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Abstract 

Background:  Breast cancer (BC) is a highly malignant and heterogeneous tumor which is currently the cancer with 
the highest incidence and seriously endangers the survival and prognosis of patients. Aging, as a research hotspot in 
recent years, is widely considered to be involved in the occurrence and development of a variety of tumors. However, 
the relationship between aging-related genes (ARGs) and BC has not yet been fully elucidated.

Materials and methods:  The expression profiles and clinicopathological data were acquired in the Cancer Genome 
Atlas (TCGA) and the gene expression omnibus (GEO) database. Firstly, the differentially expressed ARGs in BC and 
normal breast tissues were investigated. Based on these differential genes, a risk model was constructed composed of 
11 ARGs via univariate and multivariate Cox analysis. Subsequently, survival analysis, independent prognostic analysis, 
time-dependent receiver operating characteristic (ROC) analysis and nomogram were performed to assess its ability 
to sensitively and specifically predict the survival and prognosis of patients, which was also verified in the validation 
set. In addition, functional enrichment analysis and immune infiltration analysis were applied to reveal the relation-
ship between the risk scores and tumor immune microenvironment, immune status and immunotherapy. Finally, 
multiple datasets and real‐time polymerase chain reaction (RT-PCR) were utilized to verify the expression level of the 
key genes.

Results:  An 11-gene signature (including FABP7, IGHD, SPIB, CTSW, IGKC, SEZ6, S100B, CXCL1, IGLV6-57, CPLX2 and 
CCL19) was established to predict the survival of BC patients, which was validated by the GEO cohort. Based on the 
risk model, the BC patients were divided into high- and low-risk groups, and the high-risk patients showed worse 
survival. Stepwise ROC analysis and Cox analyses demonstrated the good performance and independence of the 
model. Moreover, a nomogram combined with the risk score and clinical parameters was built for prognostic predic-
tion. Functional enrichment analysis revealed the robust relationship between the risk model with immune-related 
functions and pathways. Subsequent immune microenvironment analysis, immunotherapy, etc., indicated that the 
immune status of patients in the high-risk group decreased, and the anti-tumor immune function was impaired, 
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which was significantly different with those in the low-risk group. Eventually, the expression level of FABP7, IGHD, SPIB, 
CTSW, IGKC, SEZ6, S100B, CXCL1, IGLV6-57 and CCL19 was identified as down-regulated in tumor cell line, while CPLX2 
up-regulated, which was mostly similar with the results in TCGA and Human Protein Atlas (HPA) via RT-PCR.

Conclusions:  In summary, our study constructed a risk model composed of ARGs, which could be used as a solid 
model for predicting the survival and prognosis of BC patients. Moreover, this model also played an important role in 
tumor immunity, providing a new direction for patient immune status assessment and immunotherapy selection.

Keywords:  Breast cancer (BC), Aging-related genes (ARGs), Survival, Tumor immune microenvironment, 
Immunotherapy

Introduction
BC is the most common malignant tumor in women, and 
is also the leading cause of cancer death among women. 
The number of new cases of BC worldwide reached 2.26 
million in 2020, making it the world’s most common 
cancer, accounting for 24.5% of all new cases of cancer 
among women, and the number of deaths among women 
reached 680,000, ranking first in the world. In China, 
there were 420,000 new cases of female BC in 2020, 
ranking first among all female malignant tumors [1–3]. 
With the rapid development of precision medicine, the 
early diagnosis technology and clinical treatment of BC 
have also made cutting-edge success and major break-
throughs. However, the mortality rate of BC remains 
high and the incidence of BC is gradually getting younger, 
which is a common cause of death in women under 45. 
What’s more important, patients with different sub-
types of BC respond differently to treatment regimens. 
For example, highly aggressive triple negative BC lacks 
specificity for endocrine therapy and molecular targeted 
therapy, contributing to the poor prognosis and early 
metastasis. Moreover, even if early treatment is effective 
for BC, about 30% of patients may recur and metastasize, 
more than 6–7% of new BC is diagnosed as advanced BC 
[4–6]. Meanwhile, BC is an inherited, highly heterogene-
ous disease [7] with a complex mechanism of carcinogen-
esis involving multiple genetic and epigenetics changes 
[8]. Therefore, it is very important to develop more effi-
cient and sensitive early diagnostic techniques and bio-
markers for predicting prognosis.

Aging is an inevitable time-dependent biological pro-
cess and a common feature of biological organisms. 
With the passage of time, the gradual accumulation of 
biological changes within the cell, the susceptibility to 
diseases such as cancer has gradually increased [9]. In 
cancer research, cancer and aging are seen as two sides 
of the same underlying cell and molecule, it is now gener-
ally accepted that aging is an independent risk factor for 
many chronic diseases such as cardiovascular diseases 
[10], neurodegeneration [11] and malignant tumors [12] 
such as rectal cancer and lung cancer, which is likely to 
promote carcinogenesis, tumor progression and cancer 

treatment resistance. But at the same time, aging is also 
defined as irreversible growth arrest, resulting in the 
inhibition of uncontrolled proliferation of tumor cells, 
which is extremely complex [13]. Therefore, the most 
important challenge is to analyze the correlation between 
candidate aging markers and their ability to predict the 
development and treatment of tumors. Recently, the 
use of ARGs as a biomarker for diagnosis or prognosis 
has attracted the attention of researchers in the field of 
oncology, providing a sensitive and efficient indicator 
and direction for the diagnosis and treatment of tumors. 
However, the prognosis of ARGs and its biological func-
tion in BC are still unclear.

In this study, we constructed a prognostic risk model 
consisting of 11 ARGs based on datasets from public 
databases to assess and predict survival outcomes, clini-
cal characteristics, gene mutations, and immune micro-
environment in BC patients. To some extent, it reveals 
the potential mechanism of BC and provides a new direc-
tion for the treatment of BC.

Materials and methods
Dataset acquisition
The transcriptional expression profiles and clinical char-
acteristics of BC patients were obtained from the Can-
cer Genome Atlas (TCGA) (https://​portal.​gdc.​cancer.​
gov) and GEO (GSE158309) (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/) databases, which contained 1109 BC tissues 
and 113 normal breast tissues in TCGA, as well as 327 
patients in GEO (Table 1).

Identification of differentially expressed aging‑related 
genes (ARGs)
A total of 307 human ARGs (Additional file 4: Table S1) 
were obtained from the Human Aging Genome Resource 
3. After extracting the expression files of ARGs, P < 0.05 
was considered as screening condition to show the differ-
ential expression of ARGs and transcription factors (TF) 
via “Limma”. Stepwise analysis such as functional enrich-
ment analysis and identification of WGCNA modules 
were employed to reveal the potential biological func-
tion of differentially expressed ARGs and the regulatory 
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network of TFs, which were displayed in a heatmap via 
the “heatmap” package.

Consensus cluster analysis
Consensus cluster analysis was carried out to classify 
patients into different group to ensure maximum differ-
ence between groups and minimum difference within 
groups via “ConsensusClusterPlus”. Additionally, the R 
packages “Survival” and “Survminer” are used to analyze 
the correlation between the cluster and the overall sur-
vival (OS), which was then presented as a Kaplan–Meier 
(KM) curve.

