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Abstract 

Background: Stomach adenocarcinomas (STAD) are the most common malignancy of the human digestive system 
and represent the fourth leading cause of cancer-related deaths. As early-stage STAD are generally mild or asympto-
matic, patients with advanced STAD have short overall survival. Early diagnosis of STAD has a considerable influence 
on clinical outcomes.

Methods: The mRNA expression data and clinical indicators of STAD and normal tissues were obtained from The 
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The gene expression differences 
were analyzed by R packages, and gene function enrichment analysis was performed. Kaplan–Meier method and 
univariate Cox proportional risk regression analysis were used to screen differential expressed genes (DEGs) related 
to survival of STAD patients. Multivariate Cox proportional risk regression analysis was used to further screen and 
determine the prognostic DEGs in STAD patients, and to construct a multigene prognostic prediction signature. 
The accuracy of predictive signature was tested by receiver operating characteristic (ROC) curve software pack-
age, and the nomogram of patients with STAD was drawn. Cox regression was used to investigate the correlation 
between multigene prognostic signature and clinical factors. The predictive performance of this model was com-
pared with two other models proposed in previous studies using KM survival analysis, ROC curve analysis, Harrell 
consistency index and decision curve analysis (DCA). qRT-PCR and Western blot were used to verify the expression 
levels of prognostic genes. The pathways and functions of possible involvement of features were predicted using 
the GSEA method.

Results: A total of 569 early-stage specific DEGs were retrieved from TCGA-STAD dataset, including 229 up-regulated 
genes and 340 down-regulated genes. Enrichment analysis showed that the early-stage specific DEGs were associ-
ated with cytokine–cytokine receptor interaction, neuroactive ligand–receptor interaction, and calcium signaling 
pathway. Multiple Cox regression algorithm was used to identify 10 early-stage specific DEGs associated with overall 
survival (P < 0.01) of STAD patients, and a multi-mRNA prognosis signature was established. The patients were divided 
into high-risk group and low-risk group according to the risk score. In the training set, the prognostic signature 
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Background
Gastric cancer (GC) is the fifth most common 
malignant tumor world widely, and it is also the fourth 
leading factor of death caused by cancer [1]. Gastric 
adenocarcinoma (STAD), which accounts for 95% of GC, 
is the most common histological type of gastrointestinal 
malignant tumor. The most effective treatment is radical 
surgery combined with chemotherapy, postoperative 
radiotherapy, and lymph node dissection in the early-
stage of STAD [2]. Nonetheless, the curative effect on the 
advanced-stage STAD was still limited [3], and the 5-year 
overall survival rate of patients with advanced STAD was 
less than 10% [4]. It is a pity that 65% of patients were in 
the advanced stage of STAD when first diagnosed, and 
even nearly 85% of patients with STAD had lymph node 
metastasis at the time of diagnosis. Because the early 
symptoms of STAD are not obvious or asymptomatic, 
and so far, there are no diagnostic markers which have 
sensitive and specific effects on the early diagnosis of 
STAD. Consequently, there is an urgent need to discover 
effective prognostic signature of STAD and to develop 
new therapies and strategies.

The classification of STAD patients by next-generation 
sequencing was a novel approach, which rapidly identi-
fied the tumor characteristics, and we could design the 
most appropriate treatment strategy [5]. In the past few 
decades, with the development and application of the 
high-throughput sequencing technology, large-scale 
biological data have become an effective resource for 
researchers to search for probable cancer biomarkers. 
Numerous biomarkers have been identified through 
bioinformatics analysis [6, 7]. The predictive character-
istics of some gene expressions had great significance in 
the application of clinical prognosis and identification 
of biomarkers. Studies showed that compared with the 
STAD patients without metastasis, the expression lev-
els of ALOX12B and PACSIN1 were higher in patients 
with tumor metastasis, and the survival rate of patients 
with high expression was significantly lower than that of 
patients without metastasis [8]. These two genes may be 
potential biomarkers of metastasis and poor prognosis, 

which provide more information for follow-up compre-
hensive treatment and diagnosis of GC. Cox regression 
analysis demonstrated that EMCN/MUC15 combina-
tion had a good effect on the prediction of overall sur-
vival (OS) of STAD patients [9]. EMCN/MUC15-related 
genes were found associated with angiogenesis, mitosis 
and immunity in cancer-related processes, and may be 
potential prognostic markers of GC. The up-regulation 
of mRNA expression of ZNF860 was an independent 
prognostic indicator of RFS in I/II stage patients with 
STAD [10]. Ye et  al. constructed a risk model involving 
13 metabolism-based genes with the TCGA dataset to 
predict the survival of STAD patients [11]. Unfortunately, 
there is no research on the risk prediction model for 
patients with early-stage STAD.

