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Abstract 

Background:  Hepatic encephalopathy (HE) is a reversible syndrome of brain dysfunction caused by advanced liver 
disease. Weighted gene co-expression network analysis (WGCNA) could establish a robust co-expression network to 
identify the hub genes and underlying biological functions. This study was aimed to explore the potential therapeutic 
targets in HE by WGCNA.

Results:  The green and brown modules were found to be significantly associated with the development of HE. Func-
tional enrichment analyses suggested the neuroinflammation, neuroimmune, extracellular matrix (ECM), and coagula-
tion cascade were involved in HE. CYBB and FOXO1 were calculated as hub genes, which were upregulated in the HE 
patients. Tamibarotene and vitamin E were suggested as possible drug candidates to alleviate HE.

Conclusions:  It is the first time to analyze transcriptomic data of HE by WGCNA. Our study not only promoted the 
current understanding of neuroinflammation in HE, but also provided the first evidence that CYBB and FOXO1 played 
pivotal roles in the pathogenesis of HE, which might be potential biomarkers and therapeutic targets. Tamibarotene 
might be a novel drug compound against HE.
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Background
Hepatic encephalopathy (HE) is a common but seri-
ous complication of advanced liver disease due to liver 
insufficiency, which is accompanied by a spectrum of 
neuropsychiatric manifestations and leads to high mor-
bidity and mortality [1–3]. Therefore, effective therapeu-
tic strategies are essential to improve the prognosis of 
HE.

In-depth understanding of pathophysiology in 
HE is the basis for effective therapeutic strategies. 

Hyperammonemia remains the central pathophysiologi-
cal process in the pathogenesis of HE. However, previ-
ous studies have highlighted the limited predictive value 
of blood ammonia in HE, which suggested the existence 
and importance of other factors [4, 5]. Besides hyperam-
monemia, overwhelming evidence has demonstrated the 
important role of systemic and central inflammation, 
malnutrition, gut–liver–brain axis, and neurotransmit-
ters during the development of HE [1, 5, 6].

During the past decades, an emerging role of neu-
roinflammation in the development of HE has been 
demonstrated [7, 8]. As a key pathogenic factor in 
HE, neuroinflammation can be induced by inflamma-
tory cytokines, chemokines, and oxidative stress, which 
involves various cell types in brain including glial cells 
and peripherally recruited immune cells [1, 8, 9]. Mean-
while, several anti-inflammatory strategies were proven 
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to be effective in ameliorating HE. Rifaximin protected 
against HE in cirrhotic patients by modulating gut-
derived inflammation [10]. Babao Dan exerted anti-
inflammatory effects and improved clinical minimal HE 
[11]. However, those available therapies were proved to 
be mainly against peripheral inflammation. Novel strat-
egies were still lacking to directly alleviate the central 
inflammation. Moreover, most of anti-inflammatory 
therapies nonspecifically suppressed the inflammatory 
response, while targeted therapies were lacking to pre-
cisely impede the development of HE. Therefore, seeking 
for novel therapeutic targets against central inflamma-
tion is an important issue.

In recent years, a powerful method for systematic anal-
ysis called weighted gene co-expression network analy-
sis (WGCNA) has been widely applied in bioinformatic 
analysis of various diseases [12]. The robust co-expres-
sion network could cluster genes with similar expression 
patterns into modules to identify the underlying bio-
logical functions. Moreover, the hub gene identification 
would reduce the bias brought by confounding factors, 
offering insight into potential therapeutic targets of the 
interested diseases. Therefore, in the current study, we 
used WGCNA to identify the clinically significant mod-
ules and hub genes of HE in cirrhotic patients, which 
might provide further evidence for novel therapeutic tar-
gets of HE.

Results
Construction of the HE co‑expression network 
and identification of the modules
After the removal of the outlier sample (GSM1027458) 
by clustering analysis, a total of 30 samples were involved 
in the WGCNA, including 12 healthy control samples, 7 
cirrhosis samples, and 12 HE samples (Additional file 1: 
Figure S2). A total of 16,416 genes were annotated, 
when 25% of the genes with the greatest variance were 
selected to construct the co-expression network. Based 
on the 4104 selected genes, the optimal soft-threshold-
ing power β was selected as 4 to ensure the scale-free 
topology (Fig. 1A). When the power was 4, the scale-free 
topology (R2) was 0.93 (Fig. 1B). After the optimal soft-
thresholding power β was selected, the adjacency matrix 
of selected genes was constructed and subsequently 
transformed to TOM. Thus, dissTOM of 4104 selected 
genes was obtained and shown by the network heatmap 
plot (Additional file 1: Figure S1). Then, the modules with 
a minimum size of 30 were identified by the dynamic 
tree cut method (Fig.  1C). All 4104 genes were divided 
into certain clusters, while no gene was assigned to the 
grey module. Moreover, the average linkage hierarchi-
cal clustering was performed based on the average dis-
tance between the modules. Finally, seven modules of 

