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Abstract 

Background  Inherited primary arrhythmias, such as long QT (LQT) syndromes, are electrical abnormalities of the 
heart mainly due to variants in 3 genes. We herein describe a novel stop-gain pathogenic variant in the KCNQ1 gene 
in an Iranian child with LQT syndrome 1.

Methods  The patient and his family underwent clinical evaluation, electrocardiographic Holter monitoring, and 
whole-exome sequencing. Sanger sequencing and segregation analysis were used to confirm the variant in the 
patient and his family, respectively. The pathogenicity of the variant was checked via an in silico analysis.

Results  The proband suffered from bradycardia and had experienced syncope without stress. The corrected QT 
interval was 470 ms (the Schwartz score ≥ 3.5), and the Holter monitoring showed sinus rhythm, infrequent prema-
ture atrial contractions, and a prolonged QT interval in some leads. Whole-exome and Sanger sequencing showed 
c.968G > A in 3 affected family members. According to the American College of Medical Genetics and Genomics 
criteria, c.968G > A was classified as a pathogenic variant.

Conclusions  The KCNQ1 gene is the main cause of LQT syndromes in our population. The common genes of LQT 
syndromes should be studied in our country’s different ethnicities to determine the exact role of these genes in these 
subpopulations.
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Introduction
Long QT (LQT) syndromes are inherited primary 
arrhythmias affecting 1 in every 5000 to 20000 neonates 
worldwide [13]. They are characterized by the prolonga-
tion of the corrected QT interval on the electrocardio-
gram (ECG), and they propagate the risk of ventricular 
arrhythmias, resulting in torsade de pointes [16]. LQT 
syndromes occur due to alterations in the expression 
and/or function of repolarizing ionic channels. The main 

clinical features of LQT syndromes usually include pal-
pitations, syncope, seizures, and ventricular arrhythmias, 
increasing the risk of sudden cardiac death [12].

The congenital form of LQT syndromes is mostly 
caused by autosomal dominant pathogenic variants in 
K + channel proteins, namely Kv7.1 and Kv11.1, in car-
diac cells. Kv7.1 and Kv11.1 channels play a significant 
role in delayed-rectifier K + currents, required for nor-
mal ventricular repolarization. Kv7.1 is encoded by the 
KCNQ1 gene (LQT syndromes type 1 or LQT1) [1]. Path-
ogenic variants in KCNQ1 are the most common cause of 
congenital LQT syndromes. Without medical treatment, 
the mortality rate is high within 1 year after the first syn-
cope episode, [11] but the rate decreases significantly 
during a 15-year follow-up [13]. LQT syndromes can be 
diagnosed by clinical features, QT-interval prolongation 
on 12‐lead ECGs, provocative tests such as epinephrine 
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infusion and exercise stress, family history, and genetic 
testing.

We have previously described the genetic spectrum of 
the common types of LQT syndromes in our population. 
[5, 8, 17]. Here, we report a novel stop-gain pathogenic 
variant in KCNQ1 causing LQT1 in an Iranian child.

Methods
Clinical evaluation of family recruitment and ethics 
approval
An Iranian family recruited in this study, had been 
referred to Rajaie Cardiovascular Medical and Research 
Center, Tehran, Iran, for the experience of recurrent 
syncope of its children. The proband was a 10-year-old 
boy with a 3-year-old brother (Fig.  1A-, III-1 & III-2, 
respectively). The parents were unrelated and healthy: 
the father was 41 years old, and the mother was 34. Rou-
tine cardiovascular examinations, including echocardi-
ography, 12-lead ECGs, exercise tests, and 24-h Holter 
monitoring, were carried out for all the family members, 
affected or healthy. The patients (Fig.  1A, III-1 & III-2) 
underwent an electrophysiological examination with a 
2-electrode voltage−clamp amplifier (TEC10CD, NPI 
Electronics, Tamm, Germany) featuring KCl-filled elec-
trodes of about 0.8 MU resistance [18]. The currents were 
measured at room temperature by applying bath solu-
tions, including 10 mM of HEPES (pH 7.2), 105 mM of 
NaCl, 1.8 mM of CaCl2, and 10 mM of KCl. The Bazett 
formula was used for calculating the heart rate QT inter-
vals. The study was performed due to the Declaration of 
Helsinki and was approved by the Ethics Committee of 
Rajaie Cardiovascular Medical and Research Center (IR.
RHC.REC.1401.054). Informed consent was achieved 
from all participants and from the parents of participants 
below 16-year-old.