In this study, the early-stage specifically genes of 
STAD were systematically analyzed through The Cancer 
Genome Atlas (TCGA) dataset using various packages in 
R, and their main biological functions and participating 
signal pathways were explored by the GO and KEGG 
enrichment analysis. The early-stage specific genes-
based prognostic signature of STAD was established 
through the Cox risk regression method and verified by 
the Gene Expression Omnibus (GEO) dataset GSE84437. 
According to the risk score based on the prognostic 
signature, STAD patients were divided into the high-risk 
group and the low-risk group. The correlation between 
the prognostic signature and clinical characteristics of 
STAD patients was also investigated.

Materials and methods
Data collection
High-throughput sequencing gene expression data and 
clinical information of STAD patients were downloaded 
from the TCGA database, including 293 cases of STAD 
tissues and 28 cases of normal tissues. The TCGA-
STAD dataset was used to analyze the differences in 
gene expression and as a training set to construct patient 
prognostic characteristics based on risk ratios (Table 1). 
The samples with missing clinical factors or missing sur-
vival follow-up information were removed. The other 

was positively correlated with tumor size and stage (P < 0.05), survival curve (P < 0.001) and time-dependent ROC 
(AUC = 0.625). In the training dataset and test dataset, the both signatures had good predictive efficiencies. Cox 
regression and DCA analysis revealed that the prognostic signature was an independent factor and had a better 
predict effect than the conventional TNM stage classification method and the earlier published biomarkers on the 
prognosis of STAD patients.

Conclusion: In this study, based on the early-stage specifically expressed genes, the prognostic signature con-
structed through TCGA and GEO datasets may become an indicator for clinical prognosis assessment of STAD and a 
new strategy for targeted therapy in the future.

Keywords: Data mining, Prognosis, Biological maker, Expression difference, Functional enrichment analysis
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STAD dataset, GSE84437, was downloaded from NCBI 
GEO database. The sequencing information of this data 
set is based on the chip platform of GPL6947 (Illumina 
HumanHT-12 V3.0 Expression BeadChip), which con-
tained 433 STAD samples. The GSE84437 dataset was 
used as a validation set to test the validity and accuracy of 
prognostic signature (Table 1).

Data processing
We extracted the clinical information of patients with 
STAD from the TCGA database. According to the 
STAD clinicopathological staging (I–IV stage) criteria 
of American Joint Commission (AJCC), 293 patients 
were divided into early stage (I–II) and advanced stage 
(III–IV), including 43 cases and 250 cases, respectively. 
The gene expression difference between the early-stage 
and the advanced-stage STAD tissues and 28 normal 
tissues, respectively, was analyzed using the R language 
limma package [12]. The false discovery rate (FDR) less 
than 0.05 and the relative expression value (log2 fold 
change |) >  = 1.5 were taken as the threshold of signifi-
cant genetic difference. Volcano map, principal compo-
nent analysis (PCA) dot map and heat map were drawn 

with ggplot2 package and pheatmap package to show the 
difference analysis results [13]. The early-stage specific 
DEGs of STAD were retrieved using the VennDiagram 
package in R [14].

GO and KEGG functional enrichment analysis
Utilizing the noncentral hypergeometric distribution 
of the ClusterProfile and ggplot2 packages in R, based 
on Gene Ontology (GO) and Kyoto Encyclopedia of 
Gene and Genome (KEGG), the biological functions of 
genes specifically expressed in the early-stage of STAD 
were interpreted and enriched from the aspects of 
cellular composition (CC), molecular function (MF) and 
biological process (BP), as well as biological pathways, 
diseases and drugs [15].

The prognostic multiple genes signature construction
With the Survival and Survminer packages in R, 
based on the clinical information of STAD patients in 
TCGA data set, the early-stage specific DEGs of STAD 
obtained in the previous step was analyzed by the 
univariate Cox proportional hazard regression analysis, 
and the statistically significant DEGs was screened out 
(P < 0.01). Then, multivariate COX proportional hazard 
regression analysis with two-way regression method was 
used to screen out the DEGs related to the prognosis 
of STAD patients. The overall survival time (OS) 
prediction multiple-gene signature of STAD patients was 
established, and the risk score (RS) was also calculated. 
The calculation formula of RS was

According to the median RS value, the patients with 
STAD were divided into the high-risk group and low-risk 
group. Log-rank test was used to analyze the survival of 
the STAD patients by Kaplan–Meier method. The effec-
tiveness and sensitivity of the prognostic signature were 
assessed by calculating the area (AUC) under the receiver 
operating characteristic (ROC) curve of STAD patients 
in the training set and verification set. According to the 
age, gender, lymph node metastasis, clinicopathologi-
cal and histological stages of STAD patients, the correla-
tion between the prognostic signature and the clinical 
factors was analyzed in the training set and verification 
set. A Nomogram was drawn to predict the prognosis of 
patients with STAD more conveniently and objectively.

Patients were divided into subgroups based on lymph 
node metastasis, clinicopathology, histological stage and 
age in the training and validation sets of STAD patients 
to analyze the relationship between prognostic signature 
and clinical factors. To further assess the superiority of 

Riskscore =

n∑

i=1

Coef i ∗ xi.

