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Abstract 

We constructed a prognostic score (PS) model to predict the recurrence risk in patients previously diagnosed with 
laryngeal cancer (LC). Here the training dataset, consisting of 82 LC samples, was downloaded from The Cancer 
Genome Atlas (TCGA). The PS model then divided the LC samples into high- and low-risk groups, which predicted 
well the survival time of LC in three datasets (TCGA dataset: AUC = 0.899; GSE27020: AUC = 0.719; and GSE25727: 
AUC = 0.662). Therefore, the PS model based on the 10 genes and its nomogram is proposed to help predict the 
recurrence risk in patients with LC.
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Introduction
Laryngeal cancer (LC) has been identified as the one of 
the most common types of head and neck cancers, which 
resulted in approximately 11,150 new cases in the United 
States in 2018 [1]. During the past decades, various treat-
ment strategies have been devised for treating LC. How-
ever, the 5-year overall survival (OS) of patients with LC 
remains unsatisfactory [2]. According to the SEER data-
base from 2006 to 2012, the 5-year OS of LC remained as 
low as 60.7%, which has not increased significantly in the 
last few decades [3]. Furthermore, the local recurrence of 
LC is common among patients, such as those with mod-
erately or poorly differentiated squamous cell carcinoma, 
in addition to the thyroid cartilage plate invasion. Hence, 
comprehensive treatment and closer follow-up should 
be given to these patients [4]. Nevertheless, the identi-
fication of novel prognostic gene markers that can help 

distinguish the recurrence risk in patients with LC is vital 
for improving the OS of patients with LC.

In recent decades, the occurrence of next-sequencing 
technologies has made rapid disease and recurrence 
detection possible. Notably, existing evidence has indi-
cated that many gene biomarkers have predictive values 
for LC. Likewise, Zhang et al. [5] indicated that five genes 
(EMP1, HOXB9, DPY19L2P1, MMP1, and KLHDC7B) 
had the potential function to predict LC recurrence. Cury 
et al. [6] also argued that DSG2 overexpression was asso-
ciated with shorter OS. And, it is also indicated that high 
plasma protein levels of DSG2 indicated its detection in 
liquid biopsy, which is proposed to be applied as a recur-
ring biomarker for LC. Pedro et al. [7] have also reported 
that ALCAM overexpression was an independent bio-
marker for predicting recurrence of laryngeal squamous 
cell carcinoma in patients. Nevertheless, although previ-
ous studies have identified numerous gene targets that 
account for the LC recurrence, further investigations are 
needed to explore the effect of these featured genes on 
the recurrence risk in patients with LC.

Therefore, according to the multiple bioinformatics 
data, we screened the genes significantly correlated with 
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recurring LC using meta-analysis and L1-penalized opti-
mization algorithm. Then, we constructed the risk model 
for predicting recurrence risk in patients with LC.

Method
Data source
The mRNA sequencing data of head and neck samples 
(including 604 samples) were obtained from The Cancer 
Genome Atlas (TCGA) database (https://​tcga-​data.​nci.​
nih.​gov/​docs/​publi​catio​ns/​tcga/?) based on the Illumina 
HiSeq 2000 RNA Sequencing platform. The positions 
of the 604 samples were in the alveolar ridges (n = 18), 
tongue roots (n = 30), buccal mucosa (n = 22), floor of the 
mouth (n = 67), hard palates (n = 8), hypopharynx (n = 9), 
larynx (n = 138), lips (n = 3), mouth (n = 38), tongue 
(n = 158), oropharynx (n = 10), and tonsils (n = 45). The 
rest of the samples were from uncertain tumor locations. 
Among the 138 throat samples, we screened 82 LC sam-
ples with recurrence and prognosis information (28 and 
54 samples with and without recurrence, respectively) in 
our study.

Additionally, we searched for validation dataset using 
the keyword “larynx cancer” from the National Center 
for Biotechnology Information Gene Expression Omni-
bus database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). The 
screening standards were as follows: (1) gene expression 
profile data, (2) the samples were from the tumor tis-
sue specimen of patients, (3) human expression profile 
data, and (4) the samples with information of recurrent 
or non-recurrent prognosis. Two validation datasets 
were obtained. One was GSE27020 that composed of 
109 LC tissue samples (34 and 75 samples with and 
without recurrence, respectively) based on the Affym-
etrix Human Genome U133A, the Array platform, and 
the other one was GSE25727 that included 56 LC tissue 
samples (17 and 39 samples with and without recurrence, 
respectively) based on the Illumina HumanRef-8 WG-
DASLv3.0 platform.

Screening of differentially expressed genes
A meta-analysis on TCGA dataset, GSE27020 and 
GSE25727, was conducted using an ES function of MetaDE 
[8] (version: 1.0.5, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
MetaDE) in R3.4.1 to screen the differentially expressed 
genes (DEGs) [9]. Subsequently, we screened for DEGs [9] 
that showed consistent expression in these two datasets 
between samples with recurrence and those without recur-
rence by calculating the tau2, Q, and Qpval values (criterion 
for judgment; tau2 = 0 indicates that each research object 
is homogeneous and unbiased; the statistic Q obeys the 
Chi-square test with a degree of freedom of k-1, whereas 

Qpval  > 0.05 indicates that each research object is homo-
geneous and unbiased). Then, the false discovery rate 
(FDR) value was obtained using multiple test corrections. 
FDR < 0.05 showed that the difference was significant. 
Additionally, each dataset was calculated to express the 
fold change, after which several parameters were selected, 
and the threshold value was set. The set parameters were as 
follows: (1) To ensure that the source of each selected char-
acteristic gene was homogeneous and unbiased (that the 
expression of each featured gene in each data set was con-
sistent), Tau2 = 0 and Qpval  > 0.05 were selected as homo-
geneity test parameters. (2) FDR < 0.05 was selected as 
the significant threshold of expression difference between 
the genomes. (3) After screening with log2 FC, the genes 
having similar direction of difference (with the same sym-
bol of log2 FC) were retained. After combining multiple 
screening parameters, we set the selection of threshold 
parameters:

I. We ensure that the source of each selected charac-
teristic gene is homogeneous and unbiased, that is, the 
expression in each data set is consistent, so tau2 = 0 and 
Qpval > 0.05 are selected as homogeneity test parameters;

II. FDR < 0.05 was considered as the threshold of signifi-
cant difference in expression between gene groups;

III. Combined with Log2FC for screening, we retained 
genes with the same direction of difference (consistent 
Log2FC symbols) in the three datasets.

The threshold was set to a false discovery rate < 0.05. 
Then, the Gene Ontology Biology Process (GO-BP) anno-
tation analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis were conducted for 
these DEGs with consistency.

Establishment and verification of a risk assessment model
On the basis of the DEGs, we conducted univariate Cox 
regression analysis in the survival package [10] (version 
2.4, http://​bioco​nduct​or.​org/​packa​ges/​survi​valr/) to screen 
DEGs significantly related to the prognosis in TCGA data-
set. The multivariate Cox regression analysis was then used 
to screen DEGs that can be used as independent prognos-
tic factors. The log-rank P < 0.05 was also regarded as the 
threshold of significant correlation.

Furthermore, the Cox proportional hazard model [11] 
based on the L1-penalized (Lasso) in the penalized pack-
age (version 0.950; http://​bioco​nduct​or.​org/​packa​ges/​penal​
ized/) [12] of the R3.4.1 language was used to screen out 
the optimized prognostic-associated signature DEG com-
binations based on the aforementioned DEGs related to the 
prognosis [13]. Then, on the basis of the prognostic coeffi-
cient of prognosis-related DEGs, the prognostic score (PS) 
prediction model was established in the training dataset 
using the following formula:

https://tcga-data.nci.nih.gov/docs/publications/tcga/
https://tcga-data.nci.nih.gov/docs/publications/tcga/
http://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/web/packages/MetaDE
https://cran.r-project.org/web/packages/MetaDE
http://bioconductor.org/packages/survivalr/
http://bioconductor.org/packages/penalized/
http://bioconductor.org/packages/penalized/
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where βDEGs refer to the prognostic coefficient of the 
optimized DEGs in the Lasso algorithm and ExpDEGs rep-
resent the expression of the corresponding DEGs in the 
training dataset.

