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Abstract 

Objective  To investigate the predictive value of deep learning-based cardiac ultrasound flow imaging for hyper-
trophic cardiomyopathy (HCM) complicated by arrhythmias.

Methods  The clinical data of 158 patients with hypertrophic cardiomyopathy were retrospectively collected from 
July 2019 to December 2021, and additionally divided into training group 106 cases, validation group 26 cases and 
test group 26 cases according to the ratio of 4:1:1, and divided into concurrent and non-concurrent groups accord-
ing to whether they were complicated by arrhythmia or not, respectively. General data of patients (age, gender, BMI, 
systolic blood pressure, diastolic blood pressure, HR) were collected, a deep learning model for cardiac ultrasound 
flow imaging was established, and image data, LVEF, LAVI, E/e’, vortex area change rate, circulation intensity change 
rate, mean blood flow velocity, and mean EL value were extracted.

Results  The differences in general data (age, gender, BMI, systolic blood pressure, diastolic blood pressure, HR) 
between the three groups were not statistically significant, P > 0.05. The differences in age, gender, BMI, systolic blood 
pressure, diastolic blood pressure, HR between the patients in the concurrent and non-concurrent groups in the train-
ing group were not statistically significant, P > 0.05.

Conclusions  Deep learning-based cardiac ultrasound flow imaging can identify cardiac ultrasound images more 
accurately and has a high predictive value for arrhythmias complicating hypertrophic cardiomyopathy, and vortex 
area change rate, circulation intensity change rate, mean flow velocity, mean EL, LAVI, and E/e’ are all risk factors for 
arrhythmias complicating hypertrophic cardiomyopathy.
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Introduction
The global prevalence of hypertrophic cardiomyopathy 
is 1:500, with an estimated 1.1–2.8 million patients in 
China [1]. The incidence of hypertrophic cardiomyopa-
thy and death rates are still on the rise worldwide [2]. 
Hypertrophic cardiomyopathy is a chronic progres-
sive disease caused by excessive myocardial contrac-
tion and impaired blood filling of the left ventricle and 
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is a relatively rare cardiovascular disease [3]. Because 
patients may not have obvious symptoms and have 
symptoms similar to other diseases, only a minority of 
cases are clinically diagnosed and it is estimated that 
about 80–90% of patients are undiagnosed [4]. There is 
no cure for hypertrophic cardiomyopathy and the prog-
nosis for most patients is poor [5]. Once patients with 
hypertrophic cardiomyopathy become symptomatic, 
the disease progressively worsens and in later stages 
can be combined with cardiovascular disease such as 
heart failure, arrhythmias and stroke, and is the leading 
cause of death in older patients with hypertrophic car-
diomyopathy [6, 7]. Patients with dyspnoea, chest pain, 
palpitations, fatigue and syncope should seek immedi-
ate medical attention from a cardiology department. 
Further diagnosis and active treatment through ultra-
sound testing can slow the progression of the disease, 
prevent sudden death and heart failure, and improve 
quality of life [8, 9]. Its potential to cause arrhythmias, 
which can be serious enough to cause sudden death 
[10], also puts patients with HCM under great psycho-
logical stress and seriously affects their quality of life.

Doppler ultrasound flow imaging is a simple, con-
venient and non-invasive technique that is now widely 
used [11]. Conventional cardiac ultrasound images do 
not reflect the variability of LV function and haemody-
namics, limiting their use in clinical practice, whereas 
ultrasound flow imaging can provide complex and real-
istic information on cardiac blood flow dynamics at a 
lower cost [12]. It has been shown that ultrasound flow 
imaging in patients with HCM can clearly display their 
left ventricular haemodynamic parameters and identify 
their clinical phenotype, allowing for more accurate 
prediction of HCM [13]. Cardiac ultrasound flow imag-
ing is a common tool for the detection of hypertrophic 
cardiomyopathy, but there may be diagnostic inaccura-
cies in manual judgement of its imaging [14], with the 
development of artificial intelligence, represented by 
deep learning With the development of artificial intel-
ligence, artificial intelligence technology represented 
by deep learning has become an auxiliary tool for vari-
ous imaging techniques, which takes raw image data 
as the basis, learns higher-order features of the image 
through multilayer neural networks, and the network 
automatically extracts the features for reorganisation 
and attribute categorisation and finally uses them to 
identify feature images, thus solving practical clinical 
problems [15, 16]. This study investigates the predictive 
value of deep learning-based cardiac ultrasound blood 
flow imaging models for the prevention of arrhythmias 
in patients with hypertrophic cardiomyopathy.