Table 1 Clinicopathological characteristics of training and test 
sets for STAD patients in datasets

Clinical factors TCGA (%) GSE84437 (%)

Stage

 I 43 (14.7) n.d

 II 93 (31.7) n.d

 III 126 (43.0) n.d

 IV 31 (10.6) n.d

T

 T1 16 (5.5) 11 (2.5)

 T2 62 (21.2) 38 (8.8)

 T3 140 (47.8) 92 (21.2)

 T4 75 (25.6) 292 (67.4)

N

 N0 95 (32.4) 80 (18.5)

 N1 74 (25.3) 188 (43.4)

 N2 66 (22.5) 132 (30.5)

 N3 58 (19.8) 33 (7.6)

M

 M0 273 (93.2) n.d

 M1 20 (6.8) n.d

Age

  <  = 60 99 (33.9) 194 (44.8)

  > 60 193 (66.1) 239 (55.2)

Gender

 Female 115 (39.2) 137 (31.6)

 Male 178 (60.8) 296 (68.4)
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the early prognostic features of STAD obtained in this 
study, the model was compared with four other previ-
ously published models (5-gene feature proposed by 
Chang et al. [16], 6-gene features proposed by Cho et al. 
[17], 3-gene feature proposed by Wu et  al. [18], and 
4-gene feature proposed by Wang et al. [19]) for predic-
tive performance, including K-M survival analysis, ROC 
curve analysis, Harrell consistency index (C-index), and 
decision curve analysis (DCA).

Gene set enrichment analysis
To elucidate the molecular mechanisms involved in the 
early prognostic features of gastric cancer, the R package 
“limma” was used to analyze differentially expressed 
genes between high- and low-risk groups classified based 
on prognostic features. The pathways and functions 
of differentially expressed genes enrichment were 
predicted by GSEA method. P-value < 0.05 for NOM was 
statistically significant. The results were visualized using 
the R package “clusterProfile”.

Expression verification of the prognostic signature
The GC cell lines (AGS and MGC-803) used for the 
experiments were purchased from the Shanghai Insti-
tute of Cell Biology, Chinese Academy of Sciences. The 
GC cell lines were placed in Dulbecco’s modified Eagle’s 
medium (DMEM) containing 10% fetal bovine serum 
(FBS; HyClone, Logan, UT, USA), 100 U/ml penicillin 
and 100  mg/ml streptomycin. Invitrogen, Carlsbad, CA, 
USA) and incubated at 37 ℃ and 5% CO2 in an incubator. 
Total RNA of the cell lines was extracted using Trizol rea-
gent (Invitrogen, CN). Then, 2 µg of RNA was taken for 
cDNA synthesis using Advantage RT-for-PCR Kit (Clon-
tech), and the cell lines were incubated with  HiScript® II 
One Step qRT-PCR  SYBR® Green Kit (Takara, Japan) for 
qRT-PCR (Additional file 3: Table S1). GADPH was used 
as an internal control for mRNA and protein. Expression 
data were calculated using the  2−ΔΔCt method. Immu-
nohistochemistry-based protein expression profiles of 
prognostic gene signatures in normal gastric and STAD 
tissues were obtained using the online tool Human Pro-
tein Atlas (HPA, https:// www. prote inatl as. org/). Protein 
was extracted with RIPA lysis buffer containing protease 
inhibitors and measured with a standard bovine serum 
albumin (BSA) kit. The extracted proteins were sepa-
rated by electrophoresis using 10% sodium dodecyl sul-
fate polyacrylamide gel (SDS-PAGE) and then transferred 
to polyvinylidene difluoride (PVDF) membrane (Mil-
lipore Corporation, Billerica, MA, USA). The membranes 
were blocked in the 5% non-fat milk for one hour at the 
room temperature, and then incubated with the primary 
antibody (A15935 Abclonal, Wuhan, China; abs110490 
absin China; GTX46121 GeneTex, Texas, USA; ab74030, 

ab67315, ab180166, ab88249, ab198895, ab202123 and 
ab73288 Abcam, Cambridge, UK), which was purchased 
from Abcam (Cambridge, UK), at 4 ℃ overnight and then 
washed with TBST solution (Boster, China). These mem-
branes were then incubated with secondary antibodies. 
Finally, ECL chemiluminescence detection system is used 
for signal detection.

Results
Identification of early‑stage specific DEGs of STAD
Based on the high-throughput sequencing data in the 
TCGA-STAD dataset, the differential gene expression 
was analyzed between 43 cases of early-stage STAD 
tissues, 250 cases of advanced-stage STAD tissues and 
28 cases of adjacent normal tissues, respectively. The 
results revealed that there were 2148 DEGs between 
early-stage STAD and normal tissues, including 992 
up-regulated genes and 1226 down-regulated genes 
(Fig. 1A), and 1822 genes were differentially expressed 
between advanced-stage STAD and normal tissues, 
including 797 up-regulated genes and 1025 down-reg-
ulated genes (Fig.  1B). Based on the intersection anal-
ysis of these DEGs, we discovered that 886 DEGs and 
693 DEGs overlapping in the early and advanced stages 
of STAD, respectively, as common down-regulated 
and up-regulated DEGs (Fig.  2). Notably, 569 DEGs 
were specifically expressed in the early-stage of STAD, 
including 340 down-regulated DEGs and 229 up-regu-
lated DEGs. In addition, 139 down-regulated DEGs and 
104 up-regulated DEGs were specifically expressed in 
the advanced-stage of STAD.