co-expressed genes were obtained after merging simi-
lar modules with a merging threshold function at 0.25 
(Fig. 1C).

Identification of the HE modules
After merging similar modules, the MEs of the seven 
obtained modules were calculated (Fig. 2C, D, Additional 
file 1: Figure S3A-E). To identify the clinically significant 
modules associated with HE, the Pearson’s correlations 
between the MEs of the seven modules and the clinical 
traits were obtained (Fig.  1D). According the module–
trait relationships, the brown module (r = 0.7, P = 2e−05) 
and the green module (r = 0.68, P = 4e−05) were strongly 
associated with HE (Fig.  1D). Meanwhile, according to 
the correlations between the MEs and the interested clin-
ical trait HE, a hierarchical clustering dendrogram and 
a heatmap were constructed, indicating that the brown 
module and the green module were tightly correlated to 
HE (Fig.  2A). Moreover, GS for HE was also calculated 
in each module. The mean absolute values of GS in each 
module were calculated and visualized, suggesting that 
the brown and green modules were the clinically signifi-
cant modules with the highest GS for HE (Fig. 2B). Fur-
thermore, the MM values were obtained, followed by the 
correlation analysis between the GS for HE and the MM 
for genes in the seven modules, respectively (Fig.  2E, F, 
Additional file  1: Figure S4A-E). With a comprehen-
sive consideration of the correlation coefficients and the 
p-values, the brown module (r = 0.71, P = 2.6e−69) and 
the green module (r = 0.7, P = 3.6 e−105) were selected 
as clinically significant modules, which were consistent 
with the above results (Fig. 2E, F). Taken together, with 
three different approaches, we could conclude that the 
brown module and the green module were HE modules 
exhibiting the strongest associations with HE. Otherwise, 
the functional enrichment analysis of the other five mod-
ules did not achieve satisfactory results. Thus, we would 
focus on these two HE modules in the following inves-
tigations to further identify the biological functions and 
hub genes.

Functional enrichment analysis and hub genes 
identification of the brown module
Based on the clustered genes in the brown module, 
functional enrichment annotations were identified by 
GO enrichment analysis and KEGG pathway enrich-
ment analysis. The top 10 significant terms of BP in GO 
enrichment analysis were visualized, suggesting that 
the genes in the brown module were associated with 
neuroinflammation- and neuroimmune-related biologi-
cal processes (Fig. 3A). For KEGG pathway enrichment 
analysis, the top 10 enriched pathways were mainly 
related to neuroinflammation and neuroimmune as well 
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(Fig. 3B). To identify the hub gene in the brown module, 
top 20 genes with the highest IC were extracted to con-
struct the key network, which were defined as central 
genes. The connections among the central genes were 
visualized (Fig. 3C, Additional file 1: Table S1). Finally, 
CYBB was selected as the hub gene of the brown mod-
ule as it had the highest degree of connections among 
20 genes. Further analysis focusing on CYBB was 

performed. It was demonstrated that the expression 
level of CYBB was significantly upregulated in HE sam-
ples when compared to health control samples and cir-
rhosis samples, respectively (Fig. 3D). In addition, ROC 
analysis highlighted that CYBB could predict the diag-
nosis of HE (AUC = 0.78) (Fig.  3E). Meanwhile, CYBB 
was also capable of distinguishing between HE and cir-
rhosis (AUC = 0.974) (Fig. 3F).

