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Abstract 

Background  Staphylococcus aureus is a notorious multidrug resistant pathogen prevalent in healthcare facilities 
worldwide. Unveiling the mechanisms underlying biofilm formation, quorum sensing and antibiotic resistance 
can help in developing more effective therapy for S. aureus infection.  There is a scarcity of literature addressing 
the genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance among S. 
aureus isolates from Malaysia.

Methods  Biofilm and slime production of 68 methicillin-susceptible S. aureus (MSSA) and 54 methicillin-resistant 
(MRSA) isolates were determined using a a plate-based crystal violet assay and Congo Red agar method, respec-
tively. The minimum inhibitory concentration values against 14 antibiotics were determined using VITEK® AST-GP67 
cards and interpreted according to CLSI-M100 guidelines. Genetic profiling of 11 S. aureus biofilm-associated genes 
and agr/sar quorum sensing genes was performed using single or multiplex polymerase chain reaction (PCR) assays.

Results  In this study, 75.9% (n = 41) of MRSA and 83.8% (n = 57) of MSSA isolates showed strong biofilm-forming 
capabilities. Intermediate slime production was detected in approximately 70% of the isolates. Compared to MSSA, 
significantly higher resistance of clindamycin, erythromycin, and fluoroquinolones was noted among the MRSA 
isolates. The presence of intracellular adhesion A (icaA) gene was detected in all S. aureus isolates. All MSSA iso-
lates harbored the laminin-binding protein (eno) gene, while all MRSA isolates harbored intracellular adhesion D 
(icaD), clumping factors A and B (clfA and clfB) genes. The presence of agrI and elastin-binding protein (ebpS) genes 
was significantly associated with biofilm production in MSSA and MRSA isolates, respectively. In addition, agrI gene 
was also significantly correlated with oxacillin, cefoxitin, and fluoroquinolone resistance.

Conclusions  The high prevalence of biofilm and slime production among MSSA and MRSA isolates correlates well 
with the detection of a high prevalence of biofilm-associated genes and agr quorum sensing system. A significant 
association of agrI gene was found with cefoxitin, oxacillin, and fluoroquinolone resistance. A more focused approach 
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Introduction
Staphylococcus aureus is one of the leading causes 
of severe bacterial infections which may lead to life-
threatening conditions, including sepsis, pneumonia, 
endocarditis, osteomyelitis, and implant-associated dis-
eases [1–3]. The emergence of antibiotic resistance in S. 
aureus has posed a significant impact on the treatment 
and infection control practices in hospitals worldwide [4, 
5]. Methicillin-resistant S. aureus (MRSA), vancomycin-
resistant S. aureus (VRSA) and vancomycin-interme-
diate S. aureus (VISA) are among the pathogens listed 
as “High” priority in the World Health Organization 
(WHO)’s priority pathogens list for research and devel-
opment of new antibiotics [6].

The ability of S. aureus to resist antimicrobials is fur-
ther enhanced by the strategy of biofilm formation. Cur-
rently available antibiotics cannot eradicate biofilms, 
especially of ESKAPE pathogens, which includes MRSA 
[7]. Several studies found no statistically significant dif-
ference in the biofilm formation among MRSA and 
MSSA strains [8, 9]. In contrary, a study reported that 
MRSA strains showed enhanced biofilm formation as 
compared to MSSA strains [10]. Staphylococcal poly-
saccharide intercellular adhesin (encoded by icaABCD) 
[11], collagen-binding protein (cna), fibrinogen binding 
protein (fib), elastin binding protein (ebpS), laminin bind-
ing protein (eno), fibronectin binding proteins A and B 
(fnbA and fnbB), and clumping factors A and B (clfA and 
clfB) [12] have been reported to play important roles in S. 
aureus adherence, which is the first step in biofilm pro-
duction. The icaABCD operon is also known for its func-
tion in slime production [13].