Functional enrichment analysis of the early‑stage specific 
DEGs
Then, we performed GO and KEGG enrichment analy-
sis to better study the function of the early-stage DEGs. 
GO analysis showed that these genes were mainly sig-
nificantly enriched in multicellular organismal signaling 
(GO:0035637, P < 0.0001), cellular calcium ion homeosta-
sis (GO:0006874, P < 0.0001), cellular divalent inorganic 
cation homeostasis (GO:0,072,503, P < 0.0001), contrac-
tile fiber part (GO:0044449, P < 0.0001), sarcomere (GO: 
0030017, P < 0.0001), collagen-containing extracellular 
matrix (GO:0062023, P < 0.0001), cation channel activ-
ity (GO:0005261, P < 0.0001), gated channel activity 
(GO:0022836, P < 0.0001), and ion gated channel activ-
ity (GO:0022839, P < 0.0001, Fig.  3A, Additional file  4: 
Table  S2). Meanwhile, KEGG pathway analysis revealed 
that the early-stage specific DEGs were mainly involved 
in pathways including cytokine–cytokine receptor inter-
action (hsa04060, P < 0.01), neuroactive ligand–receptor 

https://www.proteinatlas.org/
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interaction (hsa04080, P < 0.01), and calcium signaling 
pathway (hsa04020, P < 0.01, Fig.  3B, Additional file  5: 
Table S3).

Establishment of multigene Cox prognostic signature
Using the univariate Cox regression method, the 569 
early-stage specific DEGs in the TCGA dataset were 

analyzed in combination with clinical parameters of 
STAD patients. Twenty-two genes that affect overall sur-
vival (OS) of STAD patients were screened with P < 0.01 
as the threshold. Moreover, ten genes were identified as 
FERMT2, SLC52A3, TMTC1, GRP, AKAP12, GDF6, SLI-
TRK4, NUDT11, RECK and MAGEH1 by two-way step-
wise regression analysis, and the prognostic signature 

Fig. 1 Volcano maps, PCA dot plots and hierarchical clustering heat maps of DEGs in TCGA-STAD datasets. X-axis: log2 FC; Y-axis: − log 10 (p-value) 
for each gene; vertical-dotted lines: | log2 FC |≥ 1.5; horizontal-dotted line: the significance cut off (p-value = 0.05). The red dot represents DEG. 
Expression heatmap of the top 100 DEGs between 43 cases of early stage STAD (A), 250 cases of advanced stage of STAD (B), and 28 cases of 
paracancerous normal tissues, respectively

Fig. 2 Venn diagrams of the overlapping DEGs in the advanced stage and early stage in TCGA-STAD datasets
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consisting of the ten genes were established. The expres-
sion of SLC52A3 in early-stage STAD tissues was sig-
nificantly higher than that in normal tissues, while the 
expression of the other 9 DEGs in early-stage STAD tis-
sues was significantly lower than that in normal tissues 
(P < 0.001, Table 2).

Based on these 10 genes, the risk score formula was 
as follows: RS = −  0.308 × FERMT2 expression quan-
tity − 0.166 × SLC52A3 expression quantity + 0.142 × 
TMTC1 expression quantity + 0.119 × GRP expression 
quantity − 0.004 × AKAP12 expression quantity + 0.034 
× GDF6 expression quantity + 0.029 × SLITRK4 expres-
sion quantity + 0.079 × NUDT11 expression quantity + 

0.008 × RECK expression quantity + 0.042 × MAGEH1 
expression quantity. According to the median RS value 
(1.049) calculated by the prognostic score formula, 293 
patients were divided into low-risk group and high-risk 
group. As shown in Fig. 4A, the survival rate in the low-
risk group was significantly higher than that in the high-
risk group (Log-rank P = 0.0014). The 1-year, 3-year and 
5-year survival rates of the STAD patients were evalu-
ated. The time-dependent ROC curve of the 10-gene sig-
nature showed that the AUC values were 0.622, 0.703 and 
0.631, respectively, implying that the prognostic signa-
ture had a good prognostic ability (Fig. 4B). As shown in 
Fig. 4C, the higher the prognosis score, the more STAD 

Fig. 3 The significantly enriched in the GO categories, including BP, MF and CC (A), and KEGG pathways (B) of the early stage specific DEGs
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patients died (Fig. 4D), indicating that the higher the risk 
score, the worse the prognosis of STAD patients. Fig-
ure 4E illustrates the gene expression of prognostic signa-
ture in the high-risk and low-risk groups.