Whole‑Exome sequencing and in Silico analysis
Blood samples of family members were obtained. 
Genomic DNA extraction was performed using the 
DNSol Midi Kit (Roche: Product No. 50072012). 
Whole-exome sequencing was done on the proband 
(Fig.  1A, III-I) at Macrogen (Amsterdam, the Neth-
erlands). Enrichment and capture of all exones were 
carried out using SureSelect Exon V7 Library Prep 
Kit. Exome was sequenced on an Illumina HiSeq 6000 
machine based on the manufacturer’s protocol. A read 
quality value of greater than 20 and a depth of greater 
than 7 was used for the next steps. The quality of the 
reads was surveyed with FastQC. The clean reads 
were aligned to the reference genome (UCSC Genome 
Browser, hg19) applying the Burrows–Wheeler Aligner 
(BWA-MEM v.07.17) [3]. Insertion and/or deletion and 
single-nucleotide polymorphism were called with the 

aid of the Genome Analysis Toolkit (GATK, v.4.1.4.1) 
[6]. Annotation of determined variants was done by 
ANNOVAR [15] and filtered according to the Exome 
Aggregation Consortium (ExAC), the 1000 Genomes 
Project, Exome-Sequencing Project ESP6500, and the 
Genome Aggregation Database (gnomAD) minor allele 
frequency (MAF) of 0.001. The candidate variants 
were investigated with bioinformatics tools, consisting 
of MutationTaster (www.​mutat​ionta​ster.​org), CADD 
(cadd.gs.washington.edu), PROVEAN (provean.jcvi.
org), SIFT (https://​sift.​bii.a-​star.​edu.​sg), and Poly-
Phen-2 (genetics.bwh.harvard.edu/pph2) according to 
the 2015 guidelines of the American College of Medi-
cal Genetics and Genomics (ACMG) [10]. Moreover, 
the conservation of the variants regions were ana-
lyzed using the GERP +  + score and CLUSTALW Web 
Server (https://​www.​genome.​jp/​tools-​bin/​clust​alw) 
by comparing the amino acid sequences of different 
species.

Variant validation and segregation analysis
The identified candidate variant, KCNQ1 c.968G > A: 
p.Trp323, was confirmed and segregated using polymer-
ase chain reaction (PCR) and Sanger sequencing to assess 
the family members (healthy/patient).

Primer pair was designed using the Primer3 v.04.0 
(http://​bioin​fo.​ut.​ee/​prime​r3-0.​4.0/) with the sequences: 
forward: 5ʹ-TGC​TCT​TTG​TTG​ACG​ACC​A-3′ and 
reverse: 5′-AGC​GTG​GAA​GTG​CCC​TCT​-3′. PCR was 
carried out on a SimpliAmp Thermal Cycler (Thermo 
Fisher Scientific) with 1.5 mmol/L of MgCl2, 10 pmol/L 
of the primers, 200 mmol/L of dNTP, 100 ng DNA, and 
1  U of Taq DNA polymerase (Amplicon, UK). Thereaf-
ter, incubation at 95  °C for 5  min and 35 amplification 
cycles (30 s at 95 °C, 30 s at 62 °C, and 30 s at 72 °C) was 
applied. The products of the PCR were sequenced on an 
ABI Sequencer 3500XL PE (Applied Biosystems), and 
the sequences were surveyