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Abstract 

Background: Recent studies have reported that endocrine-disrupting compound (EDC) exposure is related to food 
sensitization. Bisphenol A diglycidyl ether (BADGE) is one of the most widespread EDCs and its biological effects are 
considered to be greater on children than on adults. This study investigated the relationship between serum BADGE-
specific immunoglobulin G (IgG) concentrations and food sensitization in young children by measuring food-specific 
IgE levels.

Methods: In total, 98 young children (59 boys and 39 girls; median age: 7 months; 25th and 75th percentile ages: 6 
and 8 months, respectively) were enrolled. Blood samples were collected twice from all children (median sampling 
interval: 6 months; 25th and 75th percentile: 5 and 7 months). Food sensitization was evaluated based on food-
specific IgE titers (egg white, milk, and wheat), which were determined using the capsulated hydrophilic carrier 
polymer-radioallergosorbent test. Furthermore, a dot-blotting assay for BADGE-specific IgG and quantitative reverse-
transcriptase PCR for IL-6, IL-8, IL-10, and COX-2 mRNA expression were conducted.

Results: BADGE-specific IgG was detected in 20% of study subjects. A significant association was observed between 
the presence of BADGE-specific IgG and elevated wheat-specific IgE levels (OR = 3.56; 95% CI 1.13–11.2; P = 0.031). 
This relationship was particularly strong in girls (OR = 9.46; 95% CI 1.01–89.0; P = 0.049). A slight but non-significant 
association was noted between the presence of BADGE-specific IgG and elevated milk-specific IgE levels (OR = 2.77; 
95% CI 0.93–8.22; P = 0.067). The expression of IL-6 mRNA among children with BADGE-specific IgG tended to 
increase, along with wheat-specific IgE levels.

Conclusion: BADGE exposure might enhance food sensitization in early childhood. Therefore, this should be strictly 
regulated, especially in younger children.
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Introduction
Bisphenol A (BPA) is produced in large quantities for 
use primarily in the synthesis of polycarbonate plastics 
and epoxy resins [1]. Its content in products has been 
regulated in many countries because of its estrogenic 
activity [1]. Bisphenol A diglycidyl ether (BADGE) is a 
reactive prepolymer of BPA and one of the most widely 

used epoxy resins in the world [2]. In contrast to BPA, 
the safety of BADGE has not been well evaluated and 
its toxicity is not well understood. Importantly, how-
ever, it has also been reported to have estrogenic activity, 
albeit weaker than that of BPA [3]. In our previous study, 
BADGE-specific IgG was identified in sera obtained from 
workers with contact dermatitis who had used this mate-
rial in their working space [4]. This result suggested that 
serum BADGE-specific IgG could reflect exposure to 
BADGE and that exposure is related to allergic diseases.

Recent studies have reported that exposure to endo-
crine-disrupting compounds (EDCs) including BPA and 
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BADGE might increase the risk of allergic diseases such 
as respiratory allergies, contact dermatitis, food sensiti-
zation, and food tolerance [4–7]. BPA was suggested to 
induce a T helper 2 (Th2)-dominated immune response 
through its estrogenic activity [8]. Furthermore, it was 
shown to have adjuvant effects on increases in ovalbumin 
(OVA)-specific IgE levels by promoting Th-2-immune 
responses, macrophage activation, and the production 
of inflammatory cytokines [9], suggesting that exposure 
to EDCs can induce the onset and/or progression of food 
sensitization.

BADGE is used in infant clothing, textiles, and floor-
ing materials [10, 11]. Because infants exhibit imma-
ture behaviors such as crawling on the floor and putting 
random items into their mouths [1], the risk of BADGE 
exposure in childhood might be greater than that in 
adulthood. In fact, the estimated daily intake of BADGE 
from indoor dust is increased in children compared to 
that in adults, especially in Japan [12]. However, little is 
known about the relationship between BADGE exposure 
and childhood allergic diseases. For young children, tran-
sient and persistent IgE sensitization to food allergens is 
closely related to late childhood allergy [13]. Therefore, 
it is important to mitigate food sensitization in early 
childhood to prevent subsequent childhood allergies. In 
young Japanese children, egg white, milk, and wheat are 
the most common allergens [14]. In this study, we inves-
tigated the relationship between serum BADGE-specific 
IgG levels and egg white, milk, and wheat sensitization in 
young children.