Establishment of a risk model based on the prognostic 
ARGs
We assigned 1076 patients with TCGA to the training set 
and 327 patients with GEO to the testing set. First and 
forest, the risk model was constructed via Lasso regres-
sion and SVM based on the training set. The obtained 

genes and the corresponding regression coefficients were 
used to calculate the specific risk score of each patient. 
Therefore, patients were divided into high-risk group 
and low-risk group according to the median of risk score. 
Moreover, the KM survival curve and the receiver oper-
ating characteristic curve were plotted. Eventually, as 
an external validation set, the risk score of each patient 
based on the risk signature was calculated to verify the 
validity of the risk model in the GEO dataset.

Independent prognostic analysis and construction 
of the nomogram
To explore whether risk signature was an independent 
prognostic factor, we combined clinical characteristics 
of TCGA patients with risk score and analyzed them via 
univariate and multivariate analyses. Besides, a nomo-
gram integrating the risk score and other clinical param-
eters was established in training set. In order to evaluate 
the predictive sensitivity and specificity of the model, we 
also performed the calibration curves at 1-, 3- and 5-year 
survival.

Gene set enrichment analysis
Gene Enrichment Analysis (GSEA) is a computa-
tional method used to determine functional differences 
between two groups. The enrichment of KEGG and GO 
pathway in high-risk and low-risk groups was analyzed 
by GSEA (version 4.1.0).

Mutation analysis
Further analysis of mutation data in BC patients using 
the “maftools” package which derived from TCGA was 
processed. We then identified and analyzed the fre-
quency and magnitude of gene mutation spectrum in the 
patients, compared different gene mutations in the high-
and low-risk groups, and calculated the tumor mutation 
load (TMB) score for each patient. Besides, TMB score 
and its correlation between groups were also analyzed.

Evaluation of immune infiltrating cells
CIBERSORT is a deconvolution algorithm based on 
RNA-Seq data for estimating the composition and abun-
dance of immune cells. Based on the BC dataset, we cal-
culated the relative proportions of 21 types of infiltrating 
immune cells in all tumor samples, and investigated the 
differences in infiltrating levels between high-risk and 
low-risk groups. And the survival analysis of immune 
cells in high- and low-risk group was applied to iden-
tify the relationship between immune cells and survival 
prognosis of patients. Meanwhile, 11 key genes in the 
risk model were explored and evaluated in the TIMER 
database.

Table 1  Clinical parameters of the TCGA and GEO cohort

Characteristics TCGA cohort 
(N = 1076)

GEO cohort (N = 327)

Age (years)

  ≤ 65 773 (71.84) 305 (93.27)

  > 65 303 (28.16) 22 (6.73)

Gender

 Female 1064 (98.88) 327 (100)

 Male 12 (1.12)

T classification

 T1 281 (26.12) 101 (30.89)

 T2 621 (57.71) 188 (57.49)

 T3 133 (12.36) 26 (7.95)

 T4 38 (3.53) 12 (3.67)

 NA 3 (0.28)

N classification

 N0 504 (46.84) 137 (41.90)

 N1 361 (33.55) 87 (26.61)

 N2 120 (11.15) 63 (19.27)

 N3 74 (6.88) 40 (12.22)

 NA 17 (1.58)

M classification

 M0 895 (83.18) 319 (97.55)

 M1 22 (2.04) 8 (2.45)

 NA 159 (14.78)

Stage

 St1 183 (17.01)

 St2 608 (56.51)

 St3 242 (22.49)

 St4 24 (2.23)

 NA 23 (1.76)
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Evaluation of immune status
Single-sample GSEA (ssGSEA) was performed to calcu-
late the enrichment scores of 16 infiltrating immune cells 
and the activity of 13 immune-related pathways in the 
high-and low-risk groups using the “GSVA” package. The 
relationship between the concentration of immune cells 
and immune-related pathway and survival prognosis was 
also studied.

Tumor immune landscape
To investigate the relationship between tumor microen-
vironment and risk score, ESTIMATE was used to cal-
culate the score of each sample, including tumor purity, 
ESTIMATE score, immune score, and stromal score.

Evaluation of immunotherapy
TIDE is currently the best predictors of ANTI-PD1 and 
CTLA4 therapy, so we estimated the outcome of immu-
notherapy in high- and low-risk groups based on TIDE 
scores, which was listed in the form of a violin map. Fur-
thermore, we evaluated and compared the predictive 
power of our risk model with the TIDE and TIS models.

GeneMANIA
The GeneMANIA site (https://​GeneM​ANIA.​org) is used 
to predict the functional similarity of the hub genes and 
to construct a PPI network between them. It also predicts 
the relationships between functionally similar genes and 
pivotal genes, including protein–protein, protein-DNA 
interactions, pathways, physiological and biochemi-
cal reactions, co-expression, and co-localization. In this 
study, we explored the functional similarity of pivotal 
genes and performed functional enrichment analysis.

Verification of gene expression level in the risk model
The gene expression profiling database (GEPIA) was used 
to demonstrate the mRNA expression levels of character-
istic genes in BC and normal breast tissues. Immunohis-
tochemical results were obtained for the corresponding 
genes from the HPA (https://​www.​prote​inatl​as.​org) to 
elucidate the protein expression levels of these genes.

RT‑PCR
The expression of the ARGs in the risk signature was vali-
dated by real‐time polymerase chain reaction (RT–PCR) 
using HC11 cell line and 4T1 cell line. Total RNA was 
extracted from cells using TRIzol reagent and reverse 
transcribed into cDNA using reverse transcriptase 
according to protocol provided by the manufacturer. 
GAPDH was considered as control group according to 
the 2−ΔΔCT method. All quantitative PCRs were con-
ducted in triplicate.

Statistical analysis
Student’s t-test was used to compare gene expression 
between tumor cell line and normal cell line. Kaplan–
Meier analysis was used to determine the independent 
risk factors of OS by log rank test. The ROC curve was 
used to evaluate the diagnostic value of risk score and 
nomogram. All statistical analyses were performed using 
R software (version 3.6.1). P < 0.05 was considered to be 
statistically significant.

Results
Screening aging‑related differentially expressed genes 
(DEGs)
According to the ARGs obtained from public database, 
253 DEGs were acquired by comparing tumor tissues 
with normal tissues, including 125 down-regulated genes 
and 128 up-regulated genes (P < 0.05, Fig.  1A). In order 
to further analyze the enriched function by the DEGs, 
GO and KEGG analysis were performed. The results 
of GO enrichment analysis showed that these DEGs 
were closely related to aging, oxidative stress, apoptosis 
and transcription factor complex (Fig.  1B). In addition, 
enrichment analysis of the KEGG pathway indicated that 
there were enriched in cell senescence, apoptosis and 
classical pathways such as PI3K/AKT signaling pathway 
(Fig.  1C). Stepwise, STRING network was employed to 
describe networks of DEGs in Fig.  1D. Next, we deter-
mined and removed outliers in each sample, and then 
performed hierarchical clustering. In WGCNA analysis, 
we chose the soft threshold to determine the relative bal-
ance between scale independence and average connectiv-
ity. As shown in Fig. 1E, power = 5 was the threshold, and 
then four modules were generated by means of hierarchi-
cal average linkage clustering (Fig.  1F). ME brown was 
the most relevant to BC, and ME grey is the least associ-
ated with BC (Fig. 1G).