Material and methods
General information
The clinical data of 158 patients with hypertrophic cardi-
omyopathy were retrospectively collected from July 2019 
to December 2021 and additionally divided into train-
ing group 1 06 cases, validation group 26 cases, and test 
group 26 cases according to the ratio of 4:1:1, and divided 
into concurrent and non-concurrent groups according to 
whether they were complicated by arrhythmias or not, 
respectively.

This study was conducted with the approval of our eth-
ics committee.

Inclusion criteria: met diagnostic criteria for hyper-
trophic cardiomyopathy [17]; left ventricular posterior 
wall thickness or septal thickness ≥ 13 mm and left ven-
tricular outflow tract pressure ≥ 20 mmHg.

Exclusion criteria: combination of other serious car-
diovascular disease; previous history of cardiac disease; 
combination of serious cardiovascular disease; combina-
tion of serious arrhythmias; incomplete data.

Methodology
Collection of information
General patient information is collected through the 
electronic medical record, which includes age, gender, 
BMI, systolic blood pressure, diastolic blood pressure, 
HR, in addition to extracting data using a deep learning 
model in the patient’s cardiac ultrasound flow imaging, 
which includes LVEF, LAVI, E/e’, rate of change of vortex 
area, rate of change of circulatory intensity, mean blood 
flow velocity, mean EL value.

Cardiac ultrasound flow imaging tests
Test equipment  The instrument is a Hitachi Aloka Pro-
soundF75 colour Doppler ultrasound diagnostic device 
with a 15–5 MHz probe and image processing using the 
DAS-RS1 ultrasound VFM image post-processing work-
station. Testing is performed by a physician with more 
than 6 years of clinical experience in our department.

Test methods  The patient was placed in the left lateral 
recumbent position at rest, the probe was placed on the 
patient’s left ventricular apex, the imaging condition was 
adjusted to VFM, standard apical 2-chamber, 3-chamber 
and 4-chamber combined 3 complete cardiac circula-
tion imaging was acquired and completely surrounded, 
and the imaging frame rate was adjusted to greater than 
18 Hz. Using a dual Doppler simultaneous sampling tech-
nique, pulse Doppler or Doppler (PW or TDI), with PW 
and TDI set on the diastolic mitral orifice and the lateral 
wall of the left ventricular annulus, respectively, to cap-
ture synchronous motion rates, and PW or PW-type on a 
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three-chamber standard three-chamber view, with sam-
pling volumes set on the mitral and aortic orifices to cap-
ture synchronous flow spectra and measure IVC times. 
Ultrasound flow imaging of the heart is shown in Fig. 1.

Imaging analysis  (1) Echocardiographic images of apical 
four-chamber and two-chamber views were acquired, and 
the length of the biplane area was measured and calcu-
lated using the Simpson formula. (2) The acquired ultra-
sound images were input into the DAS-RS1 ultrasound 
workstation for offline analysis of VFM parameters: ①  
vortex area—concentric, closed flow line, outermost ring 
area is the vortex area, and the rate of change of vortex 
area was taken for early IVC versus late IVC; ② circu-
lation intensity—vortex was measured through the cen-
tre of the spiral and a sampling line perpendicular to the 
ultrasound beam, and the circulation intensity was taken 
for early IVC versus late IVC rate of change; (iii) blood 
flow velocity—an anatomical flow line from the top to 
the bottom was set and the blood flow velocity gradient 
was applied from the tip of the heart to the left ventricu-
lar outlet area; the average of the three cross-sections was 
obtained by calculating the blood flow velocity for 2, 3 and 
4 chambers, and the average blood flow velocity for the 
top + middle + bottom was taken; (iv) EL values—were 
derived using the VFM method, and the average EL for 
the top + middle + bottom was taken.