Materials and methods
Subjects and questionnaires
Children aged 6  months–1  year and their parents were 
recruited at a single clinic between January 2009 and 
February 2010. In total, 115 mothers of 140 children 
provided informed consent to participate in the study 
(consent rate: 82%). Nine mothers could not recall their 
children’s birth weight and blood samples could not be 
obtained from one child because of exceptionally thin 
blood vessels. Seven children were older than 1  year of 
age. Thus, the final number of subjects for analysis was 
98 children [59 boys (median age: 7 months) and 39 girls 
(median age: 7 months]. The questionnaire administered 
at the maternal interview included questions concerning 
birth weight, feeding, number of siblings, allergy history, 
parental smoking habits, and parental allergy history. The 
survey was conducted at the time of first blood sample 
collection.

Blood collection
Blood samples were collected from children without 
fever, allergic symptoms, infectious diseases, and skin 

eczema, at least 1 month prior to sampling. Blood sam-
pling for children with these symptoms was postponed 
until 1 month following the disappearance of symptoms. 
Blood samples were collected twice from all children, and 
the median blood sampling interval was 6 months (25th 
and 75th percentile: 5 and 7 months). The first blood sam-
pling was conducted approximately 6 months after birth 
because children in Japan typically begin eating solids at 
that age [14]. In addition, antibody-specific IgE tests for 
children under 6 months of age often present inaccurate 
results [14]. According to the food allergy guidelines for 
children, the standard interval for IgE measurements 
is every 6 months for children under 3 years of age and 
every 6–12  months for oral food-challenge tests [15]. 
Therefore, we conducted the second sampling between 6 
and 12  months after the first blood sampling. Approxi-
mately 3–5 mL of blood was collected at each sampling.

Allergen‑specific IgE assays
Egg white-, milk-, and wheat-specific IgE levels were 
determined using the capsulated hydrophilic carrier 
polymer-radioallergosorbent test (CAP-RAST; FALCO 
Biosystems Ltd., Kyoto, Japan). Both the first and second 
blood samples were subjected to CAP-RAST to exam-
ine changes in response levels to these antigens. For this, 
0.3 mL of serum was used to evaluate each allergen. The 
detection of IgE levels greater than 0.35 UA/mL was con-
sidered as a sign of sensitization [16]. Therefore, subjects 
presenting with values ≥ 0.35 UA/mL were placed in the 
food-specific IgE-positive group and those with values 
of < 0.35 UA/mL were assigned to the food-specific IgE-
negative group.

Detection of BADGE‑specific IgG by dot blotting
BADGE-specific IgG concentrations were measured 
using only the first-collected blood sample in accord-
ance with our previously reported protocol [4, 17, 18]. 
Briefly, BADGE (Sigma-Aldrich., St. Louis, MO, USA) 
and human serum albumin (HSA; Sigma-Aldrich) were 
mixed at a 1:100 ratio at pH 10.8 to form an HSA-BADGE 
adduct, which was used as an antigen. The antigens and 
human IgG (positive control; Zymed Laboratories, Inc., 
San Francisco, CA, USA) were electroblotted onto nitro-
cellulose membranes (Amersham, GE Healthcare, Japan) 
and blocked. The membranes were probed with serum 
(1:200 dilution) and subsequently treated with horserad-
ish peroxidase (HRP)-conjugated goat anti-human IgG 
(Millipore, Japan; 1:4000 dilution), which was followed by 
visualization.

Quantitative real‑time PCR (qRT‑PCR)
IL-6, IL-8, and IL-10 are involved in IgE production 
and immunological tolerance [19–23]. COX-2 has 
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been reported to suppress IgE production during Th2 
responses in allergic children [24]. Using the first-col-
lected blood samples, mRNA levels of genes encod-
ing these cytokines were measured by qRT-PCR as 
reported in our previous studies [25, 26]. Whole blood 
was collected in a heparin-coated tube under a vacuum 
and maintained at 4  °C. Total RNA was isolated using 
a QIAamp RNA Blood Mini kit (Qiagen, Hilden, Ger-
many). RNA was reverse-transcribed into cDNA using 
a Quanti Tect Reverse Transcription kit (Qiagen) and 
quantitative detection was performed using a Step One 
Plus Real-Time PCR System (Applied Biosystems, Inc., 
Foster City, CA, USA) with Fast SYBR Green Master Mix 
(Applied Biosystems Inc.). The sequences of primers used 
in this study are shown in Additional file 1: Table S1.