Clustering analysis based on DEGs
To investigate the relationship between BC subtypes 
and ARG expression, hierarchical cluster analysis was 
performed in TCGA. By increasing the cluster variable 
(K) from 2 to 10, we found that when k = 2, the intra-
group correlation was highest and the inter-group cor-
relation was lowest, indicating that 1076 BC patients 
could be well divided into two groups (Fig.  2A, B). The 
gene expression profiling and clinical features including 
T (T1, T2, T3 and T4), N (N0, N1, N2 and n3), M (M0 
and M1), Stage (Stage 1, 2, 3 and 4) and age (≤ 65 or > 65) 
were shown in the heatmap, and we found that in both 
groups, clinical features such as N staging (P < 0.05) and 
age (P < 0.001) were significantly different (Fig. 2C). Fur-
ther survival analysis between the two groups showed 

https://GeneMANIA.org
https://www.proteinatlas.org
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that the prognosis of C1 group was significantly worse 
than C2 group (P < 0.05) (Fig. 2D).

Establishment of prognostic risk model in TCGA​
Univariate Cox analysis was first used to identify prog-
nosis-related genes, of which 78 were closely related to 
prognosis (Fig. 3A, Table 2). On this basis, we identified 
differentially expressed TFs and constructed the TF-
ARGs regulatory network (Fig. 3B, C). Based on the opti-
mal λ value, 11 risk genes (Fig. 3D, E) were selected from 
78 candidate genes through multivariate Cox regression 
analysis, namely, FABP7, IGHD, SPIB, CTSW, IGKC, 
SEZ6, S100B, CXCL1, IGLV6-57, CPLX2 and CCL19. In 
order to further screen the feature risk genes, SVM was 
used to predict the feature genes. We identified 14 feature 
genes of greater than 0 importance (Fig.  3F), and then 
crossed them. Eventually, the core risk gene was obtained 

in Fig.  3G. The sum of the product of the gene expres-
sion and the corresponding regression coefficient was the 
prognostic risk score. Formula: Risk score = (−0.0522* 
FABP7 exp.) + (−0.0703* IGHD exp.) + (−0.0200* 
SPIB exp.) + (−2.4926* CTSW exp.) + (−0.0071* 
IGKC exp.) + (0.1079* SEZ6 exp.) + (−0.0037* S100B 
exp.) + (−0.0039* CXCL1 exp.) + (−0.0108* IGLV6-57 
exp.) + (0.0300* CPLX2 exp.) + (−0.0449* CCL19 exp.). 
Based on the median prognostic risk score, 1076 patients 
in the training group were divided into high-and low-risk 
subgroups. The PCA and TSNE analyses suggested that 
patients in the high-and low-risk groups could be well 
divided into two independent clusters (Fig. 3H). Patients 
in the high-risk group had significantly more deaths and 
shorter survival times than those in the low-risk group 
(Fig.  3IJ). Survival analysis also showed that high-risk 
patients had a worse prognosis (P < 0.001) (Fig. 3K). The 

Fig. 1  Identification and exploration of differentially expressed ARGs. A The differentially expressed genes were shown in a heatmap (green: low 
expression level; red: high expression). B GO enrichment analysis of DEGs. C KEGG enrichment analysis of DEGs. D Co-expression analysis in PPI 
network. E The threshold to determine the relative balance between scale independence and average connectivity in WGCNA. F, G Four modules 
generated by hierarchical average linkage clustering
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AUC value of the ROC curve was used to evaluate the 
predictive performance of the model. We found that the 
AUC was 0.644 in one year, 0.647 in three years and 0.597 
in five years (Fig. 3L). The survival analyses of key genes 
of the model were as follows in Fig. 3M.

External validation of the risk model
GSE158309 was utilized to validate the model as a test-
ing set. The calculation of the prognostic risk score and 

the high–low risk grouping of patients remained the 
same, and patients in the testing set were also divided 
into the high–low risk group (Fig.  4A). Similar to the 
training set, the death numbers in the high-risk group 
was significantly higher than that in the low-risk group 
(Fig. 4B, C). The Kaplan–Meier survival curve analysis 
also showed a significant reduction in OS (P = 0.038) 
(Fig. 4D), which suggested that the model had the same 
prognostic assessment ability for patients in an external 
independent cohort.

Fig. 2  Consensus clustering analysis based on DEGs. A, B 1076 BC patients were divided into two groups according to the consensus clustering 
matrix (k = 2). C The heatmap illustrated the gene expression profiles and clinical features including stage, T, N, M and age. D Kaplan–Meier OS 
curves between the two groups

Fig. 3  Establishment of prognostic risk model in TCGA. A Identification of prognosis-related genes via univariate cox analysis. B Differentially 
expressed TFs was shown in a volcano. C The regulatory network between TFs and ARGs. D Cross-validation for tuning the parameter selection 
in the LASSO regression. E 11 ARGs was identified via Lasso regression. F Screening the feature genes via SVM and obtaining 14 hub genes of 
importance. G Venn gram between Lasso and SVM. H PCA and TSNE plot for classification of patients based on the risk score. I Distribution of 
patients based on the risk score. J The survival status of patients (low-risk population: on the left side of the dotted line; high-risk population: on 
the right side of the dotted line). K Kaplan–Meier OS curves of patients between high and low-risk group. L ROC curves evaluated the predictive 
efficiency of the risk model

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Independent prognostic analysis of risk model
Univariate and multivariate Cox analyses were per-
formed to assess whether the risk score was an inde-
pendent risk factor for predicting prognosis. The 
results of univariate Cox analysis showed that risk 
score, age, stage and pathological grade were independ-
ent risk factors, and multivariate Cox analysis deter-
mined the risk score and age as reliable independent 
risk factors (Fig.  5A, B). Same analysis on the testing 
set was also performed, and the results also confirmed 
that risk score was an independent risk factor for the 
development of BC (Fig.  5C, D, Table  3). Further-
more, we performed a correlation analysis of the clini-
cal characteristics of patients in the high- and low-risk 
groups, and heatmaps indicted that age was generally 
higher in the high-risk group than in the low-risk group 
(P = 0.001), there were also significant differences 
between T stage (P = 0.032), while other clinical fea-
tures not (Fig. 5E–G).

