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Abstract 

Epiphyseal plate injury, a common problem in pediatric orthopedics, may result in poor bone repair or growth 
defects. Epiphyseal plate, also known as growth plate is a layer of hyaline cartilage tissue between the epiphysis and 
metaphyseal and has the ability to grow longitudinally. Under normal physiological conditions, the epiphyseal plate 
has a certain axial resistance to stress, but it is fragile in growth phase and can be damaged by excessive stress, lead-
ing to detachment or avulsion of the epiphysis, resulting in life-long devastating consequences for patients. There 
is an obvious inflammatory response in the phase of growth plate injury, the limited physiological inflammatory 
response locally favors tissue repair and the organism, but uncontrolled chronic inflammation always leads to tissue 
destruction and disease progression. Interleukin-1β (IL-1β), as representative inflammatory factors, not only affect the 
inflammatory phase response to bone and soft tissue injury, but have a potentially important role in the later repair 
phase, though the exact mechanism is not fully understood. At present, epiphyseal plate injuries are mainly treated 
by corrective and reconstructive surgery, which is highly invasive with limited effectiveness, thus new therapeutic 
approaches are urgently needed, so a deeper understanding and exploration of the pathological mechanisms of 
epiphyseal plate injuries at the cellular molecular level is an entry point. In this review, we fully introduced the key role 
of IL-1 in the progression of epiphyseal plate injury and repair, deeply explored the mechanism of IL-1 on the molecu-
lar transcript level and endocrine metabolism of chondrocytes from multiple aspects, and summarized other possible 
mechanisms to provide theoretical basis for the clinical treatment and in-depth study of epiphyseal plate injury in 
children.
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Introduction
The growth plate assumes responsibility for children’s 
longitudinal growth of long bones. However, as the weak-
est part of long bone, it is vulnerable to damage and have 
limited regenerative capacity, which may often fail to be 
fully repaired after injury, resulting in some patients being 
severely affected for the later growth failure. Inhibition 

of the growth function of the epiphyseal plate generally 
occurs for two reasons: (1) due to the cartilage damage or 
blood supply disorder, the ability of the epiphyseal plate 
growth zone is reduced, leading to premature closure; (2) 
special types of fracture like Salter–Harris type III and IV 
epiphyseal plate fractures misaligned healing and local 
formation of bone bridges, resulting in restrained growth. 
Incomplete closure or even premature arthrogryposis 
may result from complete growth failure, differences in 
limb lengths, and angulation deformities, a series of com-
plications that can significantly affect growth and devel-
opment in children. It is therefore necessary to properly 
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assess and manage growth plate injuries. The procedure 
of fracture healing involves complex processes such as 
inflammation inflammatory reaction, endochondral 
ossification and bone reconstruction [1, 2]. The immune 
response at the injured site is of critical importance to 
affect fracture healing, which rapidly forms hematoma, 
chemotactic and recruit a large number of inflamma-
tory cells [3], releasing the cytokine IL-1β, TNF-α, etc. 
It can be metabolized physiologically when pro-inflam-
matory and anti-inflammatory cytokines work together 
to maintain homeostasis. However, due to the limited 
regeneration and self-repair ability of this site, without 
intervention, lots of inflammatory factors infiltrate like 
IL-1β, causing dynamic imbalance of pro-inflammatory 
and anti-inflammatory cytokines, triggering chondro-
cyte apoptosis and metabolic abnormalities resulting 
in bone growth defects of the involved limb [4, 5]. It is 
consistent with the research using growth plate injured 
rats by Fiona H. Zhou et  al., which showed that IL-1β 
may play an important role in early acute inflammatory 
events and later bone bridge formation and remodeling 
[6]. However, there are few research about the detailed 
mechanism of IL-1β on epiphyseal plate chondrocytes 
at present. With the continuous development of studies 
on cartilage-derived diseases such as traumatic epiphy-
seal plate closure and osteoarthritis, increasing attention 
is being gained to IL-1β action. Therefore, this article 
focuses on clarifying the mechanism of action of IL-1β 
on the effect on epiphyseal plate chondrocytes, provides 
new perspectives and ideas to furnish a theoretical basis 
for clinical applications.