With the median PS as the dividing point, the sam-
ples in TCGA training dataset were further catego-
rized into high- and low-risk groups. After that, the 
Kaplan–Meier (KM) [14] survival curve in the R3.4.1 
language survival package (version 2.41–1) [10] was 
used to measure the association between the risk model 
and prognosis. Simultaneously, we screened these opti-
mized DEGs from the validation dataset (GSE25727 
and GSE27020). Then, the PS score of each sample 
was obtained using the PS calculation method. The 
validation dataset samples were also separated into 
high- and low-risk sample groups in the same manner 
as in TCGA dataset samples. Thereafter, the KM curve 
method of the survival package (version 2.41–1) [10] in 
the R3.4.1 language was used to evaluate the relation-
ship between the high- and low-risk groups, compared 
with the actual survival prognosis information from the 
validation dataset samples.

Screening of independent prognostic clinical factors 
for performance evaluation
Combining the clinical factors including recurrence, 
age, gender, pathologic (M, N, and T), pathologic 
stage, grade, alcohol history, angiolymphatic invasion, 
and perineural invasion in TCGA (Additional file  1: 
Table  S1), we used univariate and multivariate Cox 
regression analysis methods in the R3.4.1 language sur-
vival package (version 2.41–1) [10] to screen the inde-
pendent prognostic clinical factors. The threshold was 
set to log-rank P < 0.05. Next, to further explore the 
correlation between independent factors and progno-
sis, the nomogram with 3- and 5-year survival rates was 
constructed using the RMS software package (version 
5.1.2; https://​cran.r-​proje​ct.​org/​web/​packa​ges/​rms/​
index.​html) in R3.4.1 [9, 15].

Next, the PS and risk models were compared using the 
area under the receiver-operating characteristic curve 
(AUROC) [14] and the concordance index (C-index). 
Additionally, the AUROC is a quantitative indicator of 
the receiver-operating characteristic (ROC) curve, which 
was calculated using the pROC in the R3.4.1 language 
(version 1.14.0, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
pROC/​index.​html). In contrast, the C-index is referred to 
as the scores of all individual pairs correctly sorted on the 
basis of the Harrell C statistics [16] to predict the survival 

ps =
∑

βDEGs× ExpDEGs, time [17]. It was calculated using the survcomp package 
(http://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​
html/​survc​omp.​html) in the R3.4.1 language.

Results
Identification of DEGs
A total of 981 DEGs were detected among TCGA data-
sets, GSE25727 and GSE27020, which contained 347 
down-regulated genes and 634 up-regulated genes (Fig. 1 
and Additional file 2: Table S2). The DEGs were signifi-
cantly different among the various types of samples from 
the three datasets. This result indicated that the DEGs 
expressed significant difference among the three datasets.

The GO results suggested that these genes are 
involved in 41 GO-BP terms, such as regulation of cell 
migration (P = 2.26E−04) and regulation of locomo-
tion (P = 2.48E−04). Simultaneously, these DEGs were 
enriched in 10 KEGG pathways, including the Jak–STAT 
signaling pathway (P = 9.44E−03) (Fig. 2 and Table 1).

Constructing the prognosis prediction model
A total of 206 prognosis-related DEGs were screened 
using univariate Cox regression analysis with a thresh-
old of P < 0.05 (Additional file 3: Table S3). On the basis 
of the aforementioned DEGs, we obtained 96 DEGs via 
the multivariate Cox regression analysis. Subsequently, 
10 optimized DEGs (CD38, ZNF212, POR, CC2D1A, 
GRAMD4, FH, SLC24A3, GATA2, FOXD1, and MMP10) 
were selected using the L1-penalized algorithm (Table 2).

Evaluation and comparison of the prognostic risk 
prediction model’s effectiveness
As shown in Fig.  3, the PS value based on the 10 opti-
mized DEGs could distinctly divide 82 patients with 
LC into high- and low-risk groups in TCGA train-
ing dataset, which indicated that the patients in the 
high-risk group were related to shorter OS in TCGA 
dataset (P = 3.853e−12). Meanwhile, we obtained the 
similar results from the validation datasets, which 
included GSE27020 (P = 4.259e−06) and GSE25727 
(P = 0.0045).

Furthermore, the ROC curves based on the PS pre-
diction model indicated that this PS model accurately 
predicted the patient survival time in both TCGA data-
set (AUC = 0.899) and validation dataset (GSE27020: 
AUC = 0.719; GSE25727: AUC = 0.662).

Screening of independent prognostic clinical factors
As expressed in Table 3, the PS model was substantially 
correlated with the LC clinical condition, which was an 
independent prognostic parameter. Subsequently, the PS 
model status was included in the nomogram model to 

https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
http://www.bioconductor.org/packages/release/bioc/html/survcomp.html
http://www.bioconductor.org/packages/release/bioc/html/survcomp.html
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predict the 3- and 5-year OS in patients with LC. After 
that, the score of each index was observed on the point 
table at the upper apex of the nomogram. Next, the 
scores of each index were added to estimate the 3- and 
5-year survival probability (Fig.  4). These results indi-
cated that the nomogram on the basis of the PS model 
status had high prediction accuracy for the survival and 
prognosis of patients with LC. 

Discussion
As shown by the previous reports, it is important to 
detect several crucial gene biology markers associated 
with the LC survival prognosis, as this could provide a 
vital theoretical reference for treating patients with LC. 
Therefore, in our study, a PS model was established on 
the basis of 10 independent prognostic genes (CD38, 
ZNF212, POR, CC2D1A, GRAMD4, FH, SLC24A3, 

Fig. 1  A two-way hierarchical clustering heat map of TCGA, GSE27020 and GSE25727, datasets based on consistent DEGs
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GATA2, FOXD1, and MMP10). Moreover, the PS model 
was determined to be an independent recurrence factor 
for the survival of patients.

Furthermore, LC recurrence seriously affects the sur-
vival time of patients with LC. Recently, high-through-
put sequencing technologies have also improved the 
understanding of recurrent gene functions by decoding 
the genome of patients with LC. Besides, the prediction 

model of LC recurrence helped in the clinical decision-
making. In our study, among the 206 DEGs related to the 
LC recurrence, 96 independent prognosis-related DEGs 
were screened using the multivariate Cox regression 
analysis. We identified 10 metabolic genes associated 
with prognosis and were further revealed by LASSO-
based Cox proportional hazard model analysis to con-
struct the RS survival prediction model, including CD38, 
ZNF212, POR, CC2D1A, GRAMD4, FH, SLC24A3, 
GATA2, FOXD1, and MMP10. The KM curves showed 
that the patients with LC in the low-risk group had 
remarkably better survival than the low-risk group for 
TCGA dataset (P = 3.853e−12). Meanwhile, we observed 
the similar findings in the validation datasets including 
GSE27020 (P = 4.259e−06) and GSE25727 (P = 0.045). A 
study from Xiang et al. [18] showed a PS model was con-
structed to predict the recurrence in patients with LC. 
The PS value demonstrated good accuracy in predicting 
the relapse with an AUC of 0.859 was at 1 year, 0.822 at 
3  years, and 0.815 at 5  years survival predictive accu-
racy. Besides, Zhang et  al. [19] constructed a four-gene 
signature that could be used to predict the prognosis of 
patients with LC. It is hypothesized that the four genes 
might affect the prognosis of patients with LC via mecha-
nisms involved in the immune response and negative 
regulation of the Wnt signaling pathway. Moreover, Fan 