Table 2  The prognosis-related candidate genes via univariate 
Cox analysis in TCGA​

Id HR HR.95L HR.95H P value

UBASH3A 0.78 0.64 0.94 0.01

SLA2 0.78 0.62 0.99 0.04

IL2RG 0.84 0.74 0.95 0.01

LTB 0.84 0.74 0.96 0.01

CD6 0.74 0.60 0.91 0.01

CD247 0.77 0.63 0.94 0.01

PRKCB 0.75 0.58 0.97 0.02

ZAP70 0.77 0.62 0.94 0.01

TNFRSF13C 0.73 0.57 0.95 0.02

STAP1 0.77 0.62 0.96 0.02

PRSS12 0.78 0.62 0.99 0.04

FABP7 0.87 0.77 0.97 0.01

IDO1 0.87 0.77 0.98 0.03

IGHD 0.80 0.71 0.91 0.00

GPR171 0.74 0.61 0.90 0.00

S1PR4 0.75 0.61 0.93 0.00

TNFRSF17 0.83 0.71 0.96 0.01

CD3E 0.82 0.72 0.94 0.00

NKG7 0.86 0.76 0.97 0.02

IGLV1-44 0.89 0.83 0.96 0.00

SPIB 0.80 0.67 0.95 0.01

ASCL1 1.11 1.00 1.23 0.03

IGHG1 0.93 0.87 0.99 0.02

GZMB 0.85 0.74 0.96 0.01

CD40LG 0.75 0.60 0.93 0.01

ITK 0.78 0.63 0.97 0.03

CD79A 0.84 0.75 0.94 0.00

IGHV1-69 0.90 0.82 0.99 0.03

GZMM 0.77 0.64 0.93 0.01

TBX21 0.72 0.54 0.96 0.03

LCK 0.85 0.73 0.99 0.03

TRAV8-3 0.75 0.57 0.97 0.03

SIT1 0.83 0.71 0.97 0.02

PRF1 0.82 0.69 0.99 0.03

CTSW 0.80 0.70 0.92 0.00

IGKC 0.90 0.84 0.96 0.00

LAMP3 0.86 0.75 0.98 0.02

CD79B 0.83 0.70 0.99 0.03

IGHM 0.91 0.85 0.97 0.01

CXCL9 0.91 0.84 0.99 0.02

SIRPG 0.77 0.62 0.94 0.01

TIGIT 0.81 0.67 0.98 0.03

CD7 0.83 0.70 0.99 0.04

IL7R 0.84 0.73 0.96 0.01

SLAMF7 0.85 0.74 0.98 0.02

PLA2G2D 0.81 0.69 0.94 0.00

CLEC10A 0.82 0.70 0.97 0.02

CD3G 0.80 0.67 0.97 0.02

EOMES 0.77 0.61 0.98 0.03

Table 2  (continued)

Id HR HR.95L HR.95H P value

CD5 0.80 0.68 0.95 0.01

CD19 0.81 0.67 0.99 0.04

CD3D 0.82 0.72 0.93 0.00

SEZ6 1.28 1.09 1.50 0.00

S100B 0.85 0.75 0.96 0.01

ICAM3 0.68 0.48 0.95 0.02

TRAV12-2 0.83 0.69 1.00 0.05

ZBED2 0.79 0.65 0.97 0.03

TRAT1 0.80 0.66 0.97 0.02

CXCL1 0.79 0.65 0.96 0.02

TESPA1 0.68 0.52 0.90 0.01

IGLL5 0.88 0.81 0.96 0.00

IGLV6-57 0.88 0.81 0.96 0.00

PYHIN1 0.76 0.60 0.97 0.03

CD27 0.80 0.68 0.93 0.00

CXCR3 0.81 0.69 0.95 0.01

CPLX2 1.19 1.05 1.34 0.01

CD2 0.85 0.75 0.96 0.01

CD96 0.80 0.66 0.97 0.02

SLAMF6 0.80 0.66 0.95 0.01

LGALS2 0.82 0.71 0.94 0.00

GZMK 0.83 0.73 0.95 0.01

PDCD1 0.76 0.62 0.95 0.02

CCL19 0.87 0.81 0.95 0.00

HLA-DOB 0.77 0.64 0.92 0.00

SH2D1A 0.79 0.66 0.95 0.01

CD38 0.82 0.68 0.98 0.03

SLAMF1 0.78 0.61 0.98 0.04

CCL5 0.85 0.77 0.95 0.00
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Construction of a nomogram
Nomogram is a powerful tool of visualizing predic-
tive models, making them more operable and practical. 
Therefore, in order to apply our risk model to clinical 
practice, we combined risk score with clinical character-
istics including age, tumor grade, T stage, N stage and 
N stage, subsequently a nomogram was constructed to 
predict 1, 2, and 3-year survival in BC patients (Fig. 6A). 
Besides, the calibration curve showed that the nomogram 
could effectively predict the actual survival prognosis (C 
index = 0.74090825, P = 0.02372858 Fig. 6B–D).

Gene set enrichment analysis (GSEA)
GSEA was conducted to investigate the signal pathways 
associated with the characteristics associated with aging. 
GO results showed that DNA replication dependent 
nucleosome organization, mRNA 5 splice site recogni-
tion, regulation of skeletal muscle adaptation, U4 snRNP 
and U6 snRNA binding were enriched in high-risk group, 
while adaptive immune response, myeloid leukocyte 
mediated immunity, positive regulation of locomotion, 
taxis, and side of membrane were enriched in low-risk 
group (FDR < 0.05). KEGG pathway analysis indicated 
cardiac muscle contraction and drug metabolism other 

enzymes were enriched in high-risk group, while cell 
adhesion molecules cams, chemokine signaling path-
way, cytokine–cytokine receptor interaction, JAK–STAT 
signaling pathway and pathways in cancer were enriched 
in low-risk group (FDR < 0.05) (Additional file  1: Fig. 
S1A–D). In an effort to further explore the differences 
of function and pathway among subgroups classified by 
risk model, we screened the DEGs with the criteria of 
FDR < 0.05 and | log2FC | ≥ 1 via the “limma” R pack-
age. A total of 171 DEGs were identified between the 
low-risk and high-risk groups in the TCGA cohort. In 
the high-risk group, 19 genes were up-regulated and 152 
genes were down-regulated (Additional file 4: Table S2). 
In-depth GO analysis showed that the differentially 
expressed genes in high-and low-risk groups were mainly 
enriched in immune-related biological processes, such as 
humoral immune response, leukocyte migration, regu-
lation of inflammatory response and adaptive immune 
response (Additional file 1: Fig. S1E). In terms of KEGG, 
the results of the analysis also suggested that the differ-
entially expressed genes in the high-risk and low-risk 
groups were mainly enriched in the immune-related 
pathway, such as Th1 and Th2 cell differentiation, Th17 
cell differentiation, T cell receptor signaling pathway and 

Fig. 4  External validation of the risk model. A Distribution of patients in the GEO cohort based on the median risk score in the TCGA cohort. B The 
survival status of patients in GEO cohort. C PCA and TSNE classification of patients in GEO cohort. D Kaplan–Meier survival curve for prognostic 
signature in training set
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Fig. 5  Results of the univariate and multivariate cox regression for the risk score. A Univariate cox analysis for the TCGA cohort. B Multivariate 
cox analysis for the TCGA cohort. C Univariate cox analysis for the GEO cohort. D Multivariate cox analysis for the GEO cohort. E The connections 
between clinicopathologic features and the risk groups. F The connections and difference between age groups and the risk groups. G The 
connections and difference between T stage (1 to 4) groups and the risk groups

Table 3  Clinical parameters and risk score via univariate and multivariate Cox regression analyses

Variables Univariate analysis Multivariate analysis

HR HR.95L HR P HR HR.95L HR.95H P

TCGA​

 Age 1.03 1.02 1.05 3.41e−06 1.03 1.01 1.05 9.62e−05

 M 6.41 3.60 11.41 2.64e−10 1.42 0.63 3.21 0.40

 N 1.65 1.38 1.98 5.35e−08 1.19 0.89 1.58 0.24

 T 1.57 1.27 1.94 3.07e−05 1.00 0.75 1.34 0.99

 Stage 2.13 1.69 2.69 1.57e−10 1.64 0.99 2.71 0.06

 Risk score 3.85 2.11 7.01 1.04e−05 2.50 1.32 4.77 0.01

GEO

 Age 0.99 0.97 1.01 0.48 1.00 0.98 1.02 0.73

 T 1.86 1.44 2.41 2.28e−06 1.35 0.95 1.91 0.09

 N 1.78 1.45 2.13 1.22e−08 1.67 1.35 2.07 3.17e−06

 M 5.20 2.39 11.33 3.22e−05 1.05 0.37 2.96 0.92

 Risk score 3.91 1.61 9.47 0.00 4.94 1.86 13.09 0.00
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Natural killer cell mediated cytotoxicity (Additional file 1: 
Fig. S1F). Next, we conducted the PPI network to con-
struct and identify the hub genes (high confidence = 0.7), 
where the first 10 genes were CD8A, PTPRC, CD2, CD19, 
CCR7, CXCR3, LCK, CXCL9, IL7R and PRF1, which 
occupied an essential role in occurrence and develop-
ment of BC (Additional file 1: Fig. S1G, H).

Composition of immune infiltrating cells 
and immune‑related functions between high‑ and low‑risk 
groups
In order to better understand the prognostic risk 
model and the immunobiological characteristics of 
tumor immune microenvironment, we evaluated the 
tumor immune infiltrating cells enriched in the high-
and low-risk groups. The CIBERSORT algorithm cal-
culated the relative proportion of immune cells in the 
immune microenvironment of BC patients. We found 
that B cells naïve, Plasma cells, T cells CD8, T cells 
CD4 memory resting, T cells CD4 memory activated, 

T cells follicular helper, T cells gamma delta, NK cells 
resting, Macrophages M1 and Dendritic cells resting 
were enriched in low-risk group patients, while Mac-
rophages M0, M2, Mast cells resting and Neutrophils 
were enriched in high-risk group patients (Fig.  7A). 
In addition, we performed a survival analysis of the 
high and low expression of immune cells, indicat-
ing that the prognosis of patients with high enrich-
ment of B cells memory (P = 0.002), Macrophages 
M0 (P = 0.027), Macrophages M2 (P < 0.001), NK cells 
activated (P = 0.024) was significantly worse than that 
of patients with low enrichment, while high enrich-
ment of B cells memory (P = 0.002), Macrophages 
M0 (P = 0.027), Macrophages M2 (P < 0.001), NK cells 
activated (P = 0.024) had a better prognosis (Fig.  7B). 
Moreover, we calculated the abundance and distribu-
tion of enriched immune-related function in patients 
with high and low-risk groups to further assess the 
relationship between risk score and immune status, the 
finding was similar with the infiltrating immune cells 

Fig. 6  The construction of a nomogram to predict the OS of the patients. A A nomogram combined clinical features with risk score. B Calibration 
curve for predicting BC patients’ OS at 1 year. C Calibration curve for predicting BC patients’ OS at 3 years. D Calibration curve for predicting BC 
patients’ OS at 5 years
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where the enrichment score of immune-related func-
tion in the low-risk group was higher than that in the 
high-risk group, including APC co-inhibition, APC 

co-stimulation, Inflammation-promoting, Cytolytic-
activity, T cell co-inhibition, T cell co-stimulation, Type 
I IFN response, Type II IFN response, which further 

Fig. 7  The enrichment of immune cells and immune-related function between different risk groups. A The abundance of 24 immune cells 
are displayed in a boxplot. B Kaplan–Meier OS curves for the patients between high and low-level immune cells. C The abundance of 13 
immune-related functions are displayed in a boxplot. D Kaplan–Meier OS curves for the patients between high and low-level immune-related 
functions
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indicated that the low-risk group was in a high anti-
tumor immune state and exhibited anti-tumor effect 
(Fig. 7C). This was further confirmed by survival analy-
sis of immune-related functions (Fig. 7D).

Mutation analysis
To explore the mechanism of development of BC, we 
studied the mutation profiles of ARGs. Based on the 
“maftools” package, we analyzed and visualized the 
mutations in each sample and found that 875 out of 986 
samples had mutations, with TP53 (34%) being the most 
frequent mutation in the first three genes, followed by 
PIK3CA (33%) and TTN (16%). The most common type 
of mutation is missense, while the most common type of 
SNV is C > T (Fig. 8A, B). We also investigated the gene 
mutations in the high-and low-risk groups. The results 
indicated that the gene with the highest frequency of 
mutation was PIK3CA, TP53, and TTN in high-risk 
patients, the most frequent mutations were TP53, 
PIK3CA and TTN in the low-risk group, but the most 
common mutations in both groups were missense muta-
tions (Fig.  8C, D). We also calculated the TMB, which 
was defined as the number of mutations detected per 
million bases, based on the type and frequency of gene 

mutations in each patient, the total number of errors in 
somatic gene coding, base substitution, gene insertion, or 
deletion. At present, TMB is the newest marker to evalu-
ate the therapeutic effect of PD-1 antibody, being severely 
significant to evaluate the TMB score of high and low-
risk group for BC patients. Nevertheless, through cor-
relation analysis, we found that there was no significant 
negative correlation between TMB and risk score, and 
there was no significant difference in TMB score between 
high and low-risk groups (Fig. 8E, F).

Tumor microenvironment
Tumor tissue includes not only tumor cells, but also 
many cells related to tumor microenvironment, such as 
stromal cells, immune cells and so on. Different types 
of immune cells play different roles in anti-tumor and 
tumor immune escape, and tumor growth, invasion and 
metastasis. Stromal cells are also associated with tumor 
growth and disease progression, so in addition to CIBER-
SORT analysis of immunologic invasion, we also evalu-
ated the proportion and abundance of immune cells, 
stromal cells and tumor cells in each patient’s tumor 
tissue using ESTIMATE and ssGSEA. According to the 
abundance of immune cells, stromal cells and tumor cells 

Fig. 8  Mutations spectrum of BC patients. A Waterfall plot representing the mutant landscape of the top 20 most frequently mutated genes in all 
samples. B Summary plot showing the types of gene variants. C Waterfall plot representing the mutant landscape of the top 20 most frequently 
mutated genes in the low-risk group. D Tumor mutational burden between high- and low-risk groups. E. The relationship between tumor 
mutational burden and the risk score
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in tumor tissue, we calculated the immune score, stro-
mal score, tumor purity and ESTIMATE score of each 
patient (Fig.  9A). More importantly, we compared the 
differences between the high-risk group and the low-risk 
group. The results showed that the tumor purity score 
in the high-risk group was significantly higher than that 
in the low-risk group (P < 0.001), while the matrix score, 
the immune score and the ESTIMATE score were sig-
nificantly lower, which was consistent with our previous 
analysis (P < 0.001) (Fig. 9B–E).