Subsequently, the accuracy of the 10-gene prognostic 
signature was verified in the GSE84437 dataset. Accord-
ing to the median RS computed by the prognostic score 

formula (0.948), 433 STAD patients were divided into 
low-risk group and high-risk group. As shown in Fig. 5A, 
the OS in STAD patients was significantly higher in the 
low-risk group than in the high-risk group (P < 0.001). 
The 1-year, 3-year and 5-year survival of patients were 
analyzed, and the results indicated that the AUC values 
of the 10-gene prognostic signature were 0.601, 0.605 
and 0.605, respectively, suggesting that the signature 
also had good prognostic ability (Fig. 5B). The higher the 
prognostic score (Fig. 5C), the more STAD patients died 
(Fig. 5D), demonstrating that the higher the risk score of 
STAD patients in the GSE84437 dataset, the worse the 
prognosis. Figure 4E shows gene expression in the high-
risk and low-risk groups of polygenic prognostic markers. 
Furthermore, 1-, 3-, and 5-year OS in the STAD patients 
could be quantitatively predicted by the fraction of DEGs 
in the Nomogram (Additional file 1: Fig. S1).

Correlation between the prognostic signature and clinical 
characteristics of STAD patients
Next, we analyzed the correlation between the prognos-
tic signature and patients’ clinical characteristics. The 
results showed that in the TCGA-STAD dataset, there 
was a significant correlation between the high-risk group 
and the low-risk group in pathological stage, tumor size 

Table 2 The DEGs in the prognostic signature between the 
early-stage STAD and normal tissues

Gene logFC AveExpr t P.Value adj.P.Val B Group

SLC52A3 1.54 4.05 4.40 3.63E-05 <0.001 1.71 up-regulated

MAGEH1 -1.61 2.90 -6.72 3.59E-09 1.36E-07 10.69 down-regulated

FERMT2 -1.63 5.36 -4.44 3.23E-05 <0.001 1.60 down-regulated

SLITRK4 -1.71 -1.24 -3.97 <0.001 <0.001 0.64 down-regulated

TMTC1 -1.84 4.12 -5.39 8.52E-07 1.08E-05 5.22 down-regulated

NUDT11 -1.85 -1.09 -4.14 9.16E-05 <0.001 1.21 down-regulated

RECK -1.88 3.13 -7.70 5.57E-11 5.75E-09 14.74 down-regulated

AKAP12 -1.89 5.13 -4.71 1.19E-05 9.77E-05 2.58 down-regulated

GRP -2.19 -2.98 -2.85 <0.001 0.016 -2.57 down-regulated

GDF6 -2.56 -2.45 -5.03 3.52E-06 3.48E-05 4.25 down-regulated

Red color represents gene expressed up-regulated in tumor tissues compared 
to normal tissues; green color represents genes expressed down-regulated in 
tumor tissues, whereas light green indicates logFC values between − 2 and − 1, 
and dark green indicates logFC values less than − 2

Fig. 4 Construction of ten-mRNA signature from the early stage specific DEGs in the TCGA-STAD datasets as the training set. A KM survival analysis 
between the high- and low-risk groups in TCGA-STAD dataset. B Time-dependent ROC curves at 1, 3, and 5 years for patients’ OS of TCGA-STAD 
dataset. Relationship between survival status (C), survival time (days) (D) and risk score rank, respectively. The expression patterns of the ten genes 
in TCGA-STAD dataset (E)
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and patients’ survival status (P < 0.05), but there was no 
significant difference in lymph node, distant metasta-
sis, age, and gender (Table 3). In the GSE84437 dataset, 
there was a significant correlation between the high-risk 
group and the low-risk group in tumor size and patients’ 
survival status, but there was no significant difference 
between the two groups in lymph nodes, age, and gen-
der (Table  3). Taken together, the results showed that 
the 10-gene prognostic signature of STAD patients was 
related to the survival status, pathological stage, and 
tumor size.

We also compared the prognostic effects of the 
10-gene prognostic signature and clinical factors on 
patients. The RS of 10-gene prognostic signature and 
clinical factors of patients in the TCGA-STAD data-
set were included in the Cox regression analysis. RS 
of multivariate prognostic characteristics was a con-
tinuous variable, and clinical indicators of patients were 
sorted as classification variables. Univariate Cox regres-
sion analysis showed that pathological stage (P = 0.002), 
lymph node (P = 0.007), tumor size (P = 0.027), age 
(P = 0.004) and RS (P < 0.001) were risk factors affect-
ing the OS in STAD patients (Table  4). Multivariate 
Cox regression analysis showed that the risk score of 
the prognostic signature (P < 0.001) was an independent 

factor influencing the prognosis of STAD patients 
(Table 4). Meanwhile, the RS of 10-gene prognostic sig-
nature and clinical factors in STAD dataset GSE84437 
were also included in Cox regression analysis. Univari-
ate Cox regression analysis showed that lymph node 
(P < 0.001), tumor size (P < 0.001), age (P = 0.003) and 
RS (P < 0.001) were also risk factors affecting OS in 
STAD patients (Table  5). Multivariate Cox regression 
analysis showed that lymph node (P < 0.001) and RS 
(P < 0.001) were still independent factors influencing 
the prognosis of STAD patients (Table  5). The results 
showed that the 10-gene prognostic signature was bet-
ter than traditional clinical characteristics in prognos-
tic prediction of patients with STAD.