Biological function of IL‑1
The IL-1 family concludes 11 members, and these 
cytokines have the same c-terminal three-dimensional 
structure. In 1984, IL-1 cDNA isolated from human 
body first proved that IL-1 has two different biochemi-
cal forms, namely IL-1α and IL-1β [7]. IL-1β is mainly 
secreted from macrophages, with a molecular weight of 
about 17 kDa and widely present in various tissues and 
organs in human body. IL-1β is an inflammatory cytokine 
with the same receptor complex as IL-1α and acts on the 
same cytokine receptor for signal regulation, which can 
trigger inflammation, especially when tissues are dam-
aged. But the effects also differ due to differences in how 
they are produced, where IL-1β is mainly synthesized by 
phagocytes [8]. The pathogenic effect of IL-1β has been 
fully verified in auto-inflammatory diseases, mainly on 
account of gain-of-function mutations in genes encod-
ing mature inflammasome. Studies have also confirmed 
that IL-1β is locally induced in the bone marrow niche 
in response to injury, which contributes to bone mar-
row emergency generation [9, 10]. Autoimmune diseases, 

diabetes mellitus, gout, and neurodegenerative diseases, 
among others, also have its involvement [8, 11, 12]. As 
the best-characterized member of this family [8], the 
secretion of IL-1β is tightly regulated, requiring inflam-
matory activation as a second stimulus. Inflammatory 
activation makes maturation of inflammatory caspases, 
followed by cleavage of the pro-IL-1β into active forms, 
and secret subsequently [13, 14]. In addition, due to the 
polymorphism of IL-1β, its function is not only limited 
to the body inflammatory response, but is associated 
with multiple system pathological functions [15–17]. In 
1989, Yamashita et al. confirmed that IL-1β can be pro-
duced by mature chondrocytes by immunohistochemi-
cal localization of IL-1 in human epiphyseal plate and 
cartilage canal tissue [18]. Normal joint synovial fluid 
contains trace amount of IL-1β. It can also be observed 
in cultured chondrocytes and synovial cells [19]. It indi-
cates that IL-1β derived from chondrocytes may have an 
important impact in hypertrophy, cartilage revasculariza-
tion and bone formation. Jenei-Lanzl Z et  al. described 
a link between IL-1β and bone disorders in different 
subpopulations [20], IL-1β has effect on chondrocytes 
through catabolism, a process that involves upregulation 
of polymerases and matrix metalloproteinase (MMPs) 
and is further self-upregulated in chondrocytes through 
a positive feedback mechanism. In addition, a certain 
degree of mechanical strain can also induce IL-1β expres-
sion in chondrocytes in osteoarthritis. The function of 
IL-1β is far more than these, and it was the availability 
of its correlative studies with chondrocytes that gave us a 
new entry point/direction into the study of poor healing 
after epiphyseal plate injury.