Tumor Immune Dysfunction and Exclusion (TIDE)
TIDE is an algorithm that utilizes gene expression 
markers to assess two different mechanisms of tumor 
immune escape, including the dysfunction of tumor 
infiltrating cytotoxic T lymphocyte and the rejection of 
CTL by immunosuppressive factors which can well pre-
dict the response of a single sample or a subtype to pre-
dicted immune checkpoint inhibitor. Dysfunction score 
and exclusive score were the two main components of 
TIDE score, in which dysfunction score was used to 
assess immune dissonance genes, and exclusive score 
was used to assess immune rejection genes. Therefore, 
TIDE algorithm was used to calculate different scores 

and predict the potential response of each patient to 
immunotherapy. Results showed that low-risk patients 
had significantly lower exclusion scores than high-risk 
patients, while dysfunction and TIDE scores were sig-
nificantly higher than high-risk patients, which sug-
gested that the high-risk group may be more effective 
on ICB. In addition, we calculated the MSI score. MSI 
refers to any change in microsatellite length caused by 
insertion or deletion of repeat units, and the appear-
ance of a new microsatellite allele in a tumor compared 
with normal tissue, which can not only predict the 
prognosis of patients, can also reflect the direction of 
follow-up immunotherapy. Our results suggested that 
MSI scores in high-risk group are significantly higher, 
indicating that the high-risk group may also have a 
better response to immunotherapy (Fig.  10A). Mount-
ing studies have shown that immunotherapy is becom-
ing a new hope for cancer treatment, and immune 
checkpoint proteins play an important role in immune 
response. Therefore, we compared the expression levels 
of common checkpoint proteins in high-risk and low-
risk groups. The results showed that the expression of 
CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, 
TIGIT in the low-risk group was significantly higher 

Fig. 9  The immune landscape of BC patients between high- and low-risk groups. A The immune status of patients between high- and low-risk 
groups. B The tumor purity of patients between high- and low-risk groups. C The immune score of patients between high- and low-risk groups. D 
The ESTIMATE score of patients between high- and low-risk groups. E The stromal score of patients between high- and low-risk groups



Page 15 of 23Wang et al. European Journal of Medical Research          (2022) 27:317 	

than that in the high-risk group (P < 0.001) (Fig.  10B). 
We also explored the risk model with the TIDE and TIS 
scores, and found that the risk score model had better 
predictive sensitivity and specificity (Fig. 10C).

The key genes in risk model
To further elucidate the relationship between risk genes 
and immune cells and mutations, we conducted an in-
depth study in the TIMER database. The SCNA module 
provides a comparison of tumor invasion levels between 
tumors with different copy number changes for a given 
gene, which was characterized by GISTIC 2.0 with deep 
deletion, arm-level deletion, diploid/normal, arm-level 
gain and high amplification. Wilcoxon rank sum test was 

performed to compare the infiltration level of each SCNA 
class with the normal level in TIMER database. It was 
found that different types of mutations in the risk model 
genes could alter tumor infiltrating immune cells such as 
CD4+ T cells, CD8+ T cells and so on (Additional file 2: 
Fig. S2A). Meanwhile, we explored and identified that the 
correlation between the expression level of risk-related 
genes and the proportion of infiltrating cells existed 
(Additional file  2: Fig. S2B, C). First, we identified the 
expression of the risk model genes in all TCGA tumors. It 
was found that the expression of CPLX2, CTSW, CXCL1, 
FABP7, S100B, SEZ6 and SPIB were all differentially 
expressed in BC (Additional file 2: Fig. S2D), further, we 
examined the mRNA levels of the core genes in normal 

Fig. 10  Correlation of risk scores with Tumor Immune Dysfunction and Exclusion and 8 immune checkpoints. A Violin plots visualizing correlation 
of TIDE scores with the high- and low-groups. B Boxplots showing comparison of the expression of immune checkpoints between the high- and 
low-groups. C ROC curves demonstrating the comparison between the risk score and the TIDE score, and TIS score
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breast tissue and BC tissue. We found that the expres-
sions of CCL1, FABP7, S100B, CTSW, and SEZ6 signifi-
cantly decreased in the tumor tissue, the expression of 
CPLX2 and SPIB increased obviously in BC (Additional 
file  2: Fig. S2E). The expression of ICKC also increased 
in GSE38959, IGLV6-57 increased in GSE70905, nev-
ertheless, IGHD and IGKC decreased in BC tissues in 
GSE17907 (Additional file 2: Fig. S2F). Besides, the pro-
tein expression of these genes was investigated in HPA, 
which was consistent with the mRNA expression (Addi-
tional file 2: Fig. S2G). Finally, we also analyzed the pro-
portion of all patients with TCGA who had mutations 
in risk genes, with the highest rates of mutations in the 
genes SEZ6, SPIB and CTSW, consistent with the entire 
genome, and the most common types of mutations being 
missense mutations, the SNV is C > T (Additional file 2: 
Fig. S2H, I).

Chemosensitivity of BC between groups
In addition to the immunotherapies explored above, 
we also studied the sensitivity of chemotherapeutic 
drugs and targeted drugs to the treatment of patients in 
high-and low-risk groups, the IC50 of chemotherapeu-
tic drugs such as cisplatin, paclitaxel and doxorubicin 
was significantly lower in the low-risk group than in 
the high-risk group, suggesting that chemotherapeutic 

drugs may have better sensitivity and efficacy in the low-
risk group (Fig.  11A). We also investigated the effects 
of conventional chemotherapy on risk genes, and using 
the DREAM database, we found significant changes in 
the expression levels of many genes, including CCL19 
(FC = 0.96, P = 0.0192), SPIB (FC = 0.93, P = 0.00722) and 
IGKC (FC = 0.96, P = 0.0144) in BC patients treated with 
drugs (Fig. 11B).

Protein–protein interactions (PPI) of hub genes 
at the GeneMANIA
GeneMANIA is used to predict the functional similar-
ity of central genes. We obtained 20 similar genes from 
the hub gene. The central gene is located in the inner 
circle, while the prediction gene is located in the outer 
circle. Their function is focused on Chemokine receptor 
binding, which is closely related to the previously stud-
ied chemokines and the onset of aging. ERK1 and ERK2 
regulatory pathways and the proliferation and apoptosis 
of DC cells are also the major functional pathways of age-
related proteins (Additional file 3: Fig. S3).

Validation of 11‐gene prognostic signature
To further verify the accuracy of the 11‐gene prognos-
tic signature, we detected the expression levels of in BC 
cell line and normal breast cell line by RT–PCR. The 

Fig. 11  The relationship between risk groups and chemosensitivity. A There was significant difference for chemosensitivity between high- and 
low-risk groups. B The expression of CCL19, SPIB and IGKC differed between after chemotherapy
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experimental results revealed that the protective prog-
nostic factors in BC patients were significantly down-
regulated, whereas the dangerous prognostic factors were 
up-regulated except SEZ6 (Fig. 12).