Quorum sensing is a mechanism, whereby bacterial 
cells communicate and coordinate their behaviours based 
on population density [14]. The accessory gene regulator 
(agr) quorum-sensing system plays a key role in S. aureus 
pathogenesis, while the staphylococcal accessory regula-
tor (sarA) gene is essential in controlling staphylococcal 
virulence factors [15]. Both agr and sarA quorum sensing 
genes have been reported to regulate S. aureus biofilm 
formation [15–18]. To date, four polymorphic agr  types 
(agrI, agrII, agrIII, and agrIV) have been reported [19].

Previously, a high prevalence of icaADBC genes and 
varied occurrence of biofilm associated genes, i.e., cna 
(42.7–93%), fib (24.7–90%), ebps (11.1–100%), fnbA 
(0–100%) and fnbB (1.1–53.33%) have been reported 
in Malaysian S. aureus clinical isolates [20–22]. The 

agr1 was the most prevalent type reported in Malay-
sian isolates of S.aureus, followed by agrII and agrIII; 
however, no agrIV was detected [21, 23]. Understand-
ing differences in biofilm and slime production between 
MRSA and MSSA and the associated genetic elements 
contributes to a better understanding of the epidemiol-
ogy and spread of S. aureus infections, further aiding 
in developing more targeted surveillance and treatment 
strategies. Hence, this study was performed to analyze 
biofilm and slime production of a collection of MSSA 
and MRSA clinical isolates and to investigate possible 
correlations between biofilm-associated genes and the 
agr/sar quorum sensing systems in relation to antibi-
otic resistance.

Methods
Collection of clinical isolates
A total of 68 MSSA and 54 MRSA isolates collected from 
patients attending Universiti Malaya Medical Centre 
(UMMC) from August 2020 to June 2022 were investi-
gated in this study. The isolates were primarily collected 
from the blood (n = 38, 31.1%), and tissue (n = 36, 29.5%), 
followed by pus (n = 15, 12.3%), wound swab (n = 11, 9%), 
and lower respiratory tract (n = 18, 14.8%) (Additional 
file  1: Table  S1). The identity of the isolates was con-
firmed using matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry (VITEK MS system, 
bioMérieux Clinical Diagnostics, France).

Antibiotic susceptibility testing
The minimum inhibitory concentration values (MIC) of 
S. aureus against 14 antibiotics, i.e., clindamycin, peni-
cillin, erythromycin, gentamicin, linezolid, oxacillin, 
rifampicin, cotrimoxazole, tetracycline, vancomycin, 
ciprofloxacin, levofloxacin, moxifloxacin, and cefoxitin 
were determined using VITEK® AST-GP67 card (bio-
Mérieux Clinical Diagnostics, France), and interpreted 
according to the Clinical Laboratory Standards Insti-
tute (CLSI-M100) guidelines [24]. Methicillin suscepti-
bility of the clinical isolates was determined using the 
CLSI disk–diffusion method with cefoxitin 30-µg disk 
and VITEK® AST-GP67 card. For 10 isolates with miss-
ing MIC data, vancomycin susceptibility testing was 
carried out using microbroth dilution method, as rec-
ommended by CLSI-M100 guidelines.

targeting biofilm-associated and quorum sensing genes is important in developing new surveillance and treatment 
strategies against S. aureus biofilm infection.
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Biofilm quantitation assay
Quantitation of S. aureus biofilm production was 
performed as described by Atshan et  al. [22] and 
Stepanović et al. [25], with slight modifications. Briefly, 
100 µl of bacterial suspension (adjusted to 1 × 106 CFU/
ml in Mueller Hinton broth containing 1% glucose) 
were seeded into each well of a sterile 96-well flat bot-
tom microtitre plate (BIOFIL®, Guangzhou, China) 
and incubated at 37ºC for 24  h. After incubation, the 
wells were washed thrice, fixed with methanol, and 
stained using 0.1% (v/v) crystal violet (Cat. No: C6158, 
Sigma, USA). S. aureus ATCC® 29213™ (MSSA) 
and ATCC® 33591™ (MRSA) were used as biofilm-
producing controls, while microtiter wells with no 
inoculum served as negative controls. The amount 
of biofilm was quantitated by measuring the absorb-
ance of each well at 570 nm using a microplate reader 
(Tecan, Sunrise™, Swiss). Biofilm was graded into four 
categories as described by Moghadam et  al. [26]: no 
biofilm (ODs ≤ ODc), weak (ODc ≤ ODs ≤ 2 × ODc), 
moderate (2 × ODc ≤ ODs ≤ 4 × ODc), and strong 
(4 × ODc < ODs). ODc and ODs represent the OD of the 
negative and the test isolates, respectively.

