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Abstract 

Background: Ventricular premature complex (VPC) is a common arrhythmia in clinical practice. VPC could trigger 
ventricular tachycardia/fibrillation or VPC‑induced cardiomyopathy in susceptible patients. Existing screening meth‑
ods require prolonged monitoring and are limited by cost and low yield when the frequency of VPC is low. Twelve‑
lead electrocardiogram (ECG) is low cost and widely used. We aimed to identify patients with VPC during normal sinus 
rhythm (NSR) using artificial intelligence (AI) and machine learning‑based ECG reading.

Methods: We developed AI‑enabled ECG algorithm using a convolutional neural network (CNN) to detect the ECG 
signature of VPC presented during NSR using standard 12‑lead ECGs. A total of 2515 ECG records from 398 patients 
with VPC were collected. Among them, only ECG records of NSR without VPC (1617 ECG records) were parsed.

Results: A total of 753 normal ECG records from 387 patients under NSR were used for comparison. Both image and 
time‑series datasets were parsed for the training process by the CNN models. The computer architectures were opti‑
mized to select the best model for the training process. Both the single‑input image model (InceptionV3, accuracy: 
0.895, 95% confidence interval [CI] 0.683–0.937) and multi‑input time‑series model (ResNet50V2, accuracy: 0.880, 95% 
CI 0.646–0.943) yielded satisfactory results for VPC prediction, both of which were better than the single‑input time‑
series model (ResNet50V2, accuracy: 0.840, 95% CI 0.629–0.952).

Conclusions: AI‑enabled ECG acquired during NSR permits rapid identification at point of care of individuals with 
VPC and has the potential to predict VPC episodes automatically rather than traditional long‑time monitoring.

Keywords: Artificial intelligence, Convolutional neural network, 12‑Lead electrocardiogram, Ventricular premature 
complex

Introduction
Ventricular premature complex (VPC), also  known 
as ventricular  extrasystole, is a commonly encoun-
tered  arrhythmia  worldwide [1]. According to the pre-
vious studies, the prevalence of VPC is around 1–4% in 

the general populations on standard  12-lead electrocar-
diography (ECG) [2]. Additionally, increasing age, male 
gender, atherosclerosis, hypertension, and cardiomyo-
pathy are related to higher occurrence of VPC [1]. Clini-
cally, VPC without any symptoms have been seemed to 
be benign. However, frequent VPC attacks are associ-
ated with cardiomyopathy and irreversible pathogenesis 
[3]. Especially for those with structurally heart diseases, 
the incidence and complexity of VPC also increase, up to 
90% in ischemic cardiomyopathy [2]. Thence, VPC seems 
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to be the signals for increasing risk of sudden death or 
the  clues for underlying cardiomyopathy. Consequently, 
timely prediction and intervention of VPC attack might 
eliminate its arrhythmogenic source and reverse progres-
sive cardiomyopathy.

Clinically, the conventional 12-lead electrocardiogram 
(ECG) has been used to monitor cardiac structure and 
physiological condition for decades. ECG is non-invasive, 
easy to use, rapid, low cost in the resource setting, and 
simple for interpretations [4]. Due to these character-
istics, several ECG monitoring systems are exploited to 
analyze the signals of ECG [4]. In order to interpret these 
enormous amount data immediately, deep learning has 
been widely used to read ECG signals and artificial intel-
ligence (AI) technique is suitable to process countless 
ECG signals without human intervention and offer accu-
rate diagnoses automatically [4].

However, most of the patients present with intermittent 
VPC and occasionally all the ECG-related examinations 
or monitoring are negative for the definite diagnosis of 
VPC. We need a tool to identify patients with VPC using 
ECG during sinus rhythm. It has been shown that AI-
enabled ECG algorithm can identify patients with parox-
ysmal atrial fibrillation using ECG during sinus rhythm. 
In this study, we used the automatic deep-learning neural 
network to identify the high-risk VPC populations using 
their ECGs during sinus rhythm for VPC attack to facili-
tate point of care and hope to prevent severe cardiovas-
cular events in advance.

