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Abstract 

Objective: Early identifying sepsis patients who had higher risk of poor prognosis was extremely important. The aim 
of this study was to develop an artificial neural networks (ANN) model for early predicting clinical outcomes in sepsis.

Methods: This study was a retrospective design. Sepsis patients from the Medical Information Mart for Intensive 
Care-III (MIMIC-III) database were enrolled. A predictive model for predicting 30-day morality in sepsis was performed 
based on the ANN approach.

Results: A total of 2874 patients with sepsis were included and 30-day mortality was 29.8%. The study population 
was categorized into the training set (n = 1698) and validation set (n = 1176) based on the ratio of 6:4. 11 variables 
which showed significant differences between survivor group and nonsurvivor group in training set were selected 
for constructing the ANN model. In training set, the predictive performance based on the area under the receiver-
operating characteristic curve (AUC) were 0.873 for ANN model, 0.720 for logistic regression, 0.629 for APACHEII score 
and 0.619 for SOFA score. In validation set, the AUCs of ANN, logistic regression, APAHCEII score, and SOFA score were 
0.811, 0.752, 0.607, and 0.628, respectively.

Conclusion: An ANN model for predicting 30-day mortality in sepsis was performed. Our predictive model can be 
beneficial for early detection of patients with higher risk of poor prognosis.
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Introduction
Sepsis, as a syndrome of organ dysfunction induced by 
a dysregulated response to infection, was one of major 
causes leading to high mortality and poor clinical out-
comes in intensive care unit(ICU) [1, 2]. Studies reported 
that the short-term and long-term mortality of sepsis 
varied from 20 to 50% [3–5]. Hence, early identifying 
sepsis patients who had higher risk of poor prognosis was 

extremely important for physicians so they can do some 
intervention and timely managements to improve the 
clinical outcomes [6].

Artificial neural networks (ANN), as a type of machine 
learning algorithm, have been applied widely for medi-
cal researches [7–9]. One study with a total of 21,892 
cases showed that ANN model had a good performance 
for predicting 14-day hospital readmission with pneu-
monia [10]. Another recent research on cancer demon-
strated that ANN model was capable of simultaneously 
predicting the multiple co-occurring symptoms includ-
ing the risk of pain, psychological disorders and lack of 
well-being [11]. In the COVID-19 pandemic, scientific 
researchers in Brazil applied the ANN model to easily 
make daily and cumulative forecasts for cases and deaths 
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so that government officials and medical agencies could 
do actions more agilely and reliably [12].

In the present study, we aimed to explore the capabil-
ity of ANN model in predicting clinical outcomes in sep-
sis based on the publicly accessible database of Medical 
Information Mart for Intensive Cart III (MIMIC-III).

Methods
Database and patients
MIMIC-III database is a US-based critical care public 
database. Clinical and laboratory data associated with 
53,423 age ≥ 16 patients from 2001 to 2012 and 7870 
neonates from 2001 to 2008 admitted in ICU were doc-
umented [13]. The database mainly included charted 
events such as demographics, vital signs, laboratory tests, 
vital status, medications, image reports, and clinical 
outcomes.

All patients with sepsis (ICD9 code: 99,591) in MIMIC-
III (version 1.4) were enrolled in this study. Exclusion 
criteria included as follows: patients with missing > 5% 
individual data and age less than 18.

Data extraction
From the MIMIC-III database, the following general vari-
ables were extracted for the first 24  h after ICU admis-
sion: age at the time of hospital admission, gender, 
admission type, marital status, ethnicity, ICU depart-
ment, comorbidities (renal disease, coronary artery dis-
ease (CAD), diabetes, and hypertension), sequential 
organ failure assessment (SOFA) score and acute physi-
ology and chronic health evaluation (APACHEII) score. 
The length of stay (LOS) in ICU and in-hospital mortality 
were also collected.