Congo red agar assay for determination of slime 
production
Bacterial slime production was determined qualitatively 
as described by Freeman et  al. [27] and Thilakavathy 
et  al. [28]. Congo red agar was prepared using brain 
heart infusion (BHI) broth (37  g/L), sucrose (50  g/L), 
agar no.1 (10 g/L), and Congo red stain (0.8 g/L). Slime 
producers are expected to form black colonies with a 
dry, crystalline consistency, while non-slime producers 
form pink coloured colonies. Intermediate slime pro-
duction is indicated by the growth of smooth blackish-
red colonies. The positive and negative control strains 
included in the test were Staphylococcus epidermidis 
ATCC® 35984™ and Staphylococcus hominis ATCC® 
35982™, respectively.

Bacterial genomic DNA extraction
Genomic DNA was extracted from overnight cul-
tures of S. aureus in Luria–Bertani broth, using either 
MasterPure™ Complete DNA and RNA Purification 
Kit (Lucigen, Middleton, WI, USA) or QIAamp DNA 
Mini Kit (Qiagen, Germany) following manufacturers’ 
instructions. Amplification of the 16S rRNA gene from 
the bacterial DNA extract was performed to rule out 
the possibility of having PCR inhibitors, using universal 
oligonucleotide primers (27F and 1492R) as described 
by Gumaa et al. [29].

PCR detection of biofilm‑associated genes
PCR profiling of bap, cna, icaA, and icaD genes was 
performed using singleplex PCR assays, while ebpS, 
eno, fnbA, clfA, clfB, fib, and fnbB genes were ampli-
fied using multiplex PCR assays as described by Tristan 
et  al. and Vancraeynest et  al. [30, 31]. The prim-
ers and PCR thermal cycling conditions are shown in 
Additional file  1: Table  S2. sarA gene was amplified 
using sarAF and sarAR primers as described by Gow-
rishankar et al. [32]. Meanwhile, agr typing (types I–IV) 
was performed using primers and amplification condi-
tions as described by Shopsin et al. [19]. The amplified 
products were then subjected to electrophoresis using 
1% (w/v) agarose gel, pre-stained with nucleic acid 
staining dye (Bioteke Corporation, China). Sequence 
analyses were performed to confirm that correct genes 
were amplified.

Statistical analysis
Paired sample t tests were used to compare biofilm and 
slime production between MSSA and MRSA isolates. 
Pearson’s Chi-square test was used to determine the 
correlation of antibiotic resistance with other param-
eters. Statistical analysis was performed using SPSS 
software version 20.0 (IBM, Armonk, USA). A p value 
of less than 0.05 was considered statistically significant.