Image post‑processing
Ultrasound image analysis was performed by CVI42 
(Circle Cardiovascular Imaging Inc., Calgary, Alberta, 
Canada) software. Two specialists with more than 6 years 
of clinical experience performed the analysis of the 
basal, mid- and apical segments, and if the results dif-
fered between the two physicians, another senior physi-
cian (more than 10  years) made the determination. The 

ITK-SNAP software (version: 3.6.0) was used to segment 
the HCM images. Short-axis images of the basal, inter-
mediate and apical segments were entered into the soft-
ware separately and plotted between the ventricle and 
epicardium. Two cardiovascular imaging specialists with 
more than 6  years of clinical experience performed the 
image segmentation independently.

Deep learning model training
The deep learning model is SE -ResNext- 50, the overall 
deep learning training is done using the Pychar m com-
piler (https://​www.​jetbr​ains.​com/​pycha​rm/), the lan-
guage used is Python 3.7, the deep learning framework 
is pytorch 1.0.4 (ht:/pytorch.or/), and the GPU model is 
NVIDIATESLA V100.

The image data of all HCM patients are first trans-
formed into multiple 2D matrix forms and input into this 
network (2D input matrix size: 80 × 80), which is feature 
extracted using 32 parallel stacked residual blocks and 
the 32 features are combined. Due to the dependency 
between the convolution channels, this paper proposes 
a SE mechanism where the input image is assumed to 
be H*W*C (H and W represent the width and width of 
the input image, respectively, and C represents the num-
ber of channels in the input image), towards which it is 
expanded to 1*1*C by global pooling, an operation also 
known as the Squeeze operation. This is followed by two 
full convolution (FC) layers, which model the correla-
tion between channels through the bottleneck structure 
and are activated between FC layers through ReLU, thus 
improving the sparsity of the network and better fitting 
the complex correlation between channels, while also 
reducing the number of parameters and the number of 
operations. In addition, a normalised weighting from 0 to 
1 is obtained using Sigmoid and each channel is weighted 
using the scale operation, a process of activity assignment 

Fig. 1  Ultrasound flow imaging of the heart

https://www.jetbrains.com/pycharm/
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also known as the Excitation operation. Finally, the net-
work input is combined with the SE mechanism to 
process the image and feed it into the next step of the 
network.

In response to the gradient diffusion problem preva-
lent in the inverse transmission of deep networks, the BN 
layer is introduced in this study by normalising the out-
put data after the convolution of each layer. This method 
can effectively avoid the activation function ReLU from 
entering the non-linear saturation region, speed up the 
convergence of the network and prevent overfitting, thus 
enhancing the generalisation capability of the network 
(see Fig. 2).

Epoch (period) within the training group, validation 
group, and test group once each, thus facilitating control 
of the quality of the deep learning network training and 
obtaining the optimal test results. This study deals with 
a binary classification problem, so the predicted prob-
ability of 0–1 should be output in the last layer of this 
network, using One-Hot coding to obtain a 0 or 1 result, 
and calculating the CrossEntropyLoss with the origi-
nal data labels, using this Loss metric to determine how 
close the actual output is to the desired output. Since the 
stochastic gradient algorithm may not follow the cor-
rect direction at each update and is prone to oscillate at 
the optimal solution and stop at the local optimum, this 
study uses the stochastic gradient descent algorithm 
SGDM with momentum, which accelerates if the update 
direction at this moment in the gradient descent is the 
same as the update direction at the previous moment, 
and decelerates if the opposite is true, and can accelerate 
the Loss descent and converge to the global optimum. At 
the same time, the learning rate is decayed by a factor of 
0.1 if the 10-round Loss descent is not significant.

Observation indicators
To compare general patient data, factors influencing 
hypertrophic cardiomyopathy complicating arrhyth-
mias detected by cardiac ultrasound flow imaging based 
on deep learning models and the predictive value of the 
models.