Fig. 1  Construction of WGCNA. a Analyses of network topology for various soft-thresholding powers (weighting coefficient β), and the scale-free 
topology were set as 0.9 roughly. b Histogram of connectivity distribution, and the scale-free topology (R2 = 0.93) when β = 4. c Clustering 
dendrogram of the genes involved. d Heatmap of the correlations between MEs and clinical traits. Correlation coefficients and corresponding p 
values are shown in the rectangles and the brackets, respectively
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Fig. 2  Identification of clinically significant modules. a Hierarchical clustering dendrogram of MEs and HE. Heatmap plot shows the adjacencies 
among them. Red color indicates positive correlation, while blue color indicates negative correlation. b Bar plots of mean absolute values of GS 
across modules. Higher mean GS suggests more significant associations between the module and HE. c, d The upper plots show the expression 
levels of all genes in the brown or green module (y-axis) among all samples (x-axis). The lower plots show the corresponding MEs (y-axis) versus the 
samples (x-axis). e, f Scatterplots of GS for HE versus MM in the brown or green module
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Fig. 3  Functional enrichment analysis and hub genes identification of the brown module. a Bar chart of the top 10 significant terms of BP in GO 
enrichment analysis of the brown module. b Bubble diagram of the top 10 enriched pathways in KEGG pathway enrichment analysis of the brown 
module. c Network depiction of the brown module. The top 20 genes with the highest IC were involved. d Violin plots with included boxplots of 
CYBB expression levels among three groups. e ROC analysis to evaluate expression level of CYBB in predicting cirrhosis. f ROC analysis to evaluate 
expression level of FOXO1 in distinguishing HE from cirrhosis
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Functional enrichment analysis and hub genes 
identification of the green module
GO enrichment analysis and KEGG pathway enrichment 
analysis were utilized to identify the functional enrich-
ment annotations in the green module. The GO enrich-
ment analysis showed that the green module was mainly 
associated with neuroinflammation-related biological 
processes (Fig. 4A). For KEGG pathway enrichment anal-
ysis, neuroinflammation-, ECM-, and coagulation-related 
pathways were significantly enriched in the green mod-
ule (Fig. 4B). To identify the hub gene, the top 20 genes 
with the highest IC were visualized, which were defined 
as central genes (Fig.  4C,  Additional file  1: Table  S2). 
After constructing the key network, TUBA1C was the 
gene with the highest degree of connections. However, 
there was no significant difference among the expression 
levels of TUBA1C in normal, cirrhosis, and HE groups. 
Alternatively, FOXO1 was selected as the hub gene of 
the green module, which had the second highest degree 
of connections. An elevated expression level of FOXO1 
in HE samples was observed compared to healthy con-
trol samples (Fig. 4D). Meanwhile, ROC analysis showed 
that the high expression of FOXO1 could well predict the 
existence of HE (AUC = 0.902) and distinguish HE from 
cirrhosis (AUC = 0.805) (Fig. 4E, F).

Identification of candidate drugs
Based on the central genes in the brown and the green 
modules, candidate drugs were identified, respectively. 
For both HE modules, top 10 drug molecules with sig-
nificant p-values and q-values were shown, which might 
be potential therapeutic agents against HE. Tamibarotene 
was the top candidate drug of the brown module with the 
lowest p-value and q-value (Table 1). Meanwhile, VITA-
MIN E was identified as the top candidate drug of the 
green module (Table 2).

Changes in glial molecular markers
Overwhelming evidence has suggested the important role 
of glial cell activation during the pathogenesis of HE [8, 
13, 14]. Therefore, after we obtained a thorough picture 
of the gene expression patterns in HE, further analysis 
was conducted to investigate the specific expression pat-
terns of astrocyte activation and microglial polarization. 
Firstly, we adopted specific markers of reactive astrocyte 
subpopulations, which could represent the A1 and A2 
subtypes, respectively [15, 16]. The expression levels of 
the astrocyte-specific markers among three groups were 
shown by line charts (Fig. 5A, B). We could observe that 
the A1 subtype-related markers (FKBP5, GBP2, PSMB8, 
and SRGN) were remarkably elevated in HE samples 
compared to healthy control samples and cirrhosis sam-
ples (Fig. 5A). On the other hand, the A2 subtype-related 

markers exhibited mixed patterns of changing (Fig. 5B). 
Only TGM1 showed a downward trend, while PTGS2, 
PTX3, and SLC10A6 did not show notable changes. 
Interestingly, B3GNT5 and EMP1 were upregulated in 
HE samples, which was probably a compensatory upreg-
ulation. Meanwhile, the polarization status of microglia 
was also investigated. The microglia-specific markers 
for M1 and M2 subtypes were selected to represent the 
subpopulations of microglia [16]. According to the line 
chart, it was obvious that most of the markers in the M1 
group (HLA-DQB1, IL-6, and TNF) were upregulated in 
HE samples. Only NOS2 exhibited a slightly downward 
trend (Fig. 5C). As for the markers in the M2 group, only 
MRC1 was elevated in HE samples, especially when com-
pared to cirrhosis samples. ARG1 and TGFB1 did not 
show notable changes among three groups (Fig. 5D).