Results
Antibiotic susceptibility profiling of S. aureus clinical 
isolates
MRSA isolates exhibited higher rates of resistance to 
erythromycin (53.7% vs 17.6%), ciprofloxacin (83.3% 
vs 2.9%), levofloxacin (83.3% vs 1.5%) and moxifloxacin 
(75.9% vs 0%), compared to MSSA isolates (Table  1). 
Clindamycin resistance was observed in 16.2% and 7.6% 
of MSSA and MRSA isolates, respectively, while induc-
ible clindamycin resistance was detected in 23 (42.6%) 
MRSA isolates and 1 (1.5%) MSSA isolate. The MRSA 
MIC90s against clindamycin (0.5 vs 8  µg/ml), erythro-
mycin (0.5 vs 8  µg/ml), gentamicin (0.5 vs 8  µg/ml), 
ciprofloxacin (0.5 vs 8 µg/ml), and levofloxacin (0.25 vs 
8 µg/ml) were 16–32 folds higher than those of MSSA 
isolates (Additional file  1: Table  S3). Meanwhile, all 
isolates exhibited high susceptibility towards linezolid 
(100%), vancomycin (100%), rifampicin (99.2%), cotri-
moxazole (86%), tetracycline (84.4%) and gentamicin 
(83.6%). In this study, no isolate showed resistance to 
vancomycin and linezolid. The MRSA vancomycin and 
linezolid MICs ranged from 0.5 to 2  μg/ml and 1 to 
2 μg/ml, respectively.



Page 4 of 9Chan et al. European Journal of Medical Research          (2024) 29:246 

Biofilm production of MRSA and MSSA isolates
Of the 122 S. aureus isolates tested, a majority (79.5%) 
were identified as strong biofilm producers. A total of 
57 (83.8%) biofilm-producing isolates were MSSA and 
41 (75.9%) isolates were MRSA (Table  2). In addition, 
12.3% of S. aureus isolates were identified as moderate 
biofilm producers, 5.7% were identified as weak bio-
film producers and 1.64% of strains did not produce 
biofilms.

Slime production of MRSA and MSSA isolates
Using Congo Red agar assay, most S. aureus isolates 
(72.1% MSSA and 72.2% MRSA isolates, respectively) 

were regarded as intermediate slime producers. There 
was no significant difference between MSSA and MRSA 
isolates in slime production (p = 0.19). Only 4 (6.0%) 
MSSA isolates demonstrated strong slime production 
after 24 h of incubation (Table 2).

Distribution of biofilm‑associated genes and agr/sar 
quorum sensing genes in MSSA and MRS isolates
In this study, the successful amplification of the 16S 
rRNA gene from all S. aureus isolates indicated the 
absence of PCR inhibitors in the bacterial DNA extracts. 
The amplification of biofilm-associated genes from 
MSSA and MRSA isolates using various singleplex and 

Table 1  Antibiotic susceptibility profiles of S. aureus isolates investigated in this study

a 1 (1.5%) were inducible resistant; b23 (42.6%) were inducible resistant; cmissing information for 10 MSSA isolates, d p < 0.05 indicates significant difference between 
MSSA and MRSA, –: not applicable

Antibiotics No. (%) MSSA (n = 68) No. (%) MRSA (n = 54) Overall resistance
No. (%)