Clinical and laboratory variables which were recorded 
within 24  h after admission were also extracted includ-
ing systolic blood pressure (SBP), diastolic blood pressure 
(DBP), heart rate (HR), respiratory rate (RR), white blood 
cells (WBC), neutrophils, lymphocytes, sodium, chloride, 
platelet (PLT), red cell volume distribution width (RDW), 
mean corpusular volume (MCV), hematocrit, glucose, 
prothrombin time (PT), partial thrombin time (PTT), 
albumin, alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), total bilirubin, urea nitrogen, creati-
nine, lactate, total calcium, and anion gap. NLR is defined 
as the ratio of neutrophils to lymphocytes. Multiple mul-
tivariable imputations were utilized for addressing miss-
ing data to maximize statistical power and minimize bias.

Statistical analysis
Descriptive statistics included as follow: proportions and 
frequencies were used for categorical variables, while 
medians, mean (SD), and interquartile ranges (IQRs) 
were used for continuous variables. Chi-squared test or 

Mann–Whitney U test were utilized for the comparison 
between the survivor group and the nonsurvivor group.

First, univariable analysis was applied for identify-
ing variables which were significantly different between 
the two groups. Then, those variables were enrolled to 
construct the predictive model by multivariable logistic 
regression. At last, the receiver-operator characteristic 
(ROC) analysis for predicting 30-day mortality was per-
formed and the area under the curve (AUC) estimates 
were calculated. The analyses of accuracy, sensitivity, 
and specificity were also done for evaluating the predic-
tive performance of different models. The best threshold 
values of variables were confirmed by the Youden Index 
(sensitivity+specificity-1). The value of each variable 
with the maximum Youden Index was the best threshold 
value.

Statistical analysis was performed by using SPSS soft-
ware (version 26). A p value of < 0.05 was considered as 
statistically significant.

ANN model
For our ANN model, a multilayer perception with back 
propagation algorithm was the applied architecture [14, 
15]. The basic structure of ANN had three layers includ-
ing the input layer, the hidden layer and the output layer 
(Fig.  2). The variables which showed significant differ-
ences between the survivor group and nonsurvivor group 
by using univariate analysis were enrolled in the input 
layer. In Fig.  2, our ANN was composed with 1 input 
layer consisting of 12 nodes, 1 hidden layer consisting of 
6 nodes, and 1 output layer consisting of 2 nodes.

The study population was categorized into the training 
set (n = 1689) and the validation set (n = 1176) was based 
on the ratio of 6:4 by simple randomization using R soft-
ware function of set.seed (), respectively. We applied an 
oversampling algorithm method to deal with the imbal-
ance between training set and validation set [16]. The 
training set was utilized to construct models and the val-
idation set was used to test the predictive performance 
of the models (Table  2). The predictive performance of 
ANN was analyzed by averaging the 30-day mortality 
from the fivefold cross-validation [11]. In addition, the 
average accuracy, sensitivity, and specificity were cal-
culated. The predictive performances of ANN, logistic 
regression, APACHEII, and SOFA scores were compared 
for training set and validation set were compared. ANN 
model was performed with PyTorch (version1.2.0).

Results
General characteristics of sepsis in MIMIC‑III
At first, a total of 5403 patients with sepsis were enrolled. 
Based on the exclusion criteria, 2874 patients were 
included in our study (Fig. 1). The 30-day mortality was 
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29.8%. The median age of the cohort was 67, and males 
accounted for 55.7% in total. Among marital status, the 
proportions of divorced, married, single and widow indi-
viduals were 6.8%, 44.5%, 28.4%, and 15.4%, respectively. 
Most of the patients were white (72.7%). 96% of patients 
were admitted in emergency and more than a half were 
transferred in MICU (65.9%). Among comorbidities, the 
proportions of renal disease, CAD, diabetes and hyper-
tension were 8.4%, 15.9%, 5.4%, and 37.9%, respectively. 
The median scores of SOFA and APACHE in the cohort 
were 2 and 14, respectively. The median days of LOS in 
ICU and hospital were 3 and 8, respectively (Table 1).