How IL‑1β affects the chondrocytes
Degradation of the cartilage extracellular matrix
Downregulation of IL‑1β on SOX‑9 expression
Earlier studies by M et  al. found that IL-1β inhibited 
mRNA expression of proteoglycan and collagen type II, 
and significantly prevented synthesis of proteoglycan, 
resulting in ATDC5 chondrocyte dynamics and meta-
tarsal growth restriction [21]. Collagen type II, one of 
the principal extracellular matrix components abundant 
in cartilage, combines with proteoglycan to maintain the 
cellular structure acting as a skeleton for chondrocyte 
attachment and migration, and interacts with chondro-
cytes to effectively maintain the chondrogenic pheno-
type, While the decrease of their synthesis and expression 
will lower the potential for recovery results in loss of the 
chondrocyte phenotype. As a key transcription factor in 
chondrocytes, sox-9 plays a key role in the process of car-
tilage development, activating the transcription of many 
cartilage specific genes, such as collagen-2 (COL2A1) 
and cartilage oligomeric protein (COMP), which encode 
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the extracellular matrix (ECM) component, and directly 
regulating Col2a1 transcription process, especially by 
targeting specific binding sites located in introns [22, 23]. 
Specific deletion of SOX9 leads to severe cartilage dyspla-
sia in mice before and after mesenchymal condensation 
[24]. This was further supported by the fact that SOX9 
transcription levels were significantly reduced in osteo-
arthritis with degradation of extracellular matrix, while 
when transduced to overexpress in human chondrocytes, 
it significantly stimulated the synthesis of proteoglycan 
and collagen II to restore extracellular matrix and pro-
mote the re-expression of cartilage phenotype [25, 26]. 
In addition, silencing of SOX9 reversed the protective 
effect of etomidate on ECM degradation components in 
an in  vitro injury model of chondrocytes stimulated by 
glycation end-products (AGEs) [27]. Machiyuan et  al. 
observed for the first time that degradation of type II 
collagen and SOX-9 was only regulated by of nuclear 
receptor subfamily 4A group a member 3 (NR4A3). Fur-
ther studies showed that IL-induced changes in NR4A3 
in chondrocytes affected cartilage matrix degradation 
[28, 29]. What’s more, the expression of collagen II and 
SOX-9 decreased in chondrocytes under IL-1β inter-
vention, while F-box/WD repeat-containing protein 7 
(FBW7) promoted the integral role of collagen type II, 
proteoglycan and Sox-9 in cartilage to correct chondro-
cytic disorders [30]. Xu Z et al. found that the activation 
of G protein coupled receptor 120 (GPR120) after expo-
sure to IL-1β in ATDC5 chondrocytes can reverse the 
expression of collagen type II and proteoglycan via block-
ing the downregulation of Sox-9, to reduce the inflamma-
tion induced by IL-1β [31]. The above studies illustrate 
that the elevation of IL-1β content can negatively regu-
late SOX-9 after injury occurs, which in turn leads to 
inhibition of proteoglycan and collagen type II synthesis, 
finally causing cartilage extracellular matrix degradation.

Induction of IL‑1β on MMP synthesis
Sox-9 expression in chondrocyte in response to IL-1β 
was reduced, as was the matrix metalloproteinase family 
(MMPs). MMPs, a super family of protease widely found 
in connective tissues, whose activity is regulated by zinc 
ions, are mainly responsible for extracellular matrix deg-
radation and tissue remodeling. Luteolin has been proven 
to exert anti-inflammatory properties, and Junliang Fei 
et  al., by evaluating the expression of various indicators 
in chondrocytes that were intervened with IL-1β for 24 h, 
suggested that luteolin significantly decreased MMP9 
and MMP13 synthesis which promoted by IL-1β, effec-
tively reversed collagen type II degradation [32]. Bone 
morphogenetic protein 2 (BMP2) is a known indica-
tor of osteogenesis. IL-1β stimulates chondrocytes and 
increases the expression levels of BMP2 and MMP13 by 