Statistical analyses
The study subjects were divided into two groups based 
on food-specific IgE levels, specifically negative (< 0.35 
UA/mL) and positive (≥ 0.35 UA/mL), to examine the 
association between this classification and the presence 
of BADGE-specific IgG. Individual changes in food sen-
sitization were also examined by determining the differ-
ence of IgE titers between the first and second collections 
[2nd sample IgE value (UA/mL) − 1st sample IgE value 
(UA/mL)]. Based on the calculation of this difference, 
the subjects were then further divided into two groups as 
decrease/no change (≤ 0 UA/mL) and increase (> 0 UA/
mL).

Two-group comparisons were performed using Mann–
Whitney U tests and multivariable logistic regression 
analysis. Adjusted P values were obtained by multivari-
able logistic regression models using age at first CAP-
RAST, feeding, and allergic diseases (wheezing, allergic 
rhinitis, and atopic dermatitis) as covariates. Because a 
significant sex-specific difference in the effects of EDCs 
on the immune response was previously reported [6, 27], 
boys and girls were also separately analyzed.

All analyses were performed using STATA version 14 
(Stata Corporation, Inc., College Station, TX, USA), and 
statistical significance was assumed when P < 0.05 (two 
sided).

Results
Table  1 shows the characteristics of the study subjects. 
The median age (25th and 75th percentile) at first blood 
collection was 7 (6, 8) months for both boys and girls. 
There was no significant difference in the distribution 
of the evaluated variables between boys and girls. When 
BADGE-specific IgG (> 0 µg/mL) was detected, the sub-
ject was assigned to the “detected” group. The BADGE-
IgG detection rate in subjects was 20%. The median 
(range) BADGE-specific IgG concentrations in boys and 

girls of the detected groups were 0.57 (0.03–12.4) and 
0.35 (0.04–3.85) µg/mL, respectively. There was no sig-
nificant association between the detection of BADGE-
specific IgG in children and the allergic history of parents 
(none vs either or both parents) by Fisher’s exact test 
(P = 1.000).

The number of subjects positive for food-specific IgE 
and the change in serum IgE levels between the first and 
second tests are shown in Table  2. For 93% (N = 91) of 
the subjects, the second blood sampling was performed 
between 6 and 12  months after the first blood collec-
tion, and the remaining 7% (N = 7) of samples were col-
lected between 1 and 2 years after the first sampling. The 
frequencies of positive subjects based on the first CAP-
RAST were 74%, 32%, and 19% for egg white-, milk-, and 
wheat-specific IgE, respectively.

Table 1 Characteristics of study subjects

† Detected: > 0 µg/mL
‡ P values were obtained by performing a Fisher’s exact test

Number (%) P  value‡

All Boys Girls

Number 98 (100) 59 (100) 39 (100)

Birth weight (g)

 < 2500 9 (9) 4 (7) 5 (13)

 ≥ 2500 89 (91) 55 (93) 34 (87) 0.477

Feeding

 Breast milk 52 (53) 29 (49) 23 (59)

 Breast milk/formula 46 (47) 30 (51) 16 (41) 0.410

Number of siblings

 0 56 (57) 33 (56) 23 (59)

 1 32 (33) 20 (34) 12 (31) 0.823

 ≥ 2 10 (10) 6 (10) 4 (10) 1.000

Wheezing

 No 78 (79) 48 (81) 30 (77)

 Yes 20 (20) 11 (19) 9 (23) 0.617

Atopic dermatitis

 No 89 (91) 52 (88) 37 (95)

 Yes 9 (9) 7 (12) 2 (5) 0.310

Allergic rhinitis

 No 89 (91) 52 (88) 37 (95)

 Yes 9 (9) 7 (12) 2 (5) 0.310

Smoking habits of parents

 No 42 (43) 27 (46) 15 (38)

 Yes 56 (57) 32 (54) 24 (62) 0.535

Allergic history of parents

 None 11 (11) 5 (8) 6 (15)

 Either 57 (58) 35 (59) 22 (56) 0.341

 Both 30 (31) 19 (32) 11 (28) 0.476

BADGE-specific IgG

 Not detected 78 (80) 47 (80) 31 (79)

 Detected† 20 (20) 12 (20) 8 (21) 0.269
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The relationship between the presence of BADGE-
specific IgG and food-specific IgE titers at the first CAP-
RAST was also examined, but no food-specific IgE was 
related to the presence of BADGE-specific IgG (Table 3).