Baseline characteristics of training and validation tests
Table 2 demonstrated the general characteristics of train-
ing and validation. Except for diabetes (P = 0.021), there 
was no significant difference in other variables including 
age (P = 0.213), gender (P = 0.994), DBP (P = 0.310), SBP 
(P = 0.763), HR (P = 0.122), RR (P = 0.148), renal disease 
(P = 0.930), CAD(P = 0.542), hypertension (P = 0.774), 
PLT (P = 0.849), AST (P = 0.303), sodium(P = 0.931), 
glucose (P = 0.194), chloride (P = 0.510), MCV 
(P = 0.096), ALT(P = 0.420), neutrophils (P = 0.144), 
urea nitrogen(P = 0.617), PTT(P = 0.886), hematocrit 
(P = 0.355), PT (P = 0.949), anion gap (P = 0.070), RDW 
(P = 0.612), lymphocytes (P = 0.063), WBC (P = 0.089), 
NLR (P = 0.088), total calcium (P = 0.381), lactate 
(P = 0.790), albumin (P = 0.169), creatinine (P = 0.893), 
total bilirubin (P = 0.743), APACHEII (P = 0.581), SOFA 
(P = 0.671), LOS in hospital (P = 0.386) and 30-day mor-
tality (P = 0.153).

Multivariable logistic regression analysis
In Table  3, significant differences were showed in vari-
ables including age (P < 0.001), AST (P < 0.001), MCV 
(P = 0.001), ALT (P < 0.001), urea nitrogen (P < 0.001), 
PTT (P < 0.001), PT (P < 0.001), RDW (P < 0.001), 

Fig. 1 Flow chart for patients enrollment and study design

Table 1 General characteristics of sepsis in MIMIC-III

SOFA sequential organ failure assessment, APACHE acute physiology and chronic 
health evaluation, CAD coronary artery disease; LOS length of stay, ICU intensive 
care unit

Variables

 Number of patients(n) 2874

 Age(years) 67 (56–80)

Gender (n, %)

 Male 1602 (55.7%)

 Female 1272 (44.3%)

Marital status (n, %)

 Divorced 195 (6.8%)

 Married 1279 (44.5%)

 Single 816 (28.4%)

 Widow 442 (15.4%)

 Others 142 ((4.9%)

Ethnicity (n, %)

 Asian 77 (2.7%)

 White 2089 (72.7%)

 Black/American 273 (9.5%)

 Hispanic/Latino 100 (3.5%)

 Others 335 (11.6%)

Department (n, %)

 CCU 238 (8.3%)

 MICU 1894 (65.9%)

 SICU 428 (14.9%)

 TICU 222 (7.7%)

 CSRU 92 (3.2%)

Admission type (n, %)

 Elective 77 (2.7%)

 Urgent 38 (1.3%)

 Emergency 2759 (96.0%)

Comorbidities (n, %)

 Renal disease 241 (8.4%)

 CAD 457 (15.9%)

 Diabetes 155 (5.4%)

 Hypertension 1089 (37.9%)

Scoring system

 APACHEII 14 (11–17)

 SOFA 2 (1–4)

Clinical outcomes

 LOS in ICU (days) 3 (1–8)

 LOS in hospital(days) 8 (5–17)

Mortality (n, %)

 30-day mortality 856 (29.8%)
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lactate (P < 0.001), albumin (P < 0.001) and total bilirubin 
(P < 0.001) between two groups in the training set.

11 variables were enrolled in multivariable logis-
tic regression analysis and 9 variables were identi-
fied as independent factors associated with 30-day 
mortality (Table  4): age(odds ratio (OR) 1.030,95% CI 
1.020–1.039), AST(OR 1.000, 95% CI 1.000–1.001), urea 
nitrogen(OR 1.008,95% CI 1.004–1.013), RDW(OR 1.161, 
95% CI 1.098–1.227), lactate(OR = 1.189, 95% CI 
1.115–1.268), albumin(OR 0.581, 95% CI 0.447–0.708), 
total bilirubin(OR 1.059, 95% CI 1.029–1.091), PT(OR 
1.031, 95% CI 1. 010–1.052) and PLT(OR 0.999, 95% CI 
0.998–1.000).

ANN model development
The main structures of artificial neural networks were 
illuminated in Fig.  2. 11 variables including age, AST, 
MCV, ALT, urea nitrogen, PTT, PT, RDW, lactate, albu-
min and total bilirubin which showed significant differ-
ences between two groups were selected for the input 
layer. The output layer was 30-day hospital mortality. In 
Fig.  3, normalized importance of all 11 variables were 
demonstrated. The top four significant variables were 
albumin (100.00%), PT (85.73%), RDW (82.81%), and lac-
tate (76.75%).