targeting the MEK/ERK/SP1 pathway, enhancing car-
tilage structural remodeling and cartilage degradation, 
which leads to chondrocyte degeneration [33]. In the 
investigation of osteogenic differentiation process luteo-
lin was found that, in periodontal ligament cells, on the 
one hand, was able to dose-dependently increase BMP2 
expression to promote osteogenic differentiation, on the 
other hand, was to simultaneously antagonize the nega-
tive effect of IL-1β-promoted MMP production on car-
tilage production [34, 35]. In fibrocartilage-derived cells 
of the temporomandibular joint (TMJ), IL-1β increased 
the fibro-chondrocyte proteoglycan ADAMTS4 and 
ADAMTS5 expression, as well as strongly increased 
MMP-13 expression, then inducing cartilage damage 
[36]. In addition, disruption of collagen II and proteo-
glycan is an essential feature of cartilage in patients with 
intervertebral disc degeneration (IDD). It is found that 
reduction of cartilage-derived morphogenetic protein-1 
(CDMP-1) was dose-dependent, while appropriate sup-
plementation of CDMP-1 contributed to collagen II 
and proteoglycan synthesis and inhibited MMP-9 and 
MMP-13 breakdown after using IL-1β to intervene in 
nucleus pulposus cells [37]. Also, Wei Qi et  al. treated 
human nucleus pulposus cells (HNPC) derived from 
the notochord under IL-1β intervention with tyrosol, a 
multi-component compound with anti-inflammatory 
properties, and found that tyrosol inhibited IL-1 through 
SIRT1/PI3K/AKT pathway to reverse the upregulation 
of MMP-3, MMP-9 and MMP-13, which can just reduce 
the degradation of type II collagen in chondrocytes [38]. 
In addition, Elsa Mével et al. study showed that hydroxy-
tyrosol (HT), an olive major extract, exerted anti-oste-
oarthritis effects in a post-traumatic animal model and 
exhibited anti-inflammatory and chondroprotective 
effects in IL-1β-stimulated primary cultured rabbit chon-
drocytes [39]. Exploring the effects of tyrosol and simi-
lar compounds in chondrocyte culture in  vitro or in an 
epiphyseal plate injury model in  vivo would hopefully 
represent a breakthrough point for the treatment of this 
condition in the clinic. On the whole, IL-1β ultimately 
leads to cellular abnormalities by increasing the synthesis 
of MMPs, causing decomposition in collagen type II and 
thereby degrading cartilage extracellular matrix.

Effect of IL‑1β at gene level
Accumulating evidence so far proves that RNA plays 
important roles in various diseases. Numerous stud-
ies have shown that IL-1β autophagy in cartilage was 
stimulated at the initial stage of inflammation, but was 
eventually significantly inhibited. It was found that 
upregulating ciRS-7 abnormally expressed in OA could 
enhance IL-cartilage degradation induced by IL-1β [40]. 
Beyond that, circRNA.33186 was frequently upregulated 
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in chondrocytes treated with IL-1β, by knocking down 
circRNA.33816, MMP-13 was found decreased in chon-
drocytes by Zhou et al., while collagen type II increased, 
which accelerated proliferation of chondrocytes but 
simultaneously inhibited apoptosis [41]. circRNA.33186 
is circular and mainly exists in the cytoplasm. Early 
studies found that circular RNA can competitively bind 
to miRNA [42]. Some scholars screened that there was 
an obviously negative interaction between miR-127-5P 
and circRNA.33186 through luciferase, which targeted 
MMP13 to regulate the catabolic function of IL-1β-
treated chondrocytes, confirming that circRNA.33186 
could directly or indirectly affect MMP13 through miR-
127-5P, resulting in abnormal chondrocyte function 
[43]. At present, it has been recognized that miRNA and 
lncRNA are indispensable in the occurrence and devel-
opment of diseases. They are of great importance to life 
activities, such as cell cycle regulation and cellular differ-
entiation. Concretely, LncRNA MALAT1 was shown to 
be upgraded in IL-1β-treated chondrocytes. Ying Zhang 
et al. demonstrated that in the same cell model, MALAT1 
targets miR-150-5p to regulate Akt3 indirectly, and com-
petitively binds with miR-150-5p to inhibit proteogly-
can and collagen II expression, reduce cell proliferation 
as well [44]. Moreover, MALAT1 directly binds to MiR-
145, which is negatively regulated. Overexpression of 
MALAT1 suppressed chondrocyte viability after IL-1β 
promotion and degraded extrachondral matrix, which 
was opposite to the effect results after miR-145 upregu-
lation [45]. Besides, MALAT1 has been shown to regu-
late chondrocytes through the regulation of miR-515-3P 
or miR-181a-5p [46, 47]. There is another RNA worth 
mentioning called LncRNA snhg5, which was down-
regulated in OA and targeted to regulate  H3 histone 
family 3B (H3F3B) expression through miR-10a-5p to 
enhance apoptosis caused by IL-1β [48]. It is also inter-
esting to note that both SNHG5 and MALAT1 could 
protect stimulated chondrocytes with IL-1β by regulat-
ing miR-181a-5p, but the two target proteins were dif-
ferent [49]. In addition, biochemical analysis predicted 
high mobility group box 1 (HMGB1) was a target agent 
of miR-140-5p, and its overexpression reduced HMGB1, 
thereby suppressing inflammatory responses and apop-
tosis in IL-1β-treated chondrocytes [50]. In a study by 
Jing Wang et al., increased miR-98 expression was found 
in chondrocytes under IL-1β intervention, while inhibi-
tion of miR-98 effectively reduced cell apoptosis, suggest-
ing that IL-1β regulated chondrocyte apoptosis-related 
proteins through mir-98 [51]. The above studies proved 
that IL-1β could affect chondrocyte matrix catabolism 
by affecting different proteins of interest with RNA tar-
geting, and in the future, RNA regulation could be used 
as an entry point to provide a theoretical reference for 