Statistical methods
SPSS26. 00 software was used to analyse the data in 
this study and the measures collected (age, BMI, sys-
tolic blood pressure, diastolic blood pressure, HR, rate 
of change of vortex area, rate of change of circulatory 
intensity, mean blood flow velocity, mean EL, LVEF, 
LAVI, E/e’) were tested for normality by the Shapiro–
Wilk method, P > 0.05 for normally distributed data 
expressed as (mean ± standard deviation), t-test, P < 0.05 
for non-normally distributed data described as median 
(quartiles), Mann–Whitney U-test. Collected count data 
(gender) are expressed in (%), data were unordered using 
2 or Fisher’s exact test and data were ordered using the 
Mann–Whitney U test. Consistency of image segmenta-
tion was evaluated using ICC. The area under the subject 
operating characteristic curve (ROC) (AUC) was used to 
evaluate the predictive value of the model. P < 0.05 was 
considered a statistically significant difference for com-
parison between groups. Other data processing was done 
in the deep learning algorithm program.

Results
Comparison of general information
There was no statistically significant difference in the 
comparison of general information (age, gender, BMI, 
systolic blood pressure, diastolic blood pressure, HR) 
between the three groups, P > 0.05 (Table 1).

Fig. 2  Workflow diagram of the SE-ResNext- 50 model
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Univariate analysis of the training group
The differences in age, gender, BMI, systolic blood pres-
sure, diastolic blood pressure and HR between patients in 
the concurrent and non-concurrent groups in the train-
ing group were not statistically significant, P > 0.05. The 
rate of change in vortex area (14.10 ± 2.46)%, the rate 
of change in circulatory intensity (34.68 ± 5.22)%, the 
mean blood flow velocity (8.02 ± 2.09)  cm/s, the mean 
EL ( 5.16 ± 0.96) J/ms, LAVI (31.27 ± 4.28) mL/m2, E/e’ 
(13.21 ± 2.63) were significantly lower than the con-
current group’s vortex area change rate (15.87 ± 2.51) 
%, circulation intensity change rate (38.39 ± 5.36) %, 
mean blood flow velocity (9.19 ± 2.03) cm/s, mean EL 
(5.99 ± 1.04) J/ms, LAVI (36.22 ± 4.15) mL/m2, E/e’ 
(15.97 ± 2.87), LVEF (59.55 ± 4.66) % was significantly 
higher in the uncomplicated group than in the compli-
cated group (55.43 ± 4.31) %, with statistically significant 
differences, P < 0.05 (Table 2).

Binary logistic regression analysis of factors influencing 
arrhythmias complicating hypertrophic cardiomyopathy
The factors influencing significant differences in Tab. 
2 were included in a multifactorial logistic regres-
sion analysis with the dependent variable concomitant 
arrhythmias = 1 and non-concomitant arrhythmias = 0. 
The results showed that rate of change in vortex 
area, rate of change in circulatory intensity, mean 
blood flow velocity, mean EL, LAVI, and E/e’ were all 
risk factors for concomitant arrhythmias in hyper-
trophic cardiomyopathy and LVEF was a protective 
factor for concomitant arrhythmias in hypertrophic 
cardiomyopathy factors. The model equation is 
Log(P) = rate of change of vortex area × 0.395 + rate 
of change of circulatory intensity × 0.627 + mean 
blood flow velocity × 0.293 + mean EL × 0.410-
LVEF × 0.290 + LAVI × 0.180 + E/e’ × 0.299–68.142 
(Fig. 3).

Table 1  Comparison of general information

Indicators Training group (n = 1 
06 cases)

Validation group 
(n = 26 cases)

Test group (n = 26 cases) F/U P

Age (years) 52.16 ± 3.16 52.95 ± 3.18 53.04 ± 3.22 2.681 0.070

Gender

 Male 56 13 14 0.165 0.921

 Female 50 13 12

BMI (kg/m2) 21.34 ± 3.05 20.69 ± 3.06 21.62 ± 2.97 1.692 0.186

Systolic blood pressure (mmHg) 111.43 ± 12.69 111.63 ± 13.11 110.78 ± 13.26 0.083 0.920

Diastolic blood pressure (mmHg) 72.13 ± 6.32 73.12 ± 6.41 73.56 ± 5.98 1.519 0.221

HR (times/min) 70.62 ± 5.11 71.36 ± 5.62 71.59 ± 5.64 1.024 0.360

Table 2  Univariate analysis of training groups

Indicators Concurrent groups (n = 39 
examples)

Non-concurrent group 
(n = 67 cases)