Methods
Data collection and parsing
The data were collected from patients with the diagno-
sis of VPC at the National Taiwan University Hospi-
tal, Taipei, Taiwan from Jan/2021 to Oct/2021. Initially, 
398 patients were enrolled and 2515 ECG records were 
checked. Only ECG during sinus rhythm without the 
diagnoses of VPC was parsed and finally 1617 ECG 
records were double-checked by two cardiologists and 
labeled as sinus rhythm from patients with VPC. For the 

control group, 1053 patients with 2090 ECG records were 
collected and screened. Finally, 753 normal ECG records 
from 387 patients were picked up and marked as nor-
mal sinus rhythm (NSR). This study was approved by the 
ethics committee and institutional review board (IRB) 
on  human research of the Medical Research Depart-
ment of National Taiwan University Hospital, Taipei, Tai-
wan (IRB NO: 201705122RINC) and informed consent 
was waived because identification data on ECGs were 
removed before they were sent for analyses.

Dataset preparation
The datasets were divided into the training set, valida-
tion set, and test set. First, 50 ECG records were chosen 
randomly for the validation set and another 100 ECG 
records were selected for the test set. The rest of the data 
were assigned to the training set. Importantly, the data of 
the same patient could not belong to more than one data-
set, otherwise, it would affect the credibility of the final 
results.

Data type and pre‑process
The ECG records collected were in the format of stand-
ard 12-lead ECG images, including lead I, II, III, V1 ~ 6, 
aVR, aVL, aVF, and long lead II (MAC2000 resting ECG 
System, GE Healthcare). All the records were meas-
ured at the frequency of 500 Hz and duration was 2.5 s. 
Before data analysis, the red-grid backgrounds of the 
ECG images were removed and coped to make the 
whole images to be precisely focused on the ECG signals 
(Fig. 1).

After that, the ECG images were adjusted to be 
512 × 256 × 3 pixels. The two-dimensional ECG images 
were converted into the one-dimensional and time-series 
data. The input data size was 1250 × 12 pixels for convo-
lutional neural network (CNN) to perform the image rec-
ognition (Fig. 2).

Fig. 1 The ECG image processing process before input. a The standard 12‑lead ECG image. b The red‑rid background of the 12‑lead ECG images 
was removed. c The image was cropped to be focused on the ECG signals
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Models process
We set up CNN models according to the dimensional 
characteristics of the data formats. For the 2-dimensional 
image data, we used five network computer architectures, 
including VGG16 [5], ResNet50V2 [6], InceptionV3 
[7], InceptionResNetV2 [8], and Xception [9] to get 
the best image recognition with the Image Net part of 
CNN (Fig. 3a). After the features of the image data were 
extracted by CNN, the signals were flattened by Global 
Average Pooling (GAP) [10] and another dense layer was 
connected. Dropout was added to avoid overfitting later 
on (drop rate = 0.5) (Fig. 3b) [11]. Finally, another dense 
layer with a size of two was added, which represented 

two-type results as output layer (VPC and NSR) (Fig. 3b). 
For the time-series data, we used single-input and multi-
ple-input computer architectures for the models process-
ing. Initially, we changed the convolutional kernel into a 
one-dimensional kernel and different kernel sizes were 
tried by the CNN. The stride was set to three and the 
moving window of the convolutional kernel spans three 
grids at once. Each convolutional block was composed 
of one-dimensional CNN activation by BatchNormaliza-
tion [12] and ReLU [13]. The setting of Maxpooling [14] 
was pooling size equal to 5 and stride equal to 3. After 
the signals of features were extracted through the CNN 
layers, they were flattened by GAP. The output features of 

Fig. 2 The ECG data input format. a The red‑grid background of the 12‑lead ECG image was removed and ECG was converted to a gray‑scale 
image. b The pixel intensity was inversed and the pixel intensity was made to 255 pixels. The image was cut vertically into four sub‑images 
according to the “start” and “end” position of each lead. c Pixel‑wise scanning sub‑images and recording the position where the pixel intensity was 
equal to 255 pixels. d The closest position of the signal was grouped. Each column was split into four values and all values of the columns were 
synthesized into four lists in each lead. The signals were transferred to be the time‑series formats. e The column of each sub‑image consisted of 250 
pixels. After pixel‑wise scanning, one lead with 250 time‑series data was formatted. The interpolation operations were used to perform up‑sampling 
for the time‑series data (500 Hz, 2.5 s). f The IIR low‑pass filter was used to filtered the noise (cut‑off frequency = 15 Hz, order = 3). g The magnitude 
of each lead was normalized into a unified scale