KM analysis in clinical subgroups
Furthermore, we investigated the relationship between 
10-mRNA signature and overall survival of STAD 
patients in different clinical subgroups. It was found 
that in the TCGA-STAD dataset (Fig.  6A), clinical 
indicators such as non-lymph node metastasis stage 
(N0), clinical progression stage (Stage I to II), tumor 
grade T1–T2, early pathological grade (G1–G2), non-
metastasis stage (M0) and younger age group, the OS 
was significantly better in the low-risk group with 

Fig. 5 Validation of ten-mRNA signature from the early stage specific DEGs in the GSE84437 datasets. A KM survival analysis between the high- and 
low-risk groups in GSE84437 dataset. B Time-dependent ROC curves at 1, 3, and 5 years for patients’ OS of GSE84437 dataset. Relationship between 
survival status (C), survival time (days) (D) and risk score rank, respectively. The expression patterns of the ten genes in GSE84437 dataset (E)



Page 9 of 15Jiang et al. European Journal of Medical Research          (2022) 27:205  

10-mRNA signature than in the high-risk group. Simi-
lar results were revealed in GSE84437 dataset that 
patients with non-lymph node metastasis stage (N0), 

tumor grade T1–T2, and younger age group, the OS 
was also significantly higher in the low-risk group 
than in the high-risk group (Fig. 6B).

Table 3 Correlation between prognostic model and clinical characteristics of STAD patients in TCGA and GSE84437 datasets

Factors TCGA GSE84437

High risk 
(n = 147)

Low risk 
(n = 146)

χ2 P High risk 
(n = 217)

Low risk 
(n = 216)

χ2 P

Stage

 I 15 28 6.034 0.012 n.d n.d n.d n.d

 II 50 43 n.d n.d

 III 63 63 n.d n.d

 IV 19 12 n.d n.d

T

 T1 2 14 10.848 0.018 3 8 6.950 0.043

 T2 31 31 14 24

 T3 76 64 43 49

 T4 38 37 157 135

N

 N0 45 50 1.640 0.650 38 42 3.086 0.378

 N1 35 39 91 97

 N2 34 32 74 58

 N3 33 25 14 19

M

 M0 133 140 2.579 0.108 n.d n.d n.d n.d

 M1 14 6 n.d n.d

Age

  <  = 60 65 76 1.649 0.199 101 104 0.056 0.811

  > 60 82 69 116 112

Gender

 Female 62 53 0.828 0.363 62 75 1.619 0.203

 Male 85 93 155 141

Event

 Alive 78 96 4.380 0.036 91 133 15.942  < 0.001

 Dead 69 50 126 83

Table 4 Factors associated with OS for STAD patients in TCGA datasets based on Cox proportional hazard analysis

Factors Univariate Cox Multivariate Cox

b SE Wald χ2 P value HR 95% CI b SE Wald χ2 P value HR 95% CI

Model 0.72 0.14 4.98  < 0.001 2.06 1.55–2.73 0.77 0.15 5.12  < 0.001 2.17 1.61–2.91

Stage 0.35 0.11 3.08 0.002 1.41 1.13–1.76 0.25 0.19 1.3 0.195 1.28 0.88–1.86

Age − 0.53 0.19 − 2.87 0.004 0.59 0.41–0.84 − 0.79 0.19 − 4.04 0.078 0.86 0.61–1.07

N 0.22 0.08 2.69 0.007 1.25 1.06–1.47 0.06 0.11 0.49 0.626 1.06 0.84–1.32

T 0.26 0.12 2.21 0.027 1.3 1.03–1.64 0.09 0.16 0.56 0.574 1.09 0.8–1.49

M 0.59 0.33 1.79 0.073 1.81 0.95–3.47

Gender 0.32 0.2 1.63 0.104 1.38 0.94–2.04

Grade 0.18 0.19 0.96 0.336 1.2 0.83–1.73
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Performance comparison of 10‑mRNA signature 
and previous models
Several prognostic models for predicting survival in 
STAD patients have been reported in previous stud-
ies. We compared the predictive performance of the 
10 gene signatures obtained in this study with four 

reported models. For normalization, the gene expres-
sion levels involved in each model were extracted uni-
formly from the original matrix of the TCGA-STAD 
dataset. Risk scores for STAD patients were calculated 
based on the corresponding coefficients for each model. 
Patients were included in the high-risk and low-risk 

Table 5 Factors associated with OS for STAD patients in GSE84437 datasets based on Cox proportional hazard analysis

Factors Univariate Cox Multivariate Cox

b SE Wald χ2 P value HR 95% CI b SE Wald χ2 P value HR 95% CI

Signature 0.62 0.11 5.87  < 0.001 1.86 1.51–2.29 0.58 0.11 5.23  < 0.001 1.79 1.44–2.23