clinical prevention and curing abnormal changes in 
chondrocytes.

Facilitation of adipogenesis
Among patients with orthopedic diseases, obese indi-
viduals deserve our attention for numerous studies have 
found that mediators of joint degeneration are derived 
from adipose paracrine signaling [52–54]. IL-1β plays a 
vital role on lipid metabolism via regulating lipase activ-
ity and negatively adjusts cartilage, there are reports of 
an association between IL-1β and obesity independ-
ent of population [55, 56]. In obese humans, adipo-
cytokines, like leptin and adiponectin secretion by 
adipocytes is increased [57–60], which regulates inflam-
matory response, cartilage catabolic activity and bone 
remodeling, and is involved in the occurrence and devel-
opment of obesity-induced osteoarthritis [61–64]. Lep-
tin, an adipose tissue-derived adipokine with multiple 
immune and physiological functions [65], suppressing 
eating and increasing thermogenesis, and participates in 
multiple immune inflammatory responses [66]. T Simo-
poulou et  al. demonstrated that leptin and its receptors 
were outstandingly enhanced at progressive stages, and 
the expression of leptin mRNA is closely related to BMI, 
moreover, IL-1β, MMP-9 and MMP-13 protein were also 
increased, with adverse effects on chondrocytes [67]. 
Adiponectin is another factor secreted by adipose tis-
sue. Early studies established that adiponectin reduces 
cartilage extracellular matrix degradation and cartilage 
destruction resulting from increased MMP-13 induced 
by IL-1β [68]. In 2007, Simons P j et  al. also found that 
adiponectin secretion was significantly downregulated 
by chronic exposure of adipocytes to IL-1β [69]. Later, 
T Delessa Challa et  al. found that adiponectin (0.5  ug/
ml) could promote mouse ATDC5 chondrocyte cell 
line proliferation and elevated the expression of col-
lagen II, proteoglycan, Runx2, etc., demonstrating that 
low-level adiponectin effected positively on chondro-
cyte proliferation and differentiation [70]. It follows that 
leptin secretion is increased in obesity, bringing about 
pro-inflammatory effects, whereas adiponectin synthe-
sis, which is anti-inflammatory, is decreased. While an 
in-depth study of its specific mechanism may be able to 
provide a new direction for us in the clinic for the treat-
ment of obese patients with epiphyseal plate fractures as 
well as the prevention of complications.

What’s more, adipose tissue, made up of develop-
ing and mature adipocytes as well as a wide range of 
immune cells [71], though of a low-grade nature, is suf-
ficient to cause negative effects on distant organ func-
tion [72]. Initially, obesity-related comorbidities were 
thought to dominate in diabetes mellitus type 2 (T2DM) 
due to growth of the global economy [73]. Obesity may 
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lead to disturbed homeostasis between adipocytes and 
immune cells, and cause M1 macrophages fragmentation 
and polarization, activating the NLRP3 inflammatory to 
massively secrete IL-1β to exacerbate pro-inflammatory 
responses, a process that has been found to be involved 
in type 1 diabetes mellitus (T1DM) [74–76]. High levels 
of IL-1β, positively correlated with the severity of diabe-
tes, confer insulin resistance in obese individuals [77, 78]. 
Evidence suggests that prolonged elevation of IL-1β pro-
moted insulin expression, stimulated glucose uptake and 
aggravated macrophage inflammation, resulting in severe 
pathological metabolic processes [79]. In a study of the 
relationship between T2MD, obesity and skeleton, Franc-
esca Vigevano et al. collected and analyzed data from 112 
obese men and found that group with T2DM and obe-
sity had more bone disease than those without T2DM 
[80]. This may indicate that high levels of IL in obesity-
induced chronic inflammation leads to adverse skeletal 
reactions.