Fig. 3 The architecture of the convolutional neural network (CNN). a The 2‑dimensional image data were processed by five network computer 
architectures, which included VGG16, ResNet50V2, InceptionV3, InceptionResNetV2, and Xception to get the best image recognition at the Image 
Net part of CNN and then flattened into Global Average Pooling (GAP). b The dense layer of the single input from the 2‑dimensional image data was 
connected. The dropout was added to avoid overfitting (drop rate = 0.5) and another dense layer with size of two was added to get an output layer. 
VPC ventricular premature complex, NOR normal rhythm. c The signals of time‑series data were extracted through the CNN layers and flattened by 
GAP. The output features of the single ‑input model was directly connected to dropout (dropout rate = 0.5) and the multiple‑input model from the 
twelve channels’ features were merged (to get the output result (dense size = 2). GAP Global Average Pooling

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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the single-input model were directly connected to drop-
out (dropout rate = 0.5) to avoid overfitting (Fig. 3c). On 
the other hand, the multiple-input model merged twelve 
channels’ features together and connected to one dense 
layer (dense size = 2) to get the output result (Fig. 3c).

Training process
We used Google Colaboratory (Colab) [15] with high-
Random Access Memory Graphics Processing Unit 
environment as the training platform. This Colab was 
supported by the Python 3.8 and Tensorflow package [16] 
for CNN training process. We also used the keras Appli-
cation Programming Interface (API) (one deep-learning 
API written in Python) to build CNN models and Ima-
geNet competition for transferring and learning. The set-
tings of the APIs and the training parameters are shown 
in Table 1.

Statistical analysis
Optimal cut-points and measurements of diagnostic per-
formance included accuracy, sensitivity, specificity, 

positive predictive value, negative predictive value, 
and area under the curve (AUC) of the receiver operat-
ing characteristic curve (ROC). All were  reported with 
2-sided 95% confidence interval. The data were analyzed 
by IBM SPSS (Version 25 for Windows, Armonk, New 
York) for statistical analysis.

Results
Performance of the image‑input model
Among all included patients, the mean age was 62.4 years 
(standard deviation 14.3) on the date of the first ECG, 
and 750 (52%) patients were men. In this study, we used 
different test sets to evaluate the different pre-trained 
CNN models with various sizes of the dense and the fully 
connected layers. The five network computer architec-
tures including VGG16 [5], ResNet50V2 [6], InceptionV3 
[7], InceptionResNetV2 [8], and Xception [9] were used 
to choose the best model with the highest accuracy for 
the following training process. Eventually, the Incep-
tionV3 [7] of the CNN model connected with the dense 
layer (size = 512) was chosen as the core CNN model for 
the image format datasets. The accuracy was the high-
est in comparison with the other combinations (accu-
racy = 0.895, sensitivity = 0.907, and specificity = 0.883, 
95% CI) (Fig.  4). The AUC of the ROC for this model 
architecture was 0.941 (Fig. 5).

Performance of the time‑series‑input model
For the time-series data, we evaluated different sizes 
of convolution kernels to find the best combination. 
The best kernel size was 7 to perform the single-input 
model and 11 for the multi-input model (Table  2). In 
the multi-input model, the CNN channel needed to 

Table 1 Application programming interfaces and parameter 
setting

API Application Programming Interface

API or Parameters Name Setting

Callback EarlyStopping Patience = 250

Optimizer Adam Learning rate = 0.0011

Metrics Accuracy –

Losses Categorical Crossentropy –

Epochs – 400

Batch size – 32

Fig. 4 The accuracy of different image‑input CNN models with various sizes of connected layers. CNN convolutional neural network
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analyze the signals of all the twelve leads at the same 
time. The complexity was relatively higher than that of 
the single-input model which just needed to analyze 

one-lead signal. Additionally, the multi-input model 
used parallelization of analysis. Therefore, the accuracy 
of the multi-input model was 4% higher than the single-
input model (single-input model: 0.840 and multi-input 
model: 0.880, 95% CI) (Table  3). The accuracy of the 
multi-input time-series model was still lower than but 
very close to that of the image-input model (0.880 vs. 
0.895).