F/2 P

Age (years) 53.05 ± 3.19 52.71 ± 3.18 0.725 0.470

Gender

 Male 21 35 0.255 0.614

 Female 18 32

BMI (kg/m2) 21.66 ± 3.08 21.51 ± 3.09 0.330 0.742

Systolic blood pressure (mmHg) 110.29 ± 11.46 111.22 ± 13.02 0.512 0.610

Diastolic blood pressure (mmHg) 73.02 ± 6.18 72.29 ± 6.27 0.795 0.427

HR (times/min) 71.02 ± 5.33 71.66 ± 5.58 0.794 0.428

LVEF (%) 55.43 ± 4.31 59.55 ± 4.66 6.206 0.000

LAVI (mL/m2) 36.22 ± 4.15 31.27 ± 4.28 7.960 0.000

E/e’ 15.97 ± 2.87 13.21 ± 2.63 6.835 0.000

Vortex area change rate (%) 15.87 ± 2.51 14.10 ± 2.46 3.104 0.003

Cycle strength change (%) 38.39 ± 5.36 34.68 ± 5.22 3.057 0.003

Mean blood flow velocity (cm/s) 9.19 ± 2.03 8.02 ± 2.09 2.476 0.016

Average EL (J/ms) 5.99 ± 1.04 5.16 ± 0.96 3.610 0.001
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SE‑ResNext‑50’s ability to recognise images
A total of 158 images from patients were entered into 
the SE-ResNext-50 model. The agreement between the 
two physicians for the segmented area of all images 
was good (ICC = 0.903). The loss function Loss and 
acc change curves of the training showed (Figs.  4, 
5) that the Loss change curve was essentially zero at 
epoch of 300, and the acc change curves of the train-
ing, validation and test groups gradually levelled off 
in value when epoch reached 300, indicating that the 
training did not show overfitting.

Diagnostic efficacy of deep learning cardiac ultrasound 
blood flow techniques
The training group had a sensitivity of 0.940 and spec-
ificity of 0.882, the training group model ROC curve 
AUC value of 0.978, the validation group ROC curve 
AUC value of 0.985, sensitivity of 1.000 and specific-
ity of 0.974, and the test group ROC curve AUC value 
of 0.974, sensitivity of 0.867 and specificity of 1.000 
(Figs. 6, 7, 8).

Discussion
HCM is a primary cardiomyopathy caused by structural 
and functional abnormalities of the myocardium, and 
arrhythmias are a common complication in patients with 
HCM [18]. Until now, the prediction of the risk of sudden 
death due to arrhythmias in HCM has been poorly iden-
tified [19]. The incidence of arrhythmias in patients with 
HCM in this study was 39.2% (62/158), which also indi-
cates a high risk of arrhythmias in patients with HCM, 
and once arrhythmias occur in patients with HCM, they 
can lead to atrial thrombosis and ventricular tachycar-
dia, increasing the risk of heart failure, stroke and sudden 
cardiac death [20]. Therefore, it is essential to analyse the 
risk factors for screening patients with HCM for compli-
cations of arrhythmias and their prediction. This is why 
it is essential to analyse the risk factors and their predic-
tion in patients with HCM. In this study, a deep learn-
ing model was developed using cardiac ultrasound flow 
imaging to predict the risk of complications of arrhyth-
mias in patients with HCM.

Fig. 3  Factors influencing arrhythmias complicating hypertrophic cardiomyopathy

Fig. 4  Loss curve of the model

Fig. 5  Acc curve of the model
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In this study, a total of 158 patients with hypertrophic 
cardiomyopathy were selected and divided into training 
group, validation group and test group. There was no sta-
tistically significant difference between the general infor-
mation of the three groups for the follow-up experiment. 
The patients in the three groups were divided into con-
current and non-concurrent groups according to whether 
they were complicated by arrhythmias or not. The differ-
ences in age, gender, BMI, systolic blood pressure, dias-
tolic blood pressure and HR between the patients in the 
concurrent and non-concurrent groups in the training 
group were not statistically significant, P > 0.05. The rate 
of change of vortex area, rate of change of circulatory 
intensity, mean blood flow velocity, mean EL, LAVI and 
E/e’ in the non-concurrent group were significantly lower 
than those of the concurrent group, and LVEF was sig-
nificantly higher in patients in the non-concurrent group 
than in the concurrent group. A multifactorial analysis 
later showed that vortex area rate of change, circulatory 
intensity rate of change, mean blood flow velocity, mean 
EL, LAVI, and E/e’ were all risk factors for arrhythmias in 
hypertrophic cardiomyopathy, and LVEF was a protective 
factor for arrhythmias in hypertrophic cardiomyopathy.
VFM is a new hydrodynamic evaluation technique for 