Discussion
BC is one of the most common malignant tumors threat-
ening women’s health with an increasing incidence 
rate year by year. The latest global cancer data for 2020 
released by the World Health Organization’s Interna-
tional Agency for Research on cancer, showed that BC 
has surpassed lung cancer to become the malignant with 
highest incidence and mortality worldwide. Moreover, 
the incidence of BC peaks in older People (> 50  years) 
[14], while the incidence of BC gradually increases in 
younger women (< 35  years), which is generally more 
aggressive. Previous studies have shown that the inci-
dence of BC increases with age and that the occurrence of 
cancer is related to the accumulation of replicative senes-
cence in normal human cells and p21-induced senes-
cence in tumor cells, suggesting that aging is involved in 
the development of BC [15]. Complicatedly, the aging-
related pathway is contradictory in the process of tum-
origenesis. In the early stage of tumorigenesis, aging 
is a protective mechanism against tumor transforma-
tion, while in advanced periods, which promotes tumor 
growth by altering the microenvironment [16]. Therefore, 
aging is one of the mechanisms by which normal cells 
avoid tumorigenesis, and is also an important part of the 

survival advantage of cancer itself. Taken together, there 
is a pressing necessity for exploring the expression of 
ARGs in BC and understanding the role of aging process 
in the development of BC.

In this study, we first performed a comprehensive 
analysis to identify differentially expressed ARGs and 
core prognostic genes in BC, and then constructed a risk 
model consisting of 11 ARGs, evaluated and validated for 
its ability to predict the survival outcome of BC patients. 
The flowchart is shown in Fig. 13.

In this risk model, FABP7, IGHD, SPIB, CTSW, IGKC, 
S100B, CXCL1, IGLV6-57, CCL19 were protective fac-
tors, while SEZ6 and CPLX2 were risk factors. FABP7 is 
a member of the fatty acid binding protein family and is 
thought to facilitate the transport of fatty acids in various 
organelles and regulate their metabolism and other phys-
iological activities [17, 18]. Recent studies showed that 
FABP7 was significantly involved in the pathogenesis and 
progression of many types of cancer and could be used as 
a promising tumor marker [18]. The expression of FABP7 
in BC tissue was found to be significantly lower than that 
in normal tissue samples, which could enhance chemo-
sensitivity by regulating cell cycle. And the high expres-
sion of FABP7 predicted better chemotherapy response 
and longer relapse-free survival [19]. When it referred 
to IGHD, it is located in the variable region of coding 
H in the chromosome 14(14q32.33), which is an impor-
tant component of the antigen binding loop of immuno-
globulins. Studies have found increased levels of IGHD 
mRNA in AML patients, and IGHD was an independent 

Fig. 12  Validation of the expression of the risk genes via RT–PCR
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risk factor for OS in AML patients [20]. Besides, IGHD 
has also been studied in BC, being a protective factor for 
BC recurrence and functioning as tumor suppressor [21]. 
SPIB is a member of the ETS transcription factor family 
and is abnormally activated at all stages of tumorigenesis 
[22]. Xu found that SPIB played an important role in the 
occurrence and development of tumors. Overexpression 
of SPIB inhibited cell proliferation and induces apopto-
sis in children with acute lymphocyte leukemia [23]. Not 
only that, SPIB had anti-apoptotic effect in diffuse large 
B-cell Lymphoma via PI3K–AKT pathway [24], which 
was associated with the poor prognosis and could be 
identified as a prognostic indicator in HCC [25]. A prog-
nostic model for BC bone metastases identified SPIB as 
a protective factor for BC bone metastases, and its high 
expression predicted better outcomes in BC patients, 
consistent with our findings [26]. CTSW is a novel human 
cysteine protease expressed in CD8 T cells and NK cells 
[27], and plays an important role in cytotoxicity medi-
ated by NK cells and CD8 T cells [28, 29]. The study 
conducted by Chen found that CTSW was positively 

correlated with the prognosis of patients in endometrial 
cancer, and the expression level of CTSW was positively 
correlated with tumor infiltrating immunity, suggesting 
that CTSW might inhibit tumor progression by regulat-
ing tumor immune microenvironment [30].

Consistent with our study, multiple BC-related surveys 
have identified that IGKC, Immunoglobulin Kappa C, 
is an independent prognostic factor in BC patients, and 
high expression is significantly associated with good DFS 
and OS [31].

The S100 calcium-binding protein family is an inflam-
matory molecule that contributes to the formation of an 
inflammatory tumor microenvironment [32]. There are 
more than 20 genes in the S100 family, some of which are 
considered tumor markers. S100B is exactly a member of 
this family [33]. To date, S100B has been proven to be a 
cancer-promoting factor, whose overexpression can pro-
mote the proliferation, invasion and metastasis of lung 
cancer cells, exhibiting significant negative correlation 
with the prognosis of patients [34, 35]. However, the role 
of S100B in BC was quite contrary. High expression of 

Fig. 13  The flowchart of the current study
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S100B was associated with better prognosis in BC. Taken 
together, the research illustrated that S100B could inhibit 
the migration of ER negative BC, functioning as a predic-
tor of BC metastasis [36].

C-X-C motif chemokine ligand 1 (CXCL1) is the most 
abundant chemokine secreted by tumor associated mac-
rophages, which is located on chromosome 4. Elevated 
levels of CXCL1 in CRC were associated with tumor size, 
progression, depth of invasion, and patient survival [37, 
38]. And in BC, CXCL1 could promote the migration and 
invasion of BC through NF-κB/SOX4 signaling pathway, 
which was contrary to our research [39].

An article on prognostic markers of colorectal cancer 
identified IGLV6-57 as a core risk gene in the risk model. 
The higher the expression of IGLV6-57, the worse the 
patients’ prognosis [40]. However, no study has investi-
gated an association between IGLV6-57 and BC. There-
fore, further analysis is needed to explore the relationship 
between these genes and pathways and BC in order to 
guide the diagnosis and treatment of BC.

The chemokine CC Ligand 19 (CCL19), also known as 
macrophage inflammatory protein 3-β (MIP-3b), medi-
ates various cellular behaviors by binding to CCR7 [41]. It 
was found that CCL19 expression significantly decreased 
in CRC, which was closely related to tumor proliferation. 
Further investigation revealed that CCL19 could inhibit 
CRC angiogenesis by promoting miR-206 and inhibit-
ing the Met/ERK/Elk-1/HIF-1α/VEGF-A pathway, which 
might be a new therapeutic option for anti-vascular ther-
apy of CRC [42]. In BC, however, CCL19 appeared to play 
a role as a cancer-promoting gene. Overexpression of 
CCL19 induced invasion and metastasis of BC cells [43].
SEZ6, an active regulated mRNA transcript, is indis-

pensable for the development of dendrites and synapses, 
and involving in the development of chronic hyperalge-
sia and neuroinflammation following nerve injury [44]. 
Patients with high expression of SEZ6 had better prog-
nosis [45]. Nevertheless, the involvement of SEZ6 in 
the development and progression of BC has not been 
reported.
CPLX2 is a member of the complex protein/synapto-

physin family involved in the regulation of synaptogenesis 
and the release of neurotransmitters in the presynap-
tic terminals of the brain [46]. Komatsu et  al. identified 
that CPLX2, a potential biomarker for high-level human 
lung neuroendocrine tumors (L-NETs), was significantly 
down-regulated in L-NETs, and its high expression was 
associated with lymphatic infiltration, pathological stage 
and survival [47]. A recent study has also shown that 
CPLX2 was up-regulated in glioblastoma multiforme tis-
sue compared to normal brain tissue, serving as an effec-
tive marker [48].