Table  4 shows the relationship between BADGE-spe-
cific IgG detection and the change in IgE titers between 
the first and second tests. All subjects with BADGE-
specific IgG showed a significant increase in wheat-spe-
cific IgE (OR = 3.56; 95% CI, 1.13–11.2; P = 0.031). This 
relationship was also significant when the subjects were 
limited to those from whom the second blood sample 
was collected within one year of first sampling (N = 91, 
OR = 3.97; 95% CI, 1.23–12.9; P = 0.021). Furthermore, 
this association was more significant in girls (OR = 9.46; 
95% CI, 1.01–89.0; P = 0.049); however, the interaction 
with sex was not statistically significant (P = 0.535). All 
subjects with BADGE-specific IgG tended to show an 
increase in milk-specific IgE levels (OR = 2.77; 95% CI, 

0.93–8.22; P = 0.067), although this association was not 
statistically significant.

To examine the immunological responses related to 
IgE production, IL-6, IL-8, IL-10, and COX2 expression 
was examined. Figure 1 shows the comparison of mRNA 
expression levels between the group with increased 
wheat-specific IgE and others according to the presence 
of BADGE-specific IgG. Three subjects were not exam-
ined due to insufficient blood samples. No significant 
relationships were identified between the expression 
of cytokines and COX-2 based on a Mann–Whitney U 
test, but the subjects with both BADGE-specific IgG and 
increased wheat-specific IgE levels presented an approxi-
mate two- to threefold increase in median IL-6 mRNA 
expression, compared to the other groups.

Discussion
In the present study, the BADGE-IgG detection rate was 
20%. A significant increase in risk for elevated wheat-
specific IgE levels was observed among children with 
BADGE-specific IgG, and this association was more sig-
nificant in girls than in boys, although the interaction 
with sex was not statistically significant. There was no sig-
nificant difference between BADGE-specific IgG status 
in children and the allergic history of parents. There are 
no previous studies describing the relationship between 
BADGE-specific IgG and the allergic history of parents. 
Therefore, this study is the first to indicate that the aller-
gic history of parents does not influence BADGE-specific 
IgG in children. In future studies, the allergic history of 
parents should be included when measuring childhood 
BADGE-specific IgG.

The subjects with both BADGE-specific IgG and 
increased wheat-specific IgE levels presented with 
increased IL-6 mRNA expression compared to the other 
groups. Serum BADGE-specific IgGs probably reflect 
BADGE exposure even though the association with 
dose–response is unclear [4, 28]. In our previous study 
[4], 90% (9 of 10) of workers who had used epoxy resin 
and developed contact dermatitis had BADGE-specific 
IgG. In contrast, 13% (8 of 104) of adults without occupa-
tional BADGE exposure harbored BADGE-specific IgG, 
which was also detected by the same dot blot analysis 
(unpublished data). Thus, the results of the present study 
suggest that food sensitization among young children 
might be enhanced by BADGE exposure in their daily 
lives.

As stated, up-regulation of IL-6, a Th2-related cytokine, 
was detected in the group presenting both elevated 
wheat-specific IgE levels and detectable BADGE-specific 
IgG. Considering that BADGE has estrogenic activity, 
although not to the same extent as BPA [3], and that BPA 
has been suggested to induce a Th2 immune response 

Table 2 Distribution of food-specific IgE levels and change 
in IgE levels between first and second blood collections

CAP-RAST carrier polymer-radioallergosorbent test
† Negative: < 0.35; positive: ≥ 0.35 UA/mL
‡ Decrease/no change: [2nd IgE value (UA/mL) − 1st IgE value (UA/mL)] ≤ 0, 
Increase: [2nd IgE value (UA/mL) − 1st IgE value (UA/mL)] > 0
§ P values were obtained by performing a Fisher’s exact test