Discussion
Highlights
In this study, our AI model enabled to record ECG sig-
nals and detect the presence of VPC during normal 
sinus rhythm (AUC: 0.941). The accuracy was compara-
ble with a previous study using AI-enable ECG to iden-
tify AF during normal sinus rhythm (AUC: 0.87; 95% 
CI: 0.86–0.88) [17] and were better with other medical 
screening tests such as CHADS2 score (AUC: 0.64; 95% 
CI: 0.56–0.72 and CHA2DS2-VASc score (AUC: 0.67; 
95% CI, 0.60–0.74) for prediction of ischemic strokes 
[18].

Fig. 5 The AUC of the ROC for the combination of the InceptionV3 CNN model and the dense layer (size = 512). CNN convolutional neural network, 
AUC  area under the receiver operating characteristic curve, ROC receiver operating characteristic curve

Table 2 Time‑series data for the single and multi‑input models

ROC AUC  area under the receiver operating characteristic curve, VPC ventricular 
premature complex

Kernel size Accuracy ROC AUC Sensitivity Specificity

Single‑input (1250 × 12)

 3 0.795 0.866 0.798 0.792

 5 0.815 0.886 0.889 0.765

 7 0.840 0.889 0.886 0.804

 9 0.835 0.893 0.885 0.796

 11 0.835 0.895 0.868 0.807

Multi‑input (1250 × 1) × 12

 3 0.865 0.920 0.884 0.848

 5 0.875 0.928 0.895 0.857

 7 0.860 0.929 0.875 0.846

 9 0.850 0.920 0.917 0.802

 11 0.880 0.929 0.896 0.865

Table 3 Comparison of both single‑input and multi‑input models

Acc accuracy, ROC AUC  area under the receiver operating characteristic curve, VPC ventricular premature complex

Data type Model Acc ROC AUC Sensitivity Specificity

Time series ResNet50V2 (Single‑input) 0.840 0.889 0.886 0.804

Time series ResNet50V2 (Multi‑input) 0.880 0.929 0.896 0.865
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The importance for VPC detection during sinus rhythm
Although VPC seems to be benign, it is associated with 
increasing cardiovascular events. From the Framingham 
Heart study [19], the Multiple Risk Factor Interven-
tion Trial (MRFIT) [20], and the Atherosclerosis Risk in 
Communities Study (ARIC) studies [21], VPC has been 
demonstrated as an independent risk factor for mortali-
ties of the patients without structural heart diseases [1]. 
VPC  is also recognized to trigger ventricular tachycar-
dia/fibrillation and cause sudden cardiac death (SCD) or 
unexplained syncope in patients without ischemic cardi-
omyopathy [1]. Additionally, patients with frequent VPCs 
(defined as > 1 VPC on a 10-s ECG or > 30  VPCs in an 
hour) are associated with incent heart failure and sudden 
cardiac death [1]. Besides, patients with frequent VPCs 
are risky to suffer from VPC-induced cardiomyopathy 
even though they are asymptomatic [1].

The ability to identify undetected VPC with an inex-
pensive, widely available, point-of-care test—an ECG 
recorded during normal sinus rhythm—has important 
practical implications, particularly for VPC screening 
efforts or for the management of patients with unex-
plained syncope or chest discomfort, especially for 
those with a familial history of SCD. This study shows 
the power of leveraging modern computing technology, 
large datasets, non-linear models, and automated fea-
tures extraction using convolution layers to potentially 
improve diagnosis and treatment of a disease with a life-
threatening state. When VPC is found, treatment could 
be initiated early. Catheter ablation significantly improves 
the outcome [22]. Several large, prospective, randomized 
studies have also shown that implantation of implantable 
cardioverter defibrillator (ICD) improves survivals for 
those with life-threatening ventricular arrhythmia [3, 23].

Prolonged ambulatory monitoring of patients with 
unexplained syncope or SCD may identify VPCs. Thus, 
short-term monitoring may under-detect VPC and leave 
a substantial proportion of patients unprotected from 
SCD until such time as VPC is detected. However, pro-
longed monitoring is expensive and can prove a burden 
to patients and clinical practices. Thus, identifying those 
patients who would most benefit from intensive moni-
toring would be valuable in patients with aborted. Our 
data indicate that a simple, inexpensive, non-invasive, 
10-s test—the AI-enhanced standard ECG—might per-
mit identification of patients with under-detected VPC. 
Further investigations will be necessary to confirm the 
diagnostic performance of AI-enabled ECG in specific 
populations, such as patients with SCD or unexplained 
syncope and chest tightness, to determine whether AI-
enabled ECG could be used to refine the selection of 
candidates for prolonged ambulatory cardiac rhythm 
monitoring or to guide treatment in these patients.