p value

Susceptible Intermediate Resistant Susceptible Intermediate Resistant

Clindamycin 56 (82.4) 0 (0) 11 (16.2)a 27 (50) 0 (0) 4 (7.4)b 15(12.4%) 0.000d

Erythromycin 56 (82.4) 0 (0) 12 (17.6) 25 (46.3) 0 (0) 29 (53.7) 41(33.6) 0.000d

Gentamicin 57 (83.8) 1 (1.5) 10 (14.7) 45 (83.3) 3 (50) 6 (11.1) 16 (13.1) 0.401

Linezolid 68 (100) 0 (0) 0 (0) 54 (100) 0 (0) 0 (0) 0 (0) –

Oxacillin 68 (100) 0 (0) 0 (0) 0 (0) 0 (0) 54 (100) 54 (44.3) 0.000d

Penicillin 22 (32.4) 0 (0) 46 (67.6) 0 (0) 0 (0) 54 (100) 100 (82.0) 0.000d

Rifampicin 68 (100) 0 (0) 0 (0) 53 (98.1) 0 (0) 1 (1.9) 1 (0.8) 0.260

Cotrimoxazole 56 (82.4) 0 (0) 12 (17.6) 49 (90.7) 0 (0) 5 (9.3) 17 (13.9) 0.184

Tetracycline 57 (83.8) 0 (0) 11 (16.2) 46 (85.2) 0 (0) 8 (14.8) 19 (15.6) 0.837

Vancomycin 68(100) 0 (0) 0 (0) 54 (100) 0 (0) 0 (0) 0 (0) –

Ciprofloxacin 66 (97.1) 0 (0) 2 (2.9) 9 (16.7) 0 (0) 45 (83.3) 47 (38.5) 0.000d

Levofloxacin 67 (98.5) 0 (0) 1 (1.5) 9 (16.7) 0 (0) 45 (83.3) 46 (37.7) 0.000d

Moxifloxacinc 57 (98.3) 1 (1.7) 0 (0) 9 (16.7) 4 (7.4) 41(75.9) 41 (36.6) 0.000d

Cefoxitin 68 (100) 0 (0) 0 (0) 0 (0) 0 (0) 54 (100) 54 (44.3) 0.000d

Table 2  Distribution of biofilm and slime producers among MRSA and MSSA isolates

*p values were determined using t test, with p > 0.05 indicating no significant difference between groups

Biofilm/slime production No. (%) isolates p value*

MSSA (n = 68) MRSA (n = 54)

Biofilm p = 0.241

 Strong 57 (83.8) 41 (75.9) p = 0.405

 Moderate 7 (10.3) 8 (14.8)

 Weak 4 (5.9) 3 (5.6)

 No biofilm 0 (0) 2 (3.7)

Slime

 No slime 15 (22.1) 15 (27.8) p = 0.19

 Intermediate 49 (72.1) 39 (72.2)

 Strong slime producer 4 (5.9) 0
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multiplex PCR assays is shown in Additional file  1: Fig. 
S1.

The presence of the intracellular adhesion A (icaA) 
gene was observed in all S. aureus isolates (100%). There 
was variability in the distribution of other biofilm-asso-
ciated genes in MSSA and MRSA (Fig.  1). Overall, the 
intracellular adhesion A and D (icaA and icaD), laminin-
binding protein (eno), clumping factors A and B (clfA and 
clfB), and fibronectin-binding protein A (fnbA) were the 
most prevalent biofilm-associated genes in S. aureus iso-
lates, regardless of MSSA or MRSA.

Compared to MSSA, the detection rates of agrI, icaD, 
cna, clfA, and clfB genes were significantly higher in 
MRSA, while the fibronectin-binding protein B (fnbB) 
gene was absent in all MRSA isolates. All MSSA iso-
lates harbored the laminin-binding protein (eno) gene, 
while all MRSA isolates harbored intracellular adhesion 
D (icaD), clumping factors A and B (clfA and clfB) genes. 

Intriguingly, the bap gene (encoding biofilm matrix pro-
tein) was not amplified from any of the isolates.

The number of biofilm-associated genes detected in S. 
aureus varied from three to eleven, with most isolates 
having 10 genes (including 24 MSSA and 10 MRSA iso-
lates). However, the number of genes detected from an 
isolate was not significantly associated with biofilm pro-
duction (p = 0.299, Pearson’s Chi-square, Table 3). Inter-
estingly, the presence of agrI in MSSA (p = 0.018), and 
ebpS in MRSA isolates was significantly associated with 
biofilm production (p = 0.006) (Table 4).