Number (%) P  value§

All Boys Girls

First CAP-RAST†

 Egg-specific IgE

  Positive 73 (74) 44 (75) 29 (74) 1.000

 Milk-specific IgE

  Positive 31 (32) 17 (29) 14 (36) 0.510

 Wheat-specific IgE

  Positive 19 (19) 15 (25) 4 (10) 0.073

Second CAP-RAST†

 Egg-specific IgE

  Positive 82 (84) 49 (83) 33 (85) 1.000

 Milk-specific IgE

  Positive 37 (38) 22 (37) 15 (38) 1.000

 Wheat-specific IgE

  Positive 31 (32) 21 (36) 10 (26) 0.377

Change in CAP-RAST  values‡

 Egg-specific IgE

  Decrease or no change 62 (63) 40 (68) 22 (56)

  Increase 36 (37) 19 (32) 17 (44) 0.289

 Milk-specific IgE

  Decrease or no change 75 (77) 47 (80) 28 (72)

  Increase 23 (23) 12 (20) 11 (28) 0.466

 Wheat-specific IgE

  Decrease or no change 78 (80) 45 (76) 33 (85)

  Increase 20 (20) 14 (24) 6 (15) 0.443
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through its estrogenic activity [8], BADGE exposure 
might elicit a Th2 immune response via IL-6 upregula-
tion through its estrogenic activity. In addition, exposure 
to BADGE induces Toll-like receptor (TLR) 4 expression 
in rat macrophages [29], and this receptor might drive 
a Th2 immune response [30]. Therefore, the expression 
of TLR4 in response to BADGE exposure might be one 
cause of the observed increase in food-specific IgE levels. 
Further experiments are needed to verify this.

The association between the presence of BADGE-
specific IgG and the increase in wheat specific-IgE lev-
els was stronger among girls than among boys, although 
this interaction was not statistically significant. The 
effect of BPA exposure was previously shown to vary 
based on sex, wherein female mice showed a consistently 
enhanced Th2 response upon BPA exposure, compared 
to that in male mice [31, 32]. Similarly, in the present 

study, girls in the BADGE-IgG-detected group showed 
slightly higher mRNA expression levels of IL-6, which 
encodes a Th2-related cytokine (median: 2.54; 25th and 
75th percentile: 0.63 and 4.64, respectively), compared 
to the boys (median: 1.58; 25th and 75th percentile: 1.00 
and 5.41, respectively). However, BADGE-specific IgG 
levels in girls were lower than those in boys; the median 
(range) BADGE-specific IgG levels in boys and girls of 
the BADGE-detected groups were 0.57 (0.03–12.4) and 
0.35 (0.04–3.85) µg/mL, respectively. These results sug-
gest that the reaction to BADGE exposure is stronger in 
girls than in boys.

The present study has some limitations that merit dis-
cussion and further research. First, in this study, a sig-
nificantly increased risk of elevation in wheat-specific 
IgE levels was observed among children with detected 
BADGE-specific IgG. For the other two food-specific 
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IgEs, namely egg white and milk, a similar tendency 
was also observed, although these associations were 
not statistically significant (Table  4). There is currently 
no explanation for why a significant association was 
observed only for wheat-specific IgE. Individuals in our 
cohort were not subjected to food limitation, and we did 
not obtain information regarding their nutrition intake. 
Further studies employing a food-frequency question-
naire are required to reveal whether BADGE exposure is 
involved in food-specific IgE increases and subsequently 
enhanced sensitization to specific foods. Second, to com-
prehensively measure cytokines, we detected mRNA 
expression levels using qRT-PCR. Enzyme-link immu-
nosorbent assay (ELISA) is another method to detect 
cytokines. Trends for cytokine profiles based on meas-
uring mRNA expression by qRT-PCR are generally the 
same as those determined by ELISA [33–35]. However, 
unlike ELISA, cytokine mRNA expression levels do not 
always correspond to actual protein levels. Future stud-
ies will also incorporate the quantification of proteins by 
ELISA into these protocols and more quantitative studies 
will be performed.

Conclusion
This is the first study investigating the relationship 
between BADGE-specific IgG and food-specific IgE sen-
sitization in early childhood. Our study suggests that 
exposure to this material might affect food sensitization 
in early childhood. Therefore, BADGE exposure should 
be strictly regulated, especially in younger children.
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