Above all, these results conclusively supported our 
findings that these ARGs influenced tumor progres-
sion and patients’ survival. We then combined clinical 
features and risk scores to demonstrate the potential of 
risk score as an independent risk factor and to construct 
a nomogram for predicting survival in BC patients. 
Besides, we explored the relationship between risk score 
and clinical parameters, and the results clearly indicated 
that there was significant difference of risk score between 
different clinical groups, such as age and T stage, which 
verified that the risk signature was correlated with clini-
cal parameters. Interestingly, the subsequently functional 
enrichment analysis of differentially expressed ARGs 
in the high-risk and low-risk groups revealed that mul-
tiple immune pathways were enriched in the low-risk 
groups, suggesting that ARGs might be closely related to 
immunity. Especially, in terms of Th1 and Th2 cell differ-
entiation, it has been found to be closely related to the 
immune microenvironment and immunotherapy of BC. 
Taken together, our results have reconfirmed the funda-
mental role of Th1–Th2 status for BC patients. Pathologi-
cally, aging could lead to metabolic disorders, decreased 
immune response and malnutrition, and might induce 
many chronic diseases, including cancer [49, 50]. Previ-
ous studies have shown that the immune response in 
tumors is usually triggered by aging, and the infiltra-
tion of immune cells in the tumor microenvironment 
contributes to tumor growth [51]. Aging is associated 
with impaired immune function and the accumula-
tion of chronic inflammatory microenvironment, which 
may promote tumor formation and progression [52]. 
Anti-tumor immune impairment is a typical example of 
immune aging [53]. For these reasons, we studied dif-
ferences in the abundance of immune cells and immune 
function in the tumor microenvironment of patients in 
the high-and low-risk groups. As we previously deter-
mined, there was a significant enrichment of anti-tumor 
immune cells in the low-risk group, while in the high-risk 
group, the proportion of cancer-promoting immune cells 
such as M2 macrophages was higher. We even explored 
different immune scores in the high-and low-risk groups, 
which indicated that patients in low-risk group had 
higher immune score and lower tumor purity, and dem-
onstrated that risk score was highly associated with 
tumor immune microenvironment.

Therefore, our study revealed a significant correla-
tion between risk scores and immune status. Among 
all key genes, CCL19 played an important role in the 
formation and maintenance of T cell regions in lym-
phoid organs [54]. Overexpression of CCL19 exhibited 
an important role in anti-tumor activity and tumor 
clearance [55]. In terms of CPLX2, it could inhibit the 
B cell antibody secretion [56]. In addition, CXCL1 was 
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also an important component of the tumor microen-
vironment, which was significantly associated with 
the abundance of B cells, DC cells, CD8 + T cells, etc., 
regulating tumor microenvironment [57]. Our study 
also found that changes in the copy number variation 
(CNV) of most of the risk genes significantly altered 
the abundance of immune cells in the tumor immune 
microenvironment, which indicated that CNV of core 
genes might also be one of the important mechanisms 
of BC. Previous studies also demonstrated that CNV 
was closely related to the risk factors of BC. The inci-
dence of BC was high in CNV carriers, and there was a 
causal relationship between CNV and the incidence of 
BC [58–61], owing to the occurrence of CNV at multi-
ple alleles and the presence of more large copy number 
loss or amplification during DNA replication, lead-
ing to severer histological grade and the more malig-
nant degree so as to recur and metastasize. Based on 
above findings, we also explored the CNV situation in 
the high-and low-risk groups. The mutation spectrum 
in the two groups was not completely same, but further 
studies are needed to clarify the differences.

Above studies have provided strong evidence that 
the ARGs were strongly associated with the immune 
microenvironment of BC, and also suggested that the 
immune response in tumors was often triggered by 
aging. However, little is known about the association 
between immunotherapies and aging in BC [51]. At 
present, BC immunotherapy program is in full swing. 
Tumor immunotherapy involves reactivating the body’s 
anti-tumor immune response to kill tumor cells, includ-
ing vaccines, chimeric antigen receptor T cell therapy, 
and immunocheckpoint inhibitors, of which immuno-
checkpoint inhibitors are of the most concern.

We first explored the expression of immune check-
point genes such as SIGLEC15, TIGIT, CD274, 
HAVCR2, PDCD1, CTLA4, LAG3 and PDCD1LG2 in 
high-and low-risk groups. Immune checkpoint mol-
ecules expressed on immune cells will inhibit the 
function of immune cells, so that the body could not 
produce an effective anti-tumor immune response, 
contributing to tumor immune escape. Our results 
demonstrated that checkpoint molecule expression was 
significantly higher in the low-risk group than in the 
high-risk group. Further research into the response of 
high and low-risk groups to immune checkpoint block-
ade (ICB) treatment found that the high-risk group 
was better treated with ICB, which suggested that we 
could further identify BC immunotherapy beneficiaries 
through our risk model for adequate treatment.

Except for immunotherapy, chemotherapy remains 
mainstream treatment in BC and our results also 

indicated that patients in low-risk group benefited more 
from multiple chemotherapy drugs, such as Cisplatin and 
Paclitaxel, providing precise personalized treatment for 
different cancer patients.

Ultimately, we conducted an in-depth exploration 
of the model genes, and the expression profile analy-
sis proved that these model genes were differentially 
expressed in BC. At the same time, the pan-cancer anal-
ysis results also found that they also had certain differ-
ences in various tumors, which showed that the model 
genes might be related to the occurrence and develop-
ment of tumors to a certain extent, providing a certain 
clue for future in-depth exploration. More than that, in 
our model, most genes are strongly associated with TME 
in cancer. For example, CCL19, CTSW, S100B, etc., are 
significantly positively correlated with macrophages, 
CD8+ T cells, etc., offering some clues for subsequent 
studies.

However, there are still some limitations in our study. 
First, our experimental data are based on the results of 
these retrospective analyses of TCGA and GEO, which 
may be biased. Therefore, we need to use prospective, 
multicenter datasets for further validation; Secondly, we 
have only studied the risk model and the potential rela-
tionship between core genes and the tumor immune 
microenvironment, but there is no definite regulating 
pathway, so we still need to explore the specific mecha-
nism. Thirdly, we should carry out functional experi-
ments on these aging genes to elucidate their role in the 
development of BC. Eventually, there are many molecular 
types of BC, and the pathological mechanisms of differ-
ent molecular types are not the same, and the treatment 
options are also different. Therefore, further classification 
of specific subtypes will be more helpful to provide indi-
vidualized treatment for patients.

In summary, in our study, we developed a robust 
prognostic risk model with 11 ARGs that assessed and 
demonstrated risk scores as independent prognostic indi-
cators. Meanwhile, we also demonstrated a strong asso-
ciation between risk score and core genes and the tumor 
immune microenvironment, producing highly sensitive 
biomarkers for BC patients and providing new clues for 
individualized immunotherapy.

Conclusions
In conclusion, we developed and validated a robust prog-
nosis-related risk model based on 11 ARGs, which could 
effectively predict the survival of BC patients and provide 
a promising biomarker in the diagnosis of BC and a new 
direction into tumor immune microenvironment and 
immunotherapy.
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