Table 1  GO biological process and KEGG signal pathway significantly related to target genes

GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes

Category Term Count P value Genes

Biology Process GO:0030334 ~ regulation of cell migration 24 2.26E−04 DLC1, PARD6B, IRS2, FLT1

GO:0040012 ~ regulation of locomotion 26 2.48E−04 DLC1, PDGFB, ENPP2, TAC1,

GO:0001501 ~ skeletal system development 36 4.90E−04 TUFT1, GNA11, HEXA, HOXD12

GO:0051270 ~ regulation of cell motion 25 6.45E−04 SORT1, PDGFRB, PBX1, IGFBP3

GO:0033043 ~ regulation of organelle organization 27 6.92E−04 DLC1, SHROOM2, CAPZA1, TAC1

GO:0007242 ~ intracellular signaling cascade 103 1.24E−03 RAB9A, ADCY7, PLEKHM1, GNA11

GO:0030029 ~ actin filament-based process 28 1.53E−03 CHEK1, ARF5, TP53TG5, P2RY1

GO:0007517 ~ muscle organ development 25 2.22E−03 NMUR1, RHOF, CHUK, RAP2B

GO:0030036 ~ actin cytoskeleton organization 26 2.66E−03 GDI1, FLT1, MCF2, IGF1,

GO:0045184 ~ establishment of protein localization 66 3.89E−03 RAB9A, APOBEC1, AP1G1, SLC15A2

KEGG pathway hsa04630:Jak–STAT signaling pathway 20 9.44E−03 CSF3, PTPN6, CTF1, SOCS1

hsa01040:Biosynthesis of unsaturated fatty acids 6 1.49E−02 BAAT, ELOVL5, HSD17B12, ELOVL2,

hsa00480:Glutathione metabolism 9 1.95E−02 GGT5, GSTA4, G6PD, RRM2

hsa04960:Aldosterone-regulated sodium reabsorption 8 2.03E−02 MAPK1, IRS2, MAPK3, IGF1,

hsa00670:One carbon pool by folate 5 2.07E−02 MTHFD2, MTHFR, SHMT2, MTR

hsa04350:TGF-beta signaling pathway 12 3.51E−02 INHBB, MAPK1, SP1, ROCK2

hsa00510:N-Glycan biosynthesis 8 3.60E−02 MAN2A1, B4GALT3, GANAB, MAN1B1

hsa04514:Cell adhesion molecules (CAMs) 16 3.65E−02 CLDN8, CLDN7, CLDN17, MPZL1,

hsa04540:Gap junction 12 4.05E−02 MAPK1, PLCB4, GNAI3, ADCY7

hsa04722:Neurotrophin signaling pathway 15 4.44E−02 PDK1, IRS2, CAMK2G, IRS1

Table 2  Information of optimizing DEGs combination

DEGs differentially expressed genes, HR hazard ratio, CI confidence

Symbol Multi-variate Cox regression analysis LASSO coef

HR 95%CI P value

CD38 0.4053 0.217–0.758 0.0046 − 0.3307

ZNF212 0.0902 0.022–0.370 8.38E−04 − 0.3008

POR 0.0896 0.024–0.331 3.0E−04 − 0.3017

CC2D1A 0.1025 0.020–0.527 6.38E−03 − 0.2154

GRAMD4 0.0667 0.018–0.248 5.27E−05 − 0.3175

FH 0.7175 9.1E−03–0.565 0.0123 − 0.0689

SLC24A3 2.2113 1.160–4.215 0.0159 0.0091

GATA2 5.7842 1.536–21.789 9.49E−0−3 0.0538

FOXD1 3.0618 1.283–7.308 0.0117 0.2088

MMP10 2.0820 1.415–3.064 2.0E−04 0.0044
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et  al. [20] indicated that the constructed nomogram of 
the LC survival risk was good for predicting accuracy, 
which is helpful for doctors to make a more accurate 
prognosis evaluation of patients with LC, and can be 
used to guide and optimize the treatment of patients with 
LC. Likewise, the 10 independent prognostic genes were 
used to construct the PS model might be novel biomark-
ers for risk recurrence of patients with LC. Furthermore, 