Hub genes verification and GSEA in the rat model of HE
To verify the hub genes in the rat model, HE in rats was 
induced by BDL. Based on transcriptomic data of the rat 
brains, we compared the expression levels of the cen-
tral genes in two HE modules. Four central genes in the 
brown module and one central gene in the green module 
were not identified in RNA sequencing that might be due 
to low expression level. According to the heatmaps, both 
CYBB and FOXO1 were significantly upregulated in the 
brains of BDL rats (Fig. 6A, B). The upregulation of CYBB 
and FOXO1 was further validated by RNA sequencing of 
the brains of BDL rats (Additional file 1: Figure S5A, B). 
Moreover, GSEA was performed to figure out the poten-
tial functions. The gene sets of dopaminergic synapse and 
spinocerebellar ataxia were enriched and downregulated, 
while glutathione metabolism and tyrosine metabo-
lism were enriched as upregulated gene sets in BDL rats 
(Fig. 6C–F).

Discussion
In the current study, we found that neuroinflammation 
played a pivotal role in the pathogenesis of HE. CYBB 
and FOXO1 might be major regulators during the devel-
opment from cirrhosis to HE. Moreover, microglia and 
astrocytes were activated to a pro-inflammatory and neu-
rotoxic status, which facilitated the progression of HE. 
To the best of our knowledge, it was the first time to use 
WGCNA to analyze brain transcriptomic datasets from 
human, which emphasized the importance of neuroin-
flammation in HE. Furthermore, our study provided the 
first evidence that CYBB and FOXO1 might be potential 
biomarkers and therapeutic targets of HE in cirrhotic 
patients.

In the functional enrichment analysis, our results sug-
gested a remarkable overlap of enriched biological pro-
cesses and signaling pathways between two HE modules. 
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Fig. 4  Functional enrichment analysis and hub genes identification of the green module. a Bar chart of the top 10 significant terms of BP in GO 
enrichment analysis of the green module. b Bubble diagram of the top 10 enriched pathways in KEGG pathway enrichment analysis of the green 
module. c Network depiction of the green module. The top 20 genes with the highest IC were involved. d Violin plots with included boxplots 
of FOXO1 expression levels among three groups. e ROC analysis to evaluate expression level of FOXO1 in predicting cirrhosis. f ROC analysis to 
evaluate expression level of FOXO1 in distinguishing HE from cirrhosis
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Interestingly, we also observed that the brown module 
was negatively correlated with cirrhosis, while the green 
module was negatively correlated with healthy con-
trol. Taken together, we could conclude that there were 
similar underlying mechanisms during the development 
of cirrhosis and the development from cirrhosis to HE, 
including neuroinflammation, neuroimmune, ECM, and 
coagulation cascade.

According to our results, the neuroinflammation in 
HE was mainly associated with inflammatory cytokine 
release, macrophage activation, and inflammatory sign-
aling pathways. Overwhelming evidence has suggested 
the vital role of neuroinflammation during the pathogen-
esis of HE [17, 18]. Our previous study also highlighted 
the importance inflammation by functional enrichment 
analysis based on lncRNAs in the serum transcriptome of 
HE, which showed similar results as those in the current 
study [6]. Moreover, Balzano et al. has reported the pro-
tective effects of anti-TNF-α treatment against inflamma-
tory cytokine release and microglial activation in the rat 
brains [19]. We also found that VEGF-C overexpression 

could alleviate neuroinflammation by enhancing menin-
geal lymphatic drainage, which eventually improved HE 
in cirrhotic rats [8]. Therefore, it was obvious that neuro-
inflammation was a major contributor to the progression 
of HE. Anti-inflammatory treatments could be effective 
therapeutic strategies.