Predictive performance of different models in Training 
set and Validation set In Table 5, predictive performance 
of ANN, logistic regression, APAHCEII and SOFA scores 
for training set and validation set were demonstrated. In 
training set, the accuracies of the four models were 0.866, 
0.711, 0.615, and 0.574, respectively (P < 0.001). The sen-
sitivities were 0.850, 0.662, 0.569, and 0.619, respectively 
(P < 0.001). The specificities were 0.410, 0.337, 0.367 
and 0.413, respectively (P = 0.029). The area under the 
ROC curve (AUC) of ANN, LR, APACHEII and SOFA 
scores were 0.873, 0.720, 0.629 and 0.619, respectively 
(P < 0.001). In validation set, the accuracies of the four 
models were 0.735, 0.722, 0.401, and 0.609, respectively 
(P = 0.272). The sensitivities were 0.624, 0.604, 0.333, 
and 0.416, respectively (P = 0.197). The specificities were 

Table 2 Baseline characteristics of training and validation sets

Variables Training set
(n = 1698)

Validation set
(n = 1176)

P value

Age (IQR, year) 66 (56–80) 67 (56–79) 0.213

Gender (n, %) 0.994

 Male 939 (55.3%) 663 (56.3%)

 Female 759 (44.7%) 513 (43.7%)

Vital signs

 DBP (mmHg) 63 (51–73) 63 (51–72) 0.310

 SBP (mmHg) 114 (98–131) 115 (97–131) 0.763

 HR (beats/min) 97 (81–111) 97 (83–113) 0.122

 RR (beats/min) 21 (16–24) 20 (16–24) 0.148

Comorbidities

 Renal disease 
(n, %)

149 (8.8%) 92 (7.8%) 0.930

 CAD (n, %) 260 (15.3%) 197 (16.7%) 0.542

 Diabetes (n, %) 103 (6.1%) 52 (4.4%) 0.021

 Hypertension 
(n, %)

636 (37.5%) 453 (38.5%) 0.774

Laboratory characteristics

 PLT (*109/L) 237.0 (137.0–310.0) 245.0 (148.0–320.0) 0.894

 AST (IU/L) 193.0 (24.0–83.0) 174.0 (22.0–73.0) 0.303

 Sodium (mmol/L) 137.0 (134.0–141.0) 137.0 (134.0–141.0) 0.931

 Glucose (mg/dL) 151.0 (101.7–163.0) 155.0 (104.7–164.2) 0.194

 Chloride 
(mmol/L)

102.0 (98.0–107.0) 101.0 (97.0–106.0) 0.510

 MCV (fL) 91.0 (86.0–96.0) 90.0 (86.0–95.0) 0.096

 ALT (IU/L) 107.0 (17.0–59.0) 98.0 (16.0–57.0) 0.420

 Neutrophils (%) 78.0 (74.1–89.1) 77.0 (73.0–89.0) 0.144

 Urea Nitrogen 
(mg/dL)

36.0(17.0–46.0) 35.0 (18.0–46.0) 0.617

 PTT (s) 35.0 (27.2–38.0) 34.0 (26.9–37.1) 0.886

 Hematocrit (%) 33.0 (28.8–37.5) 34.0 (29.6–38.1) 0.355

 PT(s) 18.0 (13.3–19.1) 18.0 (13.2–18.4) 0.949

 Anion Gap 
(mmol/L)

16.0 (14.0–19.0) 16.0 (13.0–19.0) 0.070

 RDW (%) 15.0 (14.1–17.1) 15.0 (14.1–16.9) 0.612

 Lymphocytes (%) 11.0 (4.3–13.3) 11.0 (4.2–14.0) 0.063

 WBC (*109/L) 13.0 (7.7–17.5) 12.0 (7.5–16.5) 0.089

 NLR 15.0 (5.5–18.9) 15.0 (5.4–19.2) 0.088

 Total calcium 
(mg/dL)

