearance of highly oxidative and toxic hydroxyl radi-
cals (·OH) within cells by hydrogen gas. In recent years, 
hydrogen molecules have been shown to possess signifi-
cant biological effects in numerous oxidative stress and 
inflammation-related diseases, demonstrating broad-
spectrum, safe, and effective anti-inflammatory/antican-
cer/anti-aging characteristics [249]. Moreover, hydrogen 
gas exhibits remarkably high tissue penetrability, surpass-
ing physiological barriers that conventional drugs cannot 
overcome, such as the blood–brain barrier. This charac-
teristic positions hydrogen gas as a promising therapeutic 
gas molecule with wide-ranging applications [250].

Hydrogen gas (H2) has demonstrated anti-inflamma-
tory and antioxidant abilities in numerous clinical tri-
als [251]. Current research findings suggest that H2 gas 
can protect the lungs and extrapulmonary organs from 
pathological oxidative stress stimuli [252]. Furthermore, 
H2 has been shown to regulate anti-inflammatory and 
antioxidant activities, mitochondrial energy metabolism, 
endoplasmic reticulum stress, immune system function, 
and cell death processes (including apoptosis, autophagy, 
pyroptosis, ferroptosis, and circadian rhythms), thereby 
exhibiting therapeutic potential for various systemic dis-
eases [253–256]. Hydrogen sulfide (H2S), on the other 
hand, mitigates mitochondrial damage and ferroptosis 
by modulating the OPA3-NFS1 axis induced by doxo-
rubicin-induced cardiotoxicity [257]. In the context of 
heart failure, hydrogen sulfide modulates iron metabo-
lism, reducing oxidative stress levels in myocardial cells, 

Table 2 Summary of the mechanism of traditional Chinese medicine prescription

Traditional Chinese 
medicine prescription

Function Reference

QDQXC Upregulate the expression of system xc- and GPX4 through the Nrf2 signaling pathway [231]

YQHXF Downregulate AMPK and Beclin1 protein phosphorylation, upregulate SLC7A11 and GPX4 protein expression [233]

SXBXW Regulate the miR-144-3p/SLC7A11 signaling pathway [238]

LHF Upregulate of the SLC7A11/GPX4 pathway, activate the Keap-1/Nrf2/ARE antioxidant signaling pathway [242, 243]

YXB Activate the DJ-1/GPX4 signaling pathway [245]
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inhibiting myocardial iron death, and protecting cardiac 
function in aging rats [258].

Prospects
In recent years, with the rise of the concept of ferropto-
sis and the continuous deepening of research, it has been 
found that there are many mechanisms of ferroptosis, 
which have been greatly proven to be related to HF in 
aspects such as iron overload, lipid peroxidation, GSH–
GPX4–ROS pathway, NADPH/FSP1/CoQ10 pathway, 
tumor suppressor gene P53, and oxidative stress. Moreo-
ver, single herbs and their extracts, traditional Chinese 
medicine (TCM) formulas, acupuncture and combined 
acupuncture-medicine have the characteristics of mul-
tiple pathways and targets for HF ferroptosis, providing 
convenience and reducing the burden for the majority of 
patients. The commonly used clinical treatments for HF, 
such as Pueraria, Ophiopogon, Astragalus, Chuanxiong, 
Salvia miltiorrhiza, Xinyang tablets, Yuxue Bi, Shenmai 
injection, Erchen decoction combined with Tao Hong 
Siwu decoction, Ditang decoction, and electroacupunc-
ture, all exert their effects by inhibiting myocardial fer-
roptosis. However, since the research on ferroptosis in 
HF is still in its infancy, there are still many issues that 
need to be addressed in the future. Firstly, there are few 
and unclear studies on the mechanism and applica-
tion of ferroptosis, and it is hoped that future research 
will strengthen the mechanism of ferroptosis in HF and 
further understand the pathological and physiological 
mechanisms of ferroptosis in HF. Secondly, there is little 
research on the use of TCM in the treatment of HF fer-
roptosis, and further clinical trials are needed to explore 
whether there are more TCMs that can exert myocar-
dial protective effects by inhibiting ferroptosis, seeking 
more TCM treatments for HF. In addition, ferroptosis 
treatment of HF provides a theoretical basis for the for-
mulation of prescriptions, new drug development, and 
academic hypotheses. Finally, it is hoped that ferroptosis 
can make new progress in the clinical treatment of other 
diseases.
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