we also constructed a nomogram with C-index of 0.822 
using the PS model, which indicated that the nomogram 
performance has a good concordance with the prediction 
of 1-, 3-, and 5-year OS. Therefore, the PS model based 
on the 10 DEGs has the potential ability in the area of 
prognostic prediction.

In our study, some limitations exist. First, we found 
that the PS model based on 10 genes had a good 
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Table 3  Information of clinical factors

N number, TCGA The Cancer Genome Atlas, HR hazard ratio; CI confidence

Clinical characteristics TCGA (N = 82) Uni-variables Cox Multi-variables Cox

HR 95%CI P HR 95%CI P

Age (years,mean ± sd) 60.80 ± 8.29 0.973 0.933–1.015 0.201 0.961 0.875–1.054 0.395

Gender(female/male) 11/71 0.375 0.161–0.872 0.0227 1.008 0.060–16.918 0.996

Pathologic M(M0/M1/–) 78/0/4 – – – – – –

Pathologic N(N0/N1/N2/N3/–) 38/17/20/2/5 0.345 0.935–1.935 0.111 1.568 0.753–3.262 0.229

Pathologic T(T1/T2/T3/T4/–) 2/10/24/43/3 0.770 0.511–1.159 0.211 4.321 0.290–64.345 0.288

Pathologic stage (I/II/III/IV/–) 2/5/18/54/3 0.862 0.543–1.367 0.527 0.139 0.006–2.992 0.207

Neoplasm grade(1/2/3) 7/48/26/1 0.923 0.561–1.516 0.75 1.442 0.325–6.407 0.630

Alcohol history(yes/no/–) 57/23/2 0.861 0.432–1.714 0.67 2.703 0.437–16.736 0.285

Angiolymphatic invasion(yes/no/–) 24/35/23 1.184 0.225–2.669 0.684 3.128 0.405–24.172 0.274

Perineural invasion(yes/no/–) 16/41/25 1.037 0.421–2.555 0.938 0.235 0.020–2.818 0.253

PS model status(high/low) 41/41 8.967 4.794–16.77 6.61E-12 86.677 13.996–536.769 1.62E-06

Recurrence (dead/alive) 28/54 1.386 0.740–2.594 0.308 0.807 0.158–4.132 0.797

Recurrence free survival time (months, 
mean ± sd)

36.91 ± 30.17 – – –

Points
0 10 20 30 40 50 60 70 80 90 100

Prognostic score −3 −3.5 −4 −4.5 −5 −5.5 −6 −6.5

Total Points 0 10 20 30 40 50 60 70 80 90 100

Linear Predictor 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

1−year Survival Probability 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3−years Survival Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5−years Survival Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C-index = 0.822
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Fig. 4  Construction of nomogram to predict the prognostic ability for patients with LC. A A nomogram was constructed using the PS model to 
predict the prognosis for patients with LC. The calibration plots for 1-year (B), 3-year (C), and 5-year (D) survival time
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predictive ability to predict LC recurrence. However, 
we failed to determine their detailed mechanisms. 
Then, only the PS model was screened through the 
multivariate Cox regression analysis with a threshold 
of P < 0.05. Therefore, we could not analyze other mod-
els based on other risk factors. Additionally, our study 
required large samples and clinical data to confirm 
whether the model we constructed would accurately 
distinguish high- and low-risk patients with recurrent 
LC. Finally, corresponding experimental studies should 
be conducted to verify the functions of these ten key 
genes.

Conclusion
A 10-gene PS model and nomogram are proposed to help 
predict the recurrence risk in patients with LC.
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