Since the twenty-first century, the problem of adoles-
cent obesity has become increasingly severe, as a matter 
of fact, low-grade chronic inflammation leads to insu-
lin resistance and diabetes, including type I diabetes 
mellitus(T1DM) [81]. Abnormal fat metabolism in obese 
children has become an early manifestation of diabetes, 
T1DM, also called insulin-dependent diabetes. Clinical 
statistics found that T1DM accounted for 5–10% of all 
diabetes cases and has a predilection for children or ado-
lescents [82]. In general, T1DM is considered an immune 
disease [83], and the role of NLRP3 in T1DM remains to 
be investigated; whereas, recent studies point to a greater 
incidence of T1DM with obesity [73], possibly for that 
obesity leads to immunogenicity and glucose dysregula-
tion, thereby contributing to insulin resistance in patients 
with T1DM. In addition, toll like receptors (TLRs), one 
pattern recognition molecule, which may be a biomarker 
in the early stage of T1DM, induce the production of 
IL-1β [84]. So further understanding of the role of IL-1β 
in T1DM may improve prognosis of fracture patients 
with juvenile T1DM. Earlier studies detected significantly 
higher IL-1β levels and lower insulin levels in patients 
with T1DM [84, 85] which correlated with IL-1β induc-
ing pro-inflammatory factors migration to pancreatic 
islets and exerting cytotoxic effects [86], IL-1β reduced 
insulin-induced glucose transport in adipocytes, leading 
to lipid accumulation in muscle versus liver and deleteri-
ous effects. Studies have shown that skeletal and muscle 
health was affected by poorly controlled T1DM disease 
course in children [87].

It can be seen that obesity may cause an inflamma-
tory response with elevated IL-1β levels, increasing the 
probability of developing diabetes while improving the 
risk of fracture and affecting fracture healing. Once the 

epiphyseal plate is injured, more IL-1β infiltration will 
increase the possibility of poor prognosis. In general, 
IL-1β is closely related to lipid and cartilage, especially in 
the context of the general increase of obese children, thus 
continued exploration of the relationship between adipo-
cytes and chondrocytes and deeper investigation of obe-
sity and bone diseases may in the future clinically provide 
a new direction for treating bone fractures in obese peo-
ple, especially adolescents.

Promotion of oxidative stress
The chief reason for oxidative stress is disequilibrium 
between the generation of intracellular reactive oxygen 
species (ROS) and the scavenging effects of antioxidant 
ability, which is one main cause of chronic inflamma-
tion. In OA, oxidative stress has a certain influence on 
chondrocytes. Cellular ROS originates from mitochon-
drial respiratory chain [88], mainly produced by reduced 
NADPH oxidases (NOX) in chondrocytes [89], which 
usually exists in cells at a low level and is vital to main-
tain cell function and stability [90]. Previous studies have 
found that ROS oxidative stress make IL-1β and other 
inflammatory mediators highly up-regulated [91–93], 
which can induce the production of ROS and MMPs to 
degrade extracellular matrix [94, 95]. As a key link of 
classical inflammatory pathway, NF-κB participates in 
the regulation of a variety of genes, and it is a necessary 
molecule involved in the pathophysiological changes of 
cartilage [96].