N 0.52 0.08 6.33  < 0.001 1.68 1.43–1.97 0.43 0.08 5.16  < 0.001 1.54 1.31–1.82

T 0.55 0.12 4.65  < 0.001 1.74 1.38–2.2 0.43 0.12 3.46 0.121 1.04 0.81–1.67

Age − 0.42 0.14 − 3.00 0.003 0.66 0.5–0.86 − 0.39 0.14 − 2.79 0.065 0.88 0.72–1.09

Gender 0.23 0.15 1.47 0.141 1.26 0.93–1.7

Fig. 6 KM analysis of high- and low-risk groups in relation to the TCGA (A) and GSE84437 (B) dataset clinical subgroup
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groups according to the median risk score. We com-
pared the ROC curves, CI values (95% CI values) and 
DCA curves, and the results showed that the 10-mRNA 
model established in this study had higher AUC val-
ues than the other signatures and the highest C-index 
among the five models (Fig.  7). This further demon-
strated the better clinical utility of the 10-mRNA signa-
ture in predicting the survival of STAD patients.

Expression validation
Expression of the 10-mRNA signature was detected 
using GC cell lines through qRT-PCR. The results are 
shown in Fig. 8A. Except for TMTC1 and RECK in GC 
cell line MGC-803, which showed no significant differ-
ence in expression from normal cell lines, the mRNA 
levels of SLC52A3, MAGEH1, FERMT2, SLITRK4, 
NUDT11, AKAP12, GRP and GDF6 were significantly 
higher in both GC cell lines AGS and MGC-803 than in 
normal cell line. The protein expression levels show that 
SCL52A3 were up-regulated in the GC cell lines, mean-
while the other proteins were down-regulated compared 
to the normal cell line (Fig. 8B, Additional file 2: Fig. S2). 
We also obtained immunohistochemical results of the 
10-mRNA signature from the HPA database to support 
the role in tumor tissues (Fig. 8C).

GSEA
To explore the possible involvement of the 10-mRNA 
signature in tumor biological pathways, we performed 
differential gene expression analysis on the low- and 
high-risk groups classified according to the median RS 
value calculated by the prognostic scoring formula and 
obtained 521 expressed up-regulated genes and 872 
expressed down-regulated genes. GSEA analysis of these 
DEGs revealed showed that significantly enriched acti-
vated and suppressed pathways, respectively (Fig.  9). 
Results indicate the up-regulated DEGs were enriched in 
GO terms including muscle system process (GO:0003012, 
P = 1.59E-09), contractile fiber (GO:0043292, P = 4.57E-
11), integrin binding (GO:0005178, P = 0.001), etc., 
and pathways including ECM–receptor interaction 
(hsa04512, P = 0.0001), hypertrophic cardiomyopathy 
(hsa05410, P = 0.0001) (Additional file 6 and 7: Table S4, 
S5). Meanwhile, the down-regulated DEGs were 
enriched in GO terms including ribosome biogenesis 
(GO:0042254, P = 7.97E-08), mitochondrial inner mem-
brane (GO:0005743, P = 0.001), single-stranded DNA 
binding (GO:0003697, P = 0.03), etc., and major pathways 
including Herpes simplex virus 1 infection (hsa05168, 
P = 6.52E-11), spliceosome (hsa03040, P = 0.005) (Addi-
tional file 6 and 7: Table S4, S5).

Fig. 7 The performance of 10-mRNA signatures compared to previous signatures. ROC curves (A) and DCA profiles (B) in the TCGA-STAD dataset 
comparing the performance of 10-mRNA signatures compared to previous signatures, including Chang’s, Cho’s, Wu’s and Wang’s gene signatures

Fig. 8 The expression of the signature genes in the human STAD cell lines (MGC-803 and AGS), human normal gastric epithelial cell line (GES-1) 
in mRNA level (A) and protein level (B, C), respectively. Immunohistochemistry map of the representative protein expression of the signature 
genes SLC52A3, MAGEH1, FERMT2, AKAP12, NUDT11, and SLITRK4 in STAD and normal gastric tissue with the antibody HPA049391, HPA011324, 
HPA040505, HPA006344, HPA057684, and HPA000431. Data were from the Human Protein Atlas online database. * indicates P < 0.05, ** indicates 
P < 0.01

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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Discussion
STAD is one of the most common malignant tumors of 
the digestive system, and its morbidity and mortality 
are among the highest among all cancers in the world. 
The genesis and development of STAD is a complex 
multi-stage process involving many genetic and epige-
netic changes. The effectiveness and strategies of cancer 
therapy often depend on the stage of cancer diagnosed. 
The diagnosis of STAD is most usually in the advanced 
stage, which leads to difficult diagnosis, poor prognosis, 
and high mortality. Patients with early-stage STAD can 
be cured and have a good prognosis, but the early-stage 
diagnosis of STAD is very challenging because it is gen-
erally mild or asymptomatic. Molecular markers based 
on coding or non-coding genes have great potential in 

predicting the prognosis of cancers. The development 
of molecular markers that can effectively identify early-
stage STAD and have good prognostic effect is crucial for 
the therapy strategy and effect of STAD.