In this study, the most prevalent agr type in S. aureus 
isolates was agrI (56.7%), followed by agrIII (20.5%) and 
agrII (9.0%). The agrI was detected with a significantly 
higher rate in MRSA (81.5%) as compared to MSSA 
(36.8%). In contrast, higher detection rates of agrIII and 
agrII were found in MSSA (26.5% and 14.7%, respec-
tively) as compared to MRSA (13% and 1.9%, respec-
tively). The agrIV was only detected in only one MSSA 
isolate (1.5%). Sequence analyses of representative agr 
alleles in this study demonstrated 100% similarity to agrI 
(352/352, 100%, GenBank accession no. AJ617710), agrII 
(472/472, 100%, GenBank accession no. AJ6177170), 
agrIII (333/333, 100%, GenBank accession no. AJ617723) 
and agrIV (577/577, 100%, GenBank accession no. 
AJ617712), as reported by Goerke et  al. [33]. In this 
study, the presence of agrI was significantly correlated 
with ciprofloxacin (p = 0.000), levofloxacin (p = 0.003), 
moxifloxacin (p = 0.000), oxacillin (p = 0.000) and cefoxi-
tin (p = 0.000) resistance (Table 5).

Discussion
 The treatment and management of S. aureus infec-
tion pose significant challenges and a big threat in 
healthcare settings worldwide due to the emergence 

Fig. 1  Prevalence of biofilm-associated genes among MSSA 
and MRSA clinical isolates. Paired t tests were performed to determine 
significant difference between MSSA and MRSA isolates. (*p < 0.05, 
**p < 0.01, ***p < 0.001)

Table 3  Cross-tabulation between the number of S. aureus biofilm-associated genes and biofilm production

*p value were determined using Pearson’s Chi-square

Number of S. aureus biofilm-
associated genes

Number of S. aureus isolates

Non-biofilm Weak Moderate Strong Total p value

3 0 0 0 3 3 p = 0.299

4 0 0 0 3 3

5 0 0 2 3 5

6 0 0 2 1 3

7 0 0 1 13 14

8 0 2 3 22 27

9 0 2 6 19 27

10 3 2 1 28 34

11 0 1 0 5 6

Total 3 7 15 97 122
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of antibiotic-resistant strains. In comparison with the 
Malaysia National Surveillance of Antimicrobial Resist-
ance (NSAR) 2022 report [34], higher resistance rates 
to clindamycin (12.4% vs 5.9%), erythromycin (33.6% vs 
9.9%) and gentamicin (13.1% vs 3.2%) were reported from 
a collection of clinical S. aureus isolates in this study. No 
linezolid-resistant strain was identified in this study, con-
sistent with the very low percentage of linezolid resist-
ance (0.4%) documented in the latest national report [34]. 
So far, the highest linezolid resistance rate was reported 
in a previous NSAR study (2010) whereby 7.7% in MRSA 
and 3.3% in MSSA were linezolid resistant [1], while 
there have been no studies documenting S. aureus resist-
ance to vancomycin in Malaysia [35, 36].

In addition to antibiotic resistance, almost 80% of S. 
aureus isolates (MSSA and MRSA) in this study exhib-
ited slime and biofilm production. However, no correla-
tion was found between slime and biofilm production 
among staphylococcal isolates investigated in this study 
(Table  2). Similar observations have been reported for 
S. aureus human and animal isolates in earlier investi-
gations [21, 37]. The lack of correlation between slime 
and biofilm production in S. aureus may be attributed 
to different measurement methods, i.e., Congo red agar 
method versus microtiter plate-based crystal violet assay, 
leading to disparities in the results. In addition, the com-
plex nature of biofilm formation, possibly affected by 
bacterial genetic diversity, environmental factors, and 

regulatory mechanisms, may be attributed to the limited 
correlation between slime and biofilm production in S. 
aureus.

The most prevalent biofilm-associated genes detected 
in MRSA isolates in this study were intracellular adhe-
sion A and D (icaA and icaD), laminin-binding protein 
(eno), clumping factors A and B (clfA and clfB), and 
fibronectin-binding protein A (fnbA), as shown in Fig. 1. 
The agrI, icaD, cna, clfA, and clfB genes were detected 
at significantly higher rates amongst MRSA isolates, 
while fnbB was detected at a significantly higher rate in 
MSSA isolates. The variability observed in the frequen-
cies of biofilm-associated genes could be attributed to 
strain-to-strain difference [22, 38], source of isolation 
[39], and geographical settings [40]. Amongst the bio-
film-associated genes, the elastin-binding protein (ebpS) 
gene has been significantly associated with biofilm pro-
duction amongst MRSA isolates in this study (Table  3). 
Elastin-binding protein facilitates S. aureus-binding to 
elastin-rich tissues and promotes bacterial colonisation 
on mammalian tissues [41]. It has been significantly asso-
ciated with strong biofilm production in S. aureus food 
isolates in two previous studies [38, 42].