Chondrocyte with hyperoside (Hyp) preconditioning 
saved ROS overproduction and chondrocyte apopto-
sis induced by IL-1β, playing an anti-inflammatory role 
by partially inhibiting NF-κB signaling pathway [97], so 
as simvastatin[98] and theobromine [99]. Garlic derived 
S-Allyl mercaptocysteine (SAMC) also has cartilage pro-
tection, but it mainly activates nuclear factor-E2 related 
factor (Nrf2), accompanied by downregulation of NOX4, 
resulting in improvement of collagen damage and main-
tenance of redox homeostasis [100]. At present, it is 
known that transcription factors that maintain cell redox 
balance and signal transduction can reduce intracellu-
lar oxidative stress damage [101]. Yao x et  al. observed 
that Ferrostatin-1, a specific inhibitor of iron death, can 
reduce IL-1β-induced ROS accumulation, activate Nrf2 
antioxidant system and rescue the expression of type II 
collagen [102]. Similarly, studies have found that a natural 
naphthoquinone compound β-hydroxyisovalerylshikonin 
(β-HIVs) can also inhibit IL-induced ROS production 
and chondrocyte metabolism through Nrf2, and down-
regulate the expression of ADAMTS5 and MMP13 
[103]. Activation of nuclear receptor subfamily 1 group 
D member 1 (NR1D1) enhance Nrf2 pathway as well 
[104]. What’s more, Recent studies have shown that 
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Licochalcone a (Lico a) can reduce the level of IL-1β and 
NLRP3 in  vitro, and inhibit cell death via Nrf2/HO-1/
NF-κB signal axis, to improve the degradation of carti-
lage extracellular matrix [105]. Normoline (NOM)-pre-
treated chondrocytes were also proved to inhibit NF-κB 
signal transduction by dissociating kelch like ECH asso-
ciated protein 1 (Keap1) /Nrf2 path, effectively inhibiting 
inflammatory factor recruitment and ROS over regula-
tion [106]. In conclusion, the weakening of NF-κB path-
way and the activation of Nrf2 pathway can reduce IL-1β 
and ROS, reducing the degree of oxidative stress and pro-
tect chondrocytes.

It is worth mentioning, NOX4 is the only subtype 
expressed in chondrocytes in the NOX family, mainly 
cause ROS overproduction in chondrocytes after IL-1β 
stimulation [107, 108]. Besides, Heme oxygenase-1 
(HO-1) is very important for NOX4 activity, which sig-
nificantly downregulates the expression of MMP-1and 
NOX4 in IL-1β-treated chondrocytes [109]. Later studies 
further confirmed that IL-1β mediated NOX4 to stimu-
late the upregulation of MMP-1 and MMP-13 [110], 
which is consistent with the research results of Fu D et al. 
[111]. The regulation of oxidative stress and the relief of 
neuroinflammation may provide an effective reference 
for clinical treatment.

Conclusion
The repair of epiphyseal cartilage injury is regulated by 
many factors, and the inflammatory response is directly 
related to the growth, development and structural func-
tion of the repaired bone. Studies have shown that IL-1β 
levels are significantly elevated which can affect chondro-
cytes through a variety of ways, including the reduction 
of SOX-9 expression, the promotion of MMP synthesis, 
and further inhibit the interaction between proteoglycan 
and collagen II to achieve EMC degradation. In addi-
tion, IL-1β acts directly or indirectly on chondrocytes 
through lipids to promote lipolysis, resulting in abnormal 
levels of adiponectin and leptin, affecting lipid metabo-
lism, and promoting the development of inflammation. 
In addition, IL-1β also causes irreversible damage to 
chondrocytes through multiple miRNA and circRNA 
targeting effects or enhancement of the response to oxi-
dative stress, which has been effectively demonstrated 
in a variety of cellular or animal experiments and repre-
sents some of the advance in the understanding of the 
mechanisms of osteoarticular chondrocytes and growth 
plates repair. Further experimental work is also needed to 
deeply investigate the exact mechanism by which IL-1β 
affects growth plate chondrocytes to reduce or eliminate 
the effects of various harmful factors on the epiphyseal 
plate as early as possible to give new research directions 
in repair after epiphyseal plate injury.
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