In addition to the significant role of neuroinflammation 
in HE, the importance of neuroimmune, ECM, and coag-
ulation cascade should not be neglected. It was reported 
that immune paralysis, defined by decreased HLA-DR 
expression on monocytes, was associated with overt HE 
(OHE) in liver cirrhosis and ACLF [20, 21]. Moreover, 
elevated serum levels of ECM-associated proteins were 
observed in HE, including osteopontin and 7S domain of 
type IV collagen (4COL7S) [22, 23]. Otherwise, as coagu-
lopathy was a common comorbidity of liver cirrhosis, 
disturbed coagulation in HE might be attributed to liver 
insufficiency [24, 25]. Interestingly, the serum level of 
4COL7S was also correlated to coagulopathy in ALF, sug-
gesting a complicated regulatory network underlying the 
pathophysiology of HE [23].

Table 1  Top 10 significant drugs targeting the genes in brown module

Term p-value q-value overlap_genes

Tamibarotene CTD 00002527 0.000013 0.003889 [HLA-DMB, ALOX5AP, 
CYBB, CYBA, LGALS9, 
AIF1]

leukotriene C4 CTD 00007223 0.000128 0.019335 [SYK, ALOX5AP]

dioxidanide CTD 00006819 0.000620 0.062370 [CYBB, CYBA]

valproic acid HL60 DOWN 0.000921 0.066995 [SYK, PTPN6, LAIR1]

Sodium dichromate CTD 00000827 0.001109 0.066995 [SLC7A7, AIF1, LAIR1]

TACROLIMUS MONOHYDRATE CTD 00007118 0.001519 0.076433 [CYBA, CCR3]

NADP( +) BOSS 0.003302 0.132900 [CYBB, CYBA]

pergolide HL60 UP 0.003521 0.132900 [RBM47, FCGR2A, CYBB]

mebendazole HL60 UP 0.004703 0.157814 [RBM47, FCGR2A, SLC7A7]

Medroxyprogesterone acetate CTD 00006623 0.006509 0.166665 [C1QA, ALOX5AP, AIF1]

Table 2  Top 10 significant drugs targeting the genes in green module

Term p-value q-value overlap_genes

VITAMIN E CTD 00006994 0.000006 0.003297 [ITPKB, TUBA1C, PON2, TRIP6, MSN, STOM, PBXIP1, F3, FOXO1]

anisomycin HL60 DOWN 0.000041 0.011218 [ITPKB, PON2, MSN, CYBRD1, STOM, PBXIP1, METTL7A]

quercetin HL60 DOWN 0.000259 0.028065 [PON2, METTL7A]

wortmannin CTD 00000504 0.000397 0.028065 [YAP1, F3, FOXO1]

rifabutin PC3 UP 0.000438 0.028065 [PLSCR4, STOM, FOXO1]

VALPROIC ACID CTD 00006977 0.000529 0.028065 [YAP1, HDDC2, PON2, SLC1A3, CYBRD1, PAX6, PBXIP1, F3, 
FOXO1, ITPKB, RAB34, PLSCR4, TRIP6, STOM, METTL7A, PLTP]

Medroxyprogesterone acetate CTD 00006623 0.000533 0.028065 [SLC1A3, STOM, F3, FOXO1]

sodium benzoate BOSS 0.000620 0.028065 [PON2, F3]

2,6-Di-tert-butyl-4-methylphenol CTD 00005548 0.000724 0.028065 [PON2, F3]

MS-275 PC3 UP 0.000783 0.028065 [PLSCR4, STOM, F3, FOXO1]
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Following the functional enrichment analysis, we per-
formed further analysis in HE modules. In the brown 
module, CYBB was regarded as the hub gene. CYBB, 
also known as gp91-phox, is the catalytic subunit of the 
phagocyte-like NADPH oxidase (NOX2) [26]. Genetic 
deletion and overexpression of CYBB could modulate 
the expression of NOX2 [27–29]. In another word, the 
expression level and catalytic activity of NOX2 largely 
depended on the expression of CYBB. The upregulation 
of CYBB we observed in our study suggested an upreg-
ulation of NOX2 in the brain of HE patients. Therefore, 
our results showed that brain NOX2 played an essential 
role in the pathogenesis of HE. Previous in  vitro stud-
ies have demonstrated that ammonia could induce the 
activity of NOX family in astrocytes, which could be 

reversed by NOX inhibitor apocynin [30, 31]. Moreover, 
reduction of ammonia by ornithine phenylacetate also 
led to a decrease of brain NOX1 in BDL rats [32]. How-
ever, to the best of our knowledge, the direct relationship 
between NOX2 and HE has never been reported. NOX2 
could mediate neuroinflammation in various CNS disor-
ders, when it most prominently affected astrocytes and 
microglia via ROS generation [33–36]. Thus, we could 
speculate that brain NOX2 was an important positive 
regulator of oxidative stress in HE, which exacerbated 
neuroinflammation. Interestingly, our GSEA in BDL rats 
also highlighted an upregulation in glutathione metabo-
lism, which was an essential biological process involved 
in oxidative stress. Furthermore, various kinds of NOX2 
inhibitors have been developed [37, 38]. The protective 