visual display and quantitative assessment. The incongru-
ity of the luminal canal configuration and wall due to car-
diomyopathy and valvular disease affects the formation 
and movement of vortex flow, thus increasing the level of 
EL. Abnormal changes in EL can lead to changes in the 
overall structure and function of the myocardium, so the 
location, morphology and extent of vortex formation are 
highly relevant to the structure and function of the left 
ventricle, and in addition patients with arrhythmias have 
significantly abnormal blood flow velocity indicators [21, 
22]. The rate of change in vortex area, mean blood flow 
velocity and mean EL in patients with HCM complicated 
by arrhythmia were also consistent with the results of this 
study.

Previous studies have shown [23] that LVEF and dias-
tolic function are protective factors against complications 
of arrhythmias in patients with HCM. LVEF is a quantita-
tive indicator of cardiac systolic function, and a greater 
LVEF value indicates greater myocardial contractility 
and a lower incidence of arrhythmias. Atrial arrhythmias 
can be caused by increased left atrial internal diameter, 
increased left atrial pressure, disproportionate enlarge-
ment, atrial myocardial degeneration, increased stress, 
and inconsistent conduction and nonconformity. In 

Fig. 6  ROC curve of the training group model
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addition, in the study by Casella et  al. [24] cardiomyo-
pathy complicated by arrhythmias, cardiac ultrasound 
showed an increased right atrial right ventricular internal 
diameter and a widened right ventricular outflow tract 
internal diameter, and the right atrial right ventricular 
internal diameter was larger than that of patients with 
cardiomyopathy. This also suggests that the right atrial 
intraventricular diameter may be a factor in arrhythmias 
associated with cardiomyopathy. Significantly elevated 
LAVI has been found in patients with arrhythmias and 
its role in the development of arrhythmias [25]. The 
E/e’ ratio has been widely used in the assessment of left 
ventricular diastolic filling pressures in various cardiac 
disease processes. Impaired left ventricular diastolic 
function and the resulting increase in left ventricular fill-
ing pressure can lead to stagnation of blood flow in the 
left atrium and left atrial thrombosis [26]. Therefore, in 
addition to indicating increased LV diastolic filling pres-
sures, an increase in the E/e’ ratio may also indicate an 
increased risk of left atrial stasis and thrombosis, which 
can be a cause of sudden cardiac death in arrhythmias. 
Finally the loss function Loss and acc change curves for 
the deep learning model training established in this study 
showed that the training for did not show overfitting, 

indicating a better model. In addition, the ROC curve 
AUC value for the model in the training group was 0.978, 
the ROC curve AUC value for the validation group was 
0.985 and the ROC curve AUC value for the test group 
was 0.974, with high sensitivity and specificity and high 
predictive value.

In summary, deep learning-based cardiac ultrasound 
flow imaging can identify cardiac ultrasound images 
more accurately and has a high predictive value for 
arrhythmias complicating hypertrophic cardiomyo-
pathy, and vortex area change rate, circulation inten-
sity change rate, mean flow velocity, mean EL, LAVI, 
and E/e’ are all risk factors for arrhythmias compli-
cating hypertrophic cardiomyopathy, and LVEF is a 
Protective factors for arrhythmias in hypertrophic car-
diomyopathy. The use of cardiac ultrasound flow imag-
ing should focus on abnormalities in these parameters 
to avoid arrhythmias in hypertrophic cardiomyopathy. 
There are some limitations to this study. Due to the 
limited sample size of this study, future studies should 
include a larger sample size to explore the effective-
ness of deep learning models to identify arrhythmias 
complicating hypertrophic cardiomyopathy. In addi-
tion, cardiac ultrasound flow imaging was used in this 

Fig. 7  ROC curve of the validation group model
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study, and subsequent studies could use combined 
diagnostic images for deep learning modelling to bet-
ter predict arrhythmias complicating hypertrophic 
cardiomyopathy.
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