8.0 (7.5–8.8) 8.0 (7.4–8.8) 0.381

 Lactate (mmol/L) 2.0 (1.4–3.2) 2.0 (1.4–3.4) 0.790

 Albumin (g/dL) 2.0 (2.5–3.4) 2.0 (2.4–3.4) 0.169

 Creatinine (mg/
dL)

1.0 (0.9–2.2) 1.0 (0.9–2.4) 0.893

 Total bilirubin 
(mg/dL)

2.0 (0.4–1.5) 1.0 (0.4–1.5) 0.743

Scoring system

 APACHEII (IQR) 13 (11–17) 14 (11–17) 0.581

 SOFA (IQR) 2(1–4) 2 (1–4) 0.671

Clinical outcomes

 LOS in hospital 
(days)

13 (5–17) 13 (5–18) 0.386

Table 2 (continued)

Variables Training set
(n = 1698)

Validation set
(n = 1176)

P value

 30-day mortality 
(n, %)

526 (30.9%) 330 (28.1%) 0.153

SBP systolic blood pressure, DBP diastolic blood pressure, HR heart rate, RR 
respiratory rate, CAD coronary artery disease, WBC white blood cells, PLT platelet, 
RDW red cell volume distribution width, PT prothrombin time, PTT partial 
thrombin time, ALT alanine aminotransferase, AST aspartate aminotransferase, 
SOFA sequential organ failure assessment, APACHE acute physiology and chronic 
health evaluation, LOS length of stay, IQR interquartile ranges, MCV mean 
corpusular volume, NLR is defined as the ratio of neutrophils to lymphocytes
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Table 3 Comparison of variables between survivor and nonsurvivor groups in training set

SBP systolic blood pressure, DBP diastolic blood pressure, HR heart rate, RR respiratory rate, CAD coronary artery disease, WBC white blood cells, PLT platelet, RDW red 
cell volume distribution width, PT prothrombin time, PTT partial thrombin time, ALT alanine aminotransferase, AST aspartate aminotransferase, SOFA sequential organ 
failure assessment, APACHE acute physiology and chronic health evaluation, LOS length of stay, IQR interquartile ranges, MCV mean corpuscular volume, NLR is defined 
as the ratio of neutrophils to lymphocytes

Variables Survivor (n = 1172) Non‑survivor (n = 526) P value

Age (IQR, year) 65 (54–77) 70 (60–83)  < 0.001

Gender 0.539

 Male (n, %) 645 (55.8%) 294 (55.9%)

 Female (n, %) 527 (44.2%) 232 (44.1%)