Fig. 5  Changes in glial molecular markers among three groups. a Line chart of A1 reactive astrocyte-specific markers. b Line chart of A2 reactive 
astrocyte-specific markers. c Line chart of M1 microglia-specific markers. d Line chart of M2 microglia-specific markers
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Fig. 6  Hub genes verification and GSEA in BDL rats. a The heatmap of the central genes in the brown module between control and BDL groups 
in GSE149227. n = 3 (control) and n = 3 (BDL). b The heatmap of the central genes in the green module between control and BDL groups in 
GSE149227. n = 3 (control) and n = 3 (BDL). c–f Gene sets enriched in the brains from BDL rats by GSEA
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effects of NOX2 inhibitors against neuroinflammation 
have been revealed, while the microglial cell was a com-
mon target [39–41]. Thus, NOX2 could be a potential 
therapeutic target of HE, which warranted further trans-
lational study.

In the green module, the transcription factor FOXO1 
was identified as the hub gene, which was highly 
expressed in HE samples and BDL rats. As an important 
transcriptional activator, FOXO1 played a vital role in 
metabolism modulation, immune response, cell fate deci-
sions, etc. [42]. In CNS disorders, FOXO1 could balance 
energy metabolism, activate neuroinflammation, induce 
autophagy and exert anti-oxidative effects [43–45]. How-
ever, both upstream and downstream regulatory mecha-
nisms of FOXO1 in HE remain unclear. Previous study 
highlighted the importance of FOXO1 phosphorylation 
to modulate the transcriptional activity, when PI3K/
Akt and MAPK signaling pathways were significantly 
enriched in the green module [46, 47]. For the down-
stream regulation of biological processes, FOXO1 was a 
transcriptional activator of GSDMD gene in microglia, 
which enhanced microglia pyroptosis and neuroinflam-
mation [48]. On the other hand, the elevated FOXO1 in 
HE might be an anti-oxidative signal, when FOXO1 was 
considered as a sensing element in anti-oxidative sign-
aling [42]. However, contradictory results have been 
observed for the role of FOXO1 in oxidative stress [42, 
49–51]. Therefore, loss-of-function experiments were 
required to figure out the exact role of FOXO1 in HE. 
CUT&Tag profiling or chromatin immunoprecipitation 
sequencing might help to identify the transcriptional tar-
gets. Moreover, FOXO1 could directly regulate tyrosine 
hydroxylase in dopaminergic neurons, when GSEA in 
BDL rats suggested the alterations of dopaminergic syn-
apse and tyrosine metabolism in HE [52]. Furthermore, 
potential translational value of FOXO1 should not be 
neglected. Targeted interventions might affect various 
related biological processes regulated by FOXO1. Several 
therapies antagonizing FOXO1 were under research in 
cancers and metabolic disorders [53]. However, for the 
clinical application of FOXO1-targeted therapy in HE, 
there is still a long way to go.

Additionally, tamibarotene and vitamin E were iden-
tified as the peak drug candidates of two HE modules, 
respectively. Overwhelming evidence has suggested that 
vitamin E was an anti-oxidant, which could alleviate oxi-
dative stress and astrocyte swelling induced by ammonia 
in vitro [54, 55]. Animal studies also highlighted the anti-
oxidative effects of vitamin E to protect against TAA-
induced acute HE in the rat model [56, 57]. Furthermore, 
the combination of vitamin E with other vitamins and 
zinc could significantly improve HE in cirrhotic patients 
[58]. Tamibarotene, also known as Am80, was a retinoic 

acid receptor (RAR) agonist to treat acute promyelo-
cytic leukemia (APL) [59]. Tamibarotene could protect 
dopaminergic neurons from microglia-mediated inflam-
matory damages [60]. Previous clinical studies have also 
reported the anti-inflammatory effects of tamibarotene 
in CNS disorders including Alzheimer’s disease and 
intracerebral hemorrhage [61, 62]. However, the effects 
of tamibarotene on HE remained unknown, which war-
ranted further clinical trials.