The distribution of agr types is variable in S. aureus 
from different geographical regions [43]. In this study, the 
most prevalent agr type identified from S. aureus isolates 
was agrI (56.7%), followed by agrIII (20.5%) and agrII 
(9.0%), while agrIV (0.8%) has a low occurrence rate. 

Table 4  Correlations between agr, sarA, and biofilm-associated genes, with biofilm production in 68 MSSA and 54 MRSA isolates 
investigated in this study

*p < 0.05 indicates significant difference between groups; –: not applicable

Genes Biofilm production

No. MSSA isolates (n = 68) p value No. MRSA isolates (n = 54) p value

None Weak Moderate Strong None Weak Moderate Strong

agrI 0 4 1 20 0.018* 1 2 5 36 0.154

agrII 0 0 0 10 0.407 0 0 0 1 1.000

agrIII 1 0 3 14 0.175 1 1 2 3 0.090

agrIV 0 0 0 1 1.000 0 0 0 0 –

sarA 0 1 1 22 0.530 1 1 0 14 0.202

icaA 1 4 7 56 – 2 3 8 41 –

icaD 1 4 7 50 0.756 2 3 8 41 –

cna 1 1 3 27 0.740 2 3 6 30 0.635

eno 1 4 7 56 – 2 3 7 41 0.241

ebpS 1 3 4 28 0.782 2 3 5 13 0.006*

fnbA 1 4 4 46 0.304 2 2 5 35 0.307

fnbB 0 0 0 7 0.655 0 0 0 0  –

fib 1 3 5 37 1.000 1 2 2 8 0.267

clfA 1 4 5 46 0.633 2 3 8 41  –

clfB 1 4 6 50 1.000 2 3 8 41  –
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Remarkably, a significantly higher percentage of MRSA 
isolates in this study was found to harbor agrI, compared 
to MSSA. The presence of agrI has been significantly 
associated with biofilm production amongst MSSA iso-
lates in this study (Table  3), corresponding well with 
another study using nonclinical isolates [42]. Kawamura 
et al. [44] found that MRSA isolates haboring agrII have 
a significantly greater ability to produce biofilm, however; 
Usun Jones et al. [21] and Cha et al. [45] found no vari-
ation in MRSA biofilm production among different agr 
groups. The difference might be attributed to variations 
between strains, potentially resulting from microbial 
adaptation and geographical influences.

As the transcription of the agr locus (I–IV) is auto-
inducing peptide (AIP)-dependent, the differentiation 
of staphylococcal strains based on agr typing may pro-
vide further insights into the epidemiology and antibi-
otic resistance. Studies have shown that the mecA gene 

of MRSA indirectly activates AIPs which significantly 
affect biofilm production, quorum-sensing and virulence, 
and antibiotic resistance [17, 18]. As quorum sensing is 
higly influenced by cell density, high-density colonies 
can produce numerous small molecule signals, trigger-
ing downstream processes, such as virulence and antibi-
otic resistance mechanisms, which poses a threat to the 
host and antibiotic efficacy [46]. Biofilm production has 
been reported to provide a niche for generation of anti-
biotic resistant subpopulations or persister cells through 
the exchange of genetic materials [47]. Recent data dem-
onstrated a significant correlation between agrI with 
cefoxitin and erythromycin resistance [48], as well as 
tetracycline, erythromycin, clindamycin, and ciprofloxa-
cin resistance in S. aureus [43]. Interestingly, a significant 
association was found between agrI with fluoroquinolo-
nes (ciprofloxacin, levofloxacin, and moxifloxacin) resist-
ance (p < 0.05) for the first time in this study. In addition, 
the high resistance (75.9%) of MRSA against fluoroqui-
nolones especially moxifloxacin, a fourth-generation 
fluoroquinolone, is alarming (Table 1).