In this study, the gene expression profiles of STAD 
samples and patients’ clinical factors were retrieved from 
TCGA and GEO public databases with bioinformatics 
methods. A total of 569 early-stage specific genes were 
identified by mining the differentially expressed genes 
in the early-stage of STAD. Enrichment analysis showed 
that these early-stage STAD specific DEGs were mainly 
involved in cytokine–cytokine receptor interaction, 
neuroactive ligand–receptor interaction, and calcium 
signal pathway. Then, univariate and multivariate Cox 
proportional hazard regression analysis of the early-stage 

Fig. 9 Functional enrichment and annotation analysis of DEGs between the high- and low-risk groups by the 10-mRNA signature. A The bar plots 
showing GO enrichment analysis; B the significant GO terms associated with the DEGs. C The dot plots showing KEGG pathway enrichment analysis. 
p-value less than 0.05 indicated a significant enrichment term
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specific DEGs was carried out by two-way stepwise 
regression, and 10 DEGs such as FERMT2, SLC52A3, 
TMTC1, GRP, AKAP12, GDF6, SLITRK4, NUDT11, 
RECK and MAGEH1 were obtained, and a prognostic 
signature based on these 10 DEGs was established. The 
survival analysis of TCGA-STAD test dataset and the 
GEO verification dataset GSE84437 revealed that the 
signature had a good predictive value for the prognosis 
of STAD patients in both datasets. Meanwhile, the time-
dependent ROC curve analysis showed that the 10-gene 
signature had a good prediction effect. Through the 
analysis of the correlation between the 10-gene signature 
and the clinical characteristics of STAD patients, it was 
identified that this signature was related to the survival 
status, tumor pathological stage and tumor size of STAD 
patients. Cox regression and comparison analysis implied 
that the 10-gene signature was more efficient and sensi-
tive than the traditional TNM stage and the earlier pub-
lishes biomarkers.

It was discovered that the expression of SLC52A3 in the 
early-stage STAD tissues was significantly higher than that 
in normal tissues, while the expression of the other 9 DEGS 
was significantly declined. Studies have found that FERMT2, 
SLC52A3, TMTC1, GRP, AKAP12, GDF6, SLITRK4, 
NUDT11, RECK and MAGEH1 genes are associated with 
tumor progression and prognosis. NF-κB p65/Rel-B can 
activate the expression of SLC52A3, and SLC52A3 was 
identified as a novel therapeutic target for esophageal 
cancer. The expression of FERMT2 was inhibited by miR-
338-5p. Study has shown that FERMT2, which participated 
in cell proliferation and migration, and cisplatin resistance, 
performed as an oncogene in esophageal squamous cancer 
cells [20]. FERMT2 together with FKBP3, SMAD9, GATA2, 
and ITIH4 was constructed as a prognostic signature of 
lung cancer based on the differential expression of immune 
genes [21]. TMTC1 altered the proliferation and survival 
of cancer cells by participating in cell proliferation and 
inflammation, as well as the development of endoplasmic 
reticulum stress [22]. AKAP12 overexpression decreased 
hepatocellular carcinoma (HCC) cell proliferation, migration 
and invasion through targeting by miR-1251-5p [23]. The 
melanocyte differentiation gene MITF and the proapoptotic 
factor SOX9 were negatively regulated by GDF6, which 
blocked melanoma differentiation, inhibited cell death, 
and promoted tumor growth [24]. In HCC, SLITRK4 was 
inhibited by miR-139-5p, and the expression of SLITR4 
played a role in cell invasion and proliferation [25]. The 
above reports implied the potential impact of the 10-gene 
prognostic signature constructed on STAD. The expression 
on mRNA and protein levels were also validated through GC 
cell lines and HPA databases. Because the STAD datasets in 
this study were obtained from TCGA and GEO databases, 
more clinical data samples need to be collected to verify the 

validity and reliability of the 10-gene prognostic signature. 
The biological function of genes in the signature was also 
worth investigating in further.

Conclusion
By analyzing the gene expression difference between 
tumor and normal tissues in TCGA-STAD dataset, 
we obtained 569 early-stage specific DEG. KEGG 
and GO enrichment analysis gave us an insightful 
view of the functions of the early-stage specific 
DEGs. Subsequently, based on the TCGA-STAD 
and GSE84437 datasets, 10 early-specific mRNA 
prognostic signature was constructed, including 
FERMT2, SLC52A3, TMTC1, GRP, AKAP12, GDF6, 
SLITRK4, NUDT11, RECK, and MAGEH1, which were 
associated with tumor size and stage. The prognostic 
signature had a better effect than the traditional TNM 
staging method and previous published biomarkers in 
predicting the prognosis of STAD. In future, we will 
explore the prognostic genes in the signature and their 
potential function based on the current study.
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