Furthermore, it was worth mentioning that the vital 
role of glial cells in HE has already been uncovered, 
especially for microglia and astrocytes [8, 14]. Activated 
microglial cells were capable of inducing neurotoxic reac-
tive astrocytes in neuroinflammation [15]. Thus, we also 
investigated the changes in glial markers, which showed 
a remarkable upregulation of M1- and A1-specific mark-
ers. On the other hand, the changes in M2- and A2-spe-
cific markers exhibited mixed patterns. In conclusion, 
our results revealed that glial cells were polarized to pro-
inflammatory and neurotoxic statuses during the patho-
genesis of HE, which further emphasized the importance 
of glial cells in HE.

The current study does have some limitations. Firstly, 
due to the lack of clinical characteristics, we could not 
identify the hub genes related to those more specific 
clinical parameters including clinical grading and the 
psychometric hepatic encephalopathy score (PHES). 
Secondly, gain- and loss-of-function experiments in ani-
mal models or cultured cells were also needed to further 
validate the importance of the hub genes in HE. Thirdly, 
the gene expression profiles for WGCNA were measured 
in post-mortem brain samples from human. There were 
confounding factors that would influence the consistency 
of sequencing results among the samples.

Conclusions
In our study, we have identified two clinically signifi-
cant modules related to HE based on WGCNA, and 
confirmed the important role of neuroinflammation 
and neuroimmune in the development of HE. In addi-
tion, CYBB and FOXO1 were identified as hub genes 
and highly expressed in patients with HE. Tamibaro-
tene might be a potential therapeutic agent against HE. 
Finally, we hope the current study could provide further 
evidence and ideas for future investigations in targeted 
therapy of HE.

Materials and methods
Dataset download and pre‑processing
The HE expression profiles and the corresponding clini-
cal information of the GSE41919 and GSE57193 data-
sets were systemically extracted from the GEO (http://​
www.​ncbi.​nlm.​nih.​gov/​geo/) database. The probe IDs 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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were converted into gene symbols. Expression values of 
genes corresponding to multiple probes were calculated 
by averaging the probe values. For the missing data in the 
gene expression matrices, imputed data were estimated 
by k-nearest neighbor (KNN) approach with a k = 10 
[63]. The ComBat package was utilized to remove the 
batch effect and merge them into a single dataset for fur-
ther analysis [64]. The merged dataset containing 31 sam-
ples consisted of three clinically defined groups: healthy 
control (n = 12), cirrhosis (n = 7), and HE (n = 12). 
According to cluster analysis, one sample (GSM1027458) 
was removed as an outlier (Additional file 1: Figure S2). 
Finally, a total of 30 samples were involved in the con-
struction of co-expression network and further analysis, 
which included 12 healthy control samples, 7 cirrhosis 
samples, and 11 HE samples.

Construction of co‑expression network
WGCNA R package were used to construct the weight 
gene co-expression network [12]. Instead of using all 
16,416 annotated genes to construct the co-expres-
sion network, we selected a quarter of the genes with 
the greatest variance. A total of 4104 genes were finally 
involved in the WGCNA. Firstly, after the removal of the 
outlier, a correlation matrix was constructed according 
to Pearson’s correlations between all pairwise genes. A 
proper weighting coefficient β was selected to satisfy the 
scale-free topology. Then the adjacency matrix was con-
structed based on the correlation matrix with the weight-
ing coefficient β. The adjacency matrix was subsequently 
transformed to topological overlap matrix (TOM). The 
average linkage hierarchical clustering was utilized to 
identify the genes with similar expression patterns and 
obtain hierarchical clustering tree based on TOM-based 
dissimilarity (dissTOM). Then the modules were identi-
fied by dynamic tree-cutting method with a minimum 
size of 30. Furthermore, the module eigengenes (MEs) 
of each module were calculated, which were defined as 
the first principal components and representative of the 
overall expression levels of the corresponding modules. 
Cluster analysis was performed based on the average dis-
tance between modules, which was determined by the 
Pearson’s correlation analysis between MEs of divided 
modules. According to the cluster analysis, the modules 
with high similarity were merged with a merging thresh-
old function at 0.25 [65].