Fluoroquinolone exposure has been identified as an 
increased risk factor for MRSA isolation and infection 
[49–51]. The key mechanims to S. aureus fluoroqui-
nolone resistance are through chromosomal point muta-
tions in gyrA/B (DNA gyrase subunits), grlA/B (DNA 
topoisomerase IV subunits), and the promoter region 
of norA efflux pump [52]. The accumulation of such 
mutations may be enhanced in biofilm producing agr1-
habouring strains, contributing to a high level of resist-
ance to fluoroquinolones, as observed in the MRSA 
isolates in this study. However, more extensive studies 
are required to explore the linkage between agr1, biofilm 
production and fluoroquinolone resistance.

One of the limitation of this study is its confinement to a 
single-center setting and convenient sampling of S. aureus 
isolates, thus the ratio of MSSA to MRSA might not reflect 
the actual prevalence of multidrug resistant S. aureus in 
the local setting. For more comprehensive insights, future 
studies are recommended to include diverse sampling 
methods and multiple centers, to ensure a more repre-
sentative analysis of the genetic diversity and prevalence 
of biofilm-associated genes in the Malaysian isolates. As 
the antibiotic susceptibility profiling of S. aureus isolates 
was limited to planktonic cells, future reserach should also 
include comprehensive assessment of antibiotic suscepti-
bility within biofilm structures to enhance understanding 
of their impact on biofilm-associated S. aureus infections. 
In addition, the utilization of mec (SCCmec) typing would 
be beneficial for identifying distinct MRSA types and 
establishing correlations with other study variables. As 
conventional antibiotics do not work effectively against 
S. aureus biofilm infection, new therapeutic strategies 

Table 5  Association between the presences of agrI with 
antibiotic susceptibility in S. aureus clinical isolates

Linezolid and vancomycin were excluded from the analysis as all S. aureus 
isolates were susceptible to these antibiotics. S: susceptible; R: resistant; IR: 
inducible resistant; IN: intermediate, *p < 0.05 indicates significant difference 
between groups

Antibiotics Susceptibility No of isolates p value

agrI Non agrI

Clindamycin S 41 42 0.002*

R 7 8

IR 21 3

Erythromycin S 41 40 0.082*

R 28 13

Gentamicin S 61 41 0.259

R 7 9

IN 1 3

Oxacillin S 25 43 0.000*

R 44 10

Penicillin S 10 12 0.342

R 59 41

Rifampicin S 68 53 1.000

R 1 0

Cotrimoxazole S 61 44 0.437

R 8 9

Tetracycline S 64 39 0.005*

R 5 14

Ciprofloxacin S 31 44 0.000*

R 38 9

Levofloxacin S 31 45 0.000*

R 38 8

Moxifloxacin S 27 39 0.000*

R 35 6

IN 3 2
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and infection control practices are urgently needed. The 
genetic profiling of biofilm-associated genes and quorum 
sensing systems of S. aureus isolates has provided scien-
tific foundation for developing a more targeted approach 
for surveillance, and treatment against biofilm infection in 
our clinical setting.

Conclusion
The emergence of multidrug-resistant S. aureus strains 
has been driven by the use of multiple antibiotic classes 
over the years. The high rates of resistance against clinda-
mycin, erythromycin, and fluoroquinolones as reported 
in this study have called for more judicious use of anti-
biotics for treatment of MRSA infection in this region. 
More importantly, the identification of prevalent biofilm-
associated genes and agr types associated with antibiotic 
resistance in this study has shed valuable genetic insights 
into S. aureus biofilm formation, which are important to 
tailor more focused surveillance and treatment strategies 
against S. aureus biofilm infection in our setting.
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