Vital signs

 DBP (mmHg) 63 (52–73) 62 (49–72) 0.348

 SBP (mmHg) 115 (98–130) 113 (97–131) 0.185

 HR (beats/min) 96 (81–110) 98 (82–112) 0.187

 RR (beats/min) 20 (16–24) 21 (17–25) 0.223

Comorbidities

 Renal diseases (n, %) 96 (8.02%) 53 (10.64%) 0.117

 CAD (n, %) 172 (14.68%) 88 (16.73%) 0.287

 Diabetes (n, %) 74 (6.31%) 29 (5.51%) 0.728

 Hypertension (n, %) 441 (37.62%) 195 (37.07%) 0.637

laboratory characteristics

 PLT (*109/L) 234.0 (151.0–313.0) 230.0 (122.7–302.0) 0.121

 AST (IU/L) 109.0 (23.0–70.0) 374.0 (27.0–128.5)  < 0.001

 Sodium (mmol/L) 137.0 (134.0–140.0) 137.0 (133.0–141.0) 0.757

 Glucose (mg/dL) 154.0 (103.0–163.0) 146.0 (99.0–165.0) 0.164

 Chloride (mmol/L) 102.0 (98.0–107.0) 102.0 (97.0–107.0) 0.751

 MCV (fL) 90.0 (86.0–95.0) 92.0 (88.0–98.0) 0.001

 ALT (IU/L) 73.0 (16.0–55.0) 180.0 (17.0–74.5)  < 0.001

 Neutrophils (%) 79.0 (74.4–89.0) 77.0 (73.7–89.5) 0.125

 Urea Nitrogen (mg/dL) 32.0 (16.0–40.0) 44.0 (22.0–57.0)  < 0.001

 PTT (s) 34.0 (26.7–35.7) 38.0 (28.4–41.5)  < 0.001

 Hematocrit (%) 33.0 (29.0–37.6) 33.0 (28.4–37.0) 0.248

 PT (s) 17.0 (13.2–17.5) 20.0 (13.9–22.0)  < 0.001

 Anion Gap (mmol/L) 16.0 (13.0–19.0) 16.0 (14.0–20.0) 0.267

 RDW (%) 15.0 (13.9–16.6) 16.0 (14.7–18.3)  < 0.001

 Lymphocytes (%) 10.0 (4.4–13.3) 11.0 (4.0–13.3) 0.499

 WBC (*109/L) 13.0 (7.8–17.0) 13.0 (7.3–18.6) 0.083

 NLR 15.0 (5.6–18.8) 15.0 (5.2–18.8) 0.875

 Total calcium (mg/dL) 8.0 (7.6–8.8) 8.0 (7.5–8.8) 0.196

 Lactate (mmol/L) 2.0 (1.3–2.9) 3.0 (1.7–3.9)  < 0.001

 Albumin (g/dL) 3.0 (2.5–3.4) 2.0 (2.3–3.1)  < 0.001

 Creatinine (mg/dL) 1.0 (0.9–2.0) 1.0 (0.9–2.2) 0.238

 Total bilirubin (mg/dL) 1.0 (0.4–1.2) 3.0 (0.4–2.6)  < 0.001

Scoring system

 APACHEII (IQR) 13 (10–16) 15 (12–18)  < 0.001

 SOFA (IQR) 2 (1–4) 3 (2–5)  < 0.001

Clinical outcomes

 LOS in hospital (days) 16 (6–20) 8 (3–13)  < 0.001
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0.772, 0.744, 0.841, and 0.788, respectively (P = 0.095). 
The AUCs of ANN, LR, APACHEII, and SOFA scores 
were 0.811, 0.752, 0.607, and 0.628, respectively 
(P = 0.002).

Comparison of the predictive performances in dif-
ferent models Figure  4 showed the ROCs of ANN, LR, 
APACHEII, and SOFA scores for training set (A) and 
validation set (B), which showed that the ANN model 

had the highest ROCs in both training set and valida-
tion set. In Table 6, AUCs of ANN, LR, APACHEII and 
SOFA scores between training set and validation set 
were compared. ANN model showed the significant dif-
ference (P < 0.001), while no significant difference was 
found in logistic regression (P = 0.067), APACHEII score 
(P = 0.174) and SOFA score (P = 0.350).

Discussion
In our study, an ANN model for predicting 30-day mor-
tality in sepsis was performed. To our best knowledge, it 
was the first study for investigating the performance of 
ANN model in predicting short-term outcomes in sepsis 
based on MIMIC-III database.

Compared to LR model, ANN was good at dealing with 
nonlinear correlation in different analyses and also had 
a superiority in analysis of variables with sophisticated 
correlations [17]. One Korean study clarified that a total 
of 1260 bacteremia episodes were identified in 13,402 
patients and ANN model had a better performance in 
early detection of bacteremia, with an AUC of 0.729 and 
a sensitivity of 0.810 [18]. Another study concluded that 
when ANN model was applied to the prediction of indi-
vidual episodes of apnea and hypopnea in people with 
obstructive sleep apnea syndrome, it had both good spec-
ificity and sensitivity [19]. Our study showed that ANN 
model with an AUC of 0.811 was significantly superior to 
compared to LR, SOFA score and APACHEII score.

Four most important variables including albumin, PT, 
RDW, and lactate were identified in our ANN model. 
Accumulating evidence demonstrated those four vari-
ables were associated with clinical outcomes in sepsis 
[20–22].