Identification of clinically significant modules
After merging the modules with high similarity based 
on the average distance between the MEs of each mod-
ule, the MEs of the modules were calculated again. The 
Pearson’s correlation analysis was conducted between 
each clinical traits and the MEs of each module. P < 0.05 

was considered as a significant correlation between the 
module and the clinical trait. Moreover, gene significance 
(GS) was determined by Pearson’s correlation analysis 
between the clinical traits and the expression levels of 
each gene in the modules, respectively [12]. The mean 
absolute values of GS in each module were calculated to 
represent the correlation between the module and the 
clinical trait in another way.

Identification of hub genes
Hub genes were defined as the genes highly intercon-
nected to other genes of the module. To identify the hub 
genes, module membership (MM) was calculated to eval-
uate the correlation between genes and modules. MM 
was determined by the correlation between the expres-
sion levels of genes and the MEs of each module [5]. And 
the intramodular connectivity (IC) was determined by 
the sum of the correlation coefficients with other genes 
in the given molecule. A gene with a higher IC tended to 
have higher MM values, which suggested a more deci-
sive role in the given module [66]. The top 20 genes with 
the highest IC were selected as central genes for further 
analysis. The central genes and the connections among 
them were subsequently imported into Cytoscape 3.8.0 
to visualized the key networks. Finally, the hub gene was 
defined as the gene of the highest degree within the key 
networks.

Identification of candidate drugs
According to the top 20 genes with the highest IC in 
two HE modules, drug compounds recognition was per-
formed, respectively, to identify the drugs with potential 
therapeutic effects on HE. Candidate drugs were pre-
dicted with the Drug Signatures Database (DSigDB) on 
the Enrichr platform (https://​maaya​nlab.​cloud/​Enric​hr/) 
[67, 68]. The final results were generated with p-values 
indicating the correlation of the gene with the predicted 
drug. The drugs were deemed as having potential thera-
peutic effects according to the p-values.

Functional enrichment analysis of clinically significant 
modules
Functional enrichment analysis including gene ontology 
(GO) enrichment analysis and Kyoto encyclopedia of 
genes and genomes (KEGG) pathway enrichment analy-
sis were performed to investigate the biological functions 
and related signaling pathways of the genes within the 
clinically significant modules. Based on clusterProfiler 
package, central genes with MM > 0.6 were selected for 
functional enrichment analysis [69]. The cut-off criteria 
for identification of significantly enriched GO annota-
tions and KEGG pathways were set as P < 0.05.

https://maayanlab.cloud/Enrichr/
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Transcriptomic analysis of BDL rats
The transcriptomic dataset of the brains from BDL rats 
(GSE149227) was downloaded from the GEO database 
[8]. FastQC software was used for quality control checks 
on raw fastq files. The reference genome of rats (RGSC 
6.0/rn6) was acquired from the database at the University 
of California, Santa Cruz (https://​genome.​ucsc.​edu/​cgi-​
bin/​hgTab​les). HISAT2 was utilized for the construction 
of genome index and the alignment of reads to the ref-
erence genome. The featureCounts command was used 
to calculate the number of fragments mapped to corre-
sponding genes. Subsequently, based on the processed 
RNA-sequencing data, DESeq2 package was utilized to 
compare the expression levels of the central genes in the 
clinically significant modules between control group and 
BDL group [70]. The heatmaps were drawn by pheat-
map package. Meanwhile, gene set enrichment analysis 
(GSEA) was also conducted by clusterProfiler package 
[69]. The gene set database consisted of the chemical and 
genetic perturbations of curated gene sets, biological pro-
cess, cellular component, and molecular function in the 
Molecular Signatures Database. The number of permuta-
tions was set as 1000, while other parameters were set as 
default values. The cut-off criteria for identification of the 
statistically significant gene sets were set as P < 0.05. Fig-
ures of GSEA were drawn by enrichplot package.

Statistical analysis
R language 3.4.0 and GraphPad Prism 8.0.1 (San Diego, 
CA) were utilized for the statistical analysis. All the con-
tinuous variables were presented as the mean ± SEM. For 
two-group comparisons, unpaired Student’s t test was 
used, while one-way ANOVA followed by post hoc Tuk-
ey’s test were used for multiple comparisons among three 
or more groups. The correlations were analyzed by the 
Pearson’s correlation analysis. Receiver operating char-
acteristic (ROC) analysis was implemented using pROC 
package [71]. P < 0.05 indicated statistically significant 
differences.
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