The dimensionality of 12‑lead ECG data
While applying CNN analysis in the 12-lead ECG, the 
one-dimensional approach treats the ECG data as a time-
series format. On the other hand, CNN extracts all the 
features of 12-lead ECG with kernels during two-dimen-
sional data processing. The CNN kernels could be acti-
vated by specific wave patterns and recognized by the 
neural network analysis subsequently [24]. Therefore, 
two-dimensional analysis is taking the data as an image, 
more similar to the cardiologist’s way to interpret the 
12-lead ECG. However, the two-dimensional data volume 
is gigantic and much complicated than the one-dimen-
sional data format. Therefore, the general AI tools could 
not analyze the 12-lead ECG stored with images format 
[25]. In order to encounter difficulties to analyze these 
large amounts and complicated two-dimensional data, 
we used several networks available and different com-
puter architecture combinations to get the best accuracy 
of VPC prediction by the CNN model. The CNN-based 
model for VPC prediction from the two-dimensional 
data was the important feature of this study. This had not 
been performed successfully before. After optimizing 
the input model architecture, our two-dimensional CNN 
model could identify the abnormal ECG and classify the 
high-risk populations before VPC attacked by the auto-
matic learning paradigm.

From the previous study, the AI-driven algorithms had 
been applied in automatic diagnosis for various diseases 
[26], such as myocardial infarction needing urgent revas-
cularization [24], systolic heart failure [25], subtle potas-
sium change among the high-risk populations [26], and 
atrial fibrillation [25–27]. However, most of these studies 
were based on the single-lead ECG or one-dimensional 
(time-series) datasets. From our results, the CNN model 
derived from the 12-lead ECG and two-dimensional data 
format was reliable to predict VPC attack automatically 
and the accuracy was even better than one-dimensional 
or time-series results (0.895 vs. 0.880). Our study dem-
onstrated the possibility to implement CNN model to 
identify VPCs using either one-dimensional or two-
dimensional data.

Mechanism by which AI could identify patients with VPC 
under normal sinus rhythm
The structural changes that underline VPC, which might 
include myocyte hypertrophy, fibrosis, and chamber 
enlargement, are likely to lead to subtle ECG changes, 
allowing for prediction of underlying VPC. This is very 
similar to using signal average ECG to detect late poten-
tials that could not be observed by human eyes through 
a single ECG [28, 29]. Furthermore, although seldom 
reported on ECGs, subtle intraventricular block may 
correlate with both subtle myocardial fibrosis and risk 
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of VPC or SCD [30]. Thus, it is possible that wavelets on 
the ECG smaller than the readily observable wave might 
reflect regional conduction block in these patients. A 
neural network trained with exposure to plenty of ECGs 
and with sufficient depth to extract and recall subtle fea-
tures not routinely appreciated or formally reported by 
human observers might be powerful enough to identify 
such features. Finally, it has been reported that AI-ena-
bled ECG may predict left ventricular function [31], and 
lower left ventricular ejection fraction has been shown as 
a strong predictor of ventricular arrhythmia [32].

Limitations
This is one-center study. The results of our observational 
study may justify future randomized clinical trials for this 
purpose.

Conclusions
In this study, the CNN neural network demonstrated as 
a promising tool for  comprehensively human-like inter-
pretation of the ECG. The deep-learning CNN model 
showed a satisfactory performance in the high-dimen-
sional datasets for the VPC prediction. It will have a great 
potential deployment in the clinical arena and largely 
unpredictable implications in the future. However, a 
key limitation in existing neural networks is explain-
able. Identifying these features could be of importance 
because they might offer novel findings that could pro-
vide new therapeutic targets or allow for more certainty 
for clinicians who are otherwise trying to understand 
what drives the network’s interpretation. Finding ways 
to peer into this so-called black box is an area of active 
ongoing investigation.
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