Albumin, as the main protein which can balance cap-
illary membrane permeability and plasma osmotic pres-
sure, was identified to be associated with occurrence 

Table 4 Multivariate logistic regression analysis of variables associated with 30-day mortality

AST aspartate aminotransferase, RDW red cell volume distribution width, RR respiratory rate, PLT platelet, PT prothrombin time

Variables B S.E Wald P value OR 95% CI

Lower Upper

Age 0.029 0.005 38.973  < 0.001 1.030 1.020 1.039

AST 0.001 0.001 8.445 0.004 1.000 1.000 1.001

Urea nitrogen 0.008 0.002 14.690  < 0.001 1.008 1.004 1.013

RDW 0.149 0.028 27.483  < 0.001 1.161 1.098 1.227

Lactate 0.173 0.033 27.711  < 0.001 1.189 1.115 1.268

Albumin −0.542 0.101 29.089  < 0.001 0.581 0.477 0.708

Total bilirubin 0.058 0.015 14.879  < 0.001 1.059 1.029 1.091

PT 0.030 0.010 8.775 0.003 1.031 1.010 1.052

PLT −0.001 0.001 5.356 0.021 0.999 0.998 1.000

Fig. 2 The main structures of artificial neural networks. RDW red cell 
volume distribution width, PT prothrombin time, PTT partial thrombin 
time, ALT alanine aminotransferase, AST aspartate aminotransferase, 
MCV mean corpusular volume
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and clinical outcomes in sepsis [23]. One study clarified 
that low serum albumin levels (< 29.2 g/L) was an inde-
pendent risk factor for 28-day mortality in sepsis [24]. 
Furthermore, the daily changes of albumin were signifi-
cantly linked with mortality during the ICU stay in sepsis 
patients [25]. Another retrospective study concluded that 
in sepsis, the probability of survival decreased by 63.4% 
when serum albumin was ≤ 2.45 g/dl on admission, and 
by 76.4% when the lowest serum albumin during hospi-
talization was ≤ 1.45 g/dl [26].

Previous research illuminated that coagulation func-
tion on ICU admission was associated with mortality 
in sepsis [21]. In septic shock, survival curve analysis 
demonstrated a higher of PT/INR (> 0.16) had signifi-
cantly higher risk in 28-day mortality compared with a 
lower level (< 0.16) [27]. One recent COVID-19 study 
found that non-survivors with sepsis had higher level 
of PT and APTT [28]. In sepsis, due to infection and 
activated innate immune system, coagulation will be 

Fig. 3 The normalized importance of 11 variables for predicting 30-day mortality by artificial neural networks. RDW red cell volume distribution 
width, PT prothrombin time, PTT partial thrombin time, ALT alanine aminotransferase, AST aspartate aminotransferase, MCV mean corpusular volume

Table 5 Predictive performances of different models in training set and validation set

ANN artificial neural networks, SOFA sequential organ failure assessment, APACHE acute physiology and chronic health evaluation, AUC  area under the ROC curve, CI 
confidential interval

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

Training set

 ANN 0.866 (0.838–0.894) 0.850 (0.821–0.879) 0.410 (0.370–0.450) 0.873 (0.846–0.900)

 Logistic regression 0.711 (0.674–0.748) 0.662 (0.624–0.700) 0.337 (0.299–0.375) 0.720 (0.684–0.756)

 APACHEII 0.615 (0.576–0.654) 0.569 (0.529–0.609) 0.367 (0.328–0.406) 0.629 (0.607–0.651)

 SOFA 0.574 (0.534–0.614) 0.619 (0.580–0.658) 0.413 (0.373–0.453) 0.619 (0.596–0.641)

 P value  < 0.001  < 0.001 0.029  < 0.001

Validation set

 ANN 0.735 (0.714–0.756) 0.624 (0.601–0.647) 0.772 (0.752–0.792) 0.811 (0.792–0.830)

 Logistic regression 0.722 (0.701–0.743) 0.604 (0.581–0.627) 0.744 (0.723–0.765) 0.752 (0.731–0.773)

 APACHEII 0.401 (0.378–0.424) 0.333 (0.311–0.355) 0.841 (0.824–0.858) 0.607 (0.584–0.630)

 SOFA 0.609 (0.586–0.632) 0.416 (0.392–0.440) 0.788 (0.769–0.807) 0.628 (0.605–0.651)

 P value 0.272 0.197 0.095 0.002
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activated, leading to sepsis associated coagulopathy 
with over-consumption of coagulation factors [29].

RDW, as a parameter for evaluating in the size of circu-
lating red blood cells, was to be identified as a predictive 
indicator in different disorders [30–33]. A sepsis study 
with a total of 566 patients with overall mortality of 29% 
demonstrated that higher RDW was independently asso-
ciated with 28-day mortality [34]. Another study inves-
tigated the association between RDW and in-hospital 
mortality in sepsis and found that RDW had good predic-
tive performance with the AUC of 0.867 [35]. In a study 
on sepsis-induced acute respiratory distress syndrome, 
cox regression model showed that RDW was also an 
independent prognostic marker [36].

Lactate was reported as a predictor for the risk of 
death in all patients with or without sepsis [37]. Hyper-
lactatemia was more frequent in septic shock and was 
associated with a lower survival rate [38]. A prospectively 

research with a cohort of 1233 adults in UK showed that 
a lactate ≥ 2 mmol/L was associated with an increase in 
mortality and identified patients with suspicion of sep-
sis who had the highest risk of in-hospital mortality [39]. 
Lactate showed the similar prognostic accuracy for mor-
tality in adults with sepsis compared to that of SOFA [4]. 
The current research proved that in polymicrobial sepsis, 
lactate could promote macrophage high mobility group 
box-1(HMGB1) lactylation/acetylation and release exo-
some, leading to disrupted endothelium integrity and 
increased vascular permeability [40].

In our study, we performed a predictive model for 
30-day mortality in sepsis using ANN. Our predictive 
model can be beneficial for the early detection of patients 
with higher risk of poor prognosis. When those patients 
with higher risk of mortality are identified, physicians 
can do some intervention and timely managements in 
order to improve the clinical outcomes. Although the 

Fig. 4 The receiver operating characteristic curves of ANN, LR, SOFA, APACHEII in predicting 30-day mortality in sepsis. 4A: Training set; 4B: 
Validation set. ANN artificial neural networks, SOFA sequential organ failure assessment, APACHE acute physiology and chronic health evaluation, LR 
logistic regression

Table 6 Comparison of predictive performance between training set and validation set

ANN artificial neural networks, SOFA sequential organ failure assessment, APACHE acute physiology, and chronic health evaluation, AUC  area under the ROC curve, CI 
confidential interval

AUC (95% CI, Training set) AUC (95% CI, Validation set) P value

ANN 0.873 (0.846–0.900) 0.811 (0.792–0.830)  < 0.001

Logistic regression 0.720 (0.684–0.756) 0.752 (0.731–0.773) 0.067

APACHEII 0.629 (0.607–0.651) 0.607 (0.584–0.630) 0.174

SOFA 0.619 (0.596–0.641) 0.628 (0.605–0.651) 0.350
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predictive model couldn’t help guide ICU management, 
it may be more relevant to target short-term outcomes 
including respiratory failure or vasopressor initiation 
within 48 h which could impact disposition decisions.

Some limitations should be stated in our study. First, 
the MIMIC-III public database included data before 
2012, while the new definition of Sepsis-3.0 was pub-
lished in 2016. Differences in the definition of sepsis in 
different phrases should be considered when applying 
our ANN model. Second, due to a high percentage of 
missing values in MIMIC-III, not all the variables which 
may affect the clinical outcomes in sepsis were included 
and analyzed. Some variables including the percentage of 
patients that received antibiotics, and the timing of such 
were not analyzed, which may confound the outcome of 
30-day mortality. Third, the ANN model was applied to 
perform this study. Whether other prediction models 
of machine learning have better predictive performance 
than the ANN model should be further investigated. 
Fourth, our study constructed a predictive ANN model 
for 30-day mortality in sepsis. The primary outcome 
was 30-day mortality and patients with out-of-hospital 
mortality within 30 days might be missed. Fifth, we only 
investigated the 30-day mortality as the main outcome in 
the study. Other outcomes including complications and 
long-term prognosis were not investigated. In the future, 
further studies including more samples and longer fol-
low-up should be conducted to help explore how to 
improve the clinical outcomes in sepsis.

Conclusion
In our study, an ANN model for predicting 30-day mor-
tality in sepsis was performed. The predictive model 
can be beneficial for the early detection of patients with 
higher risk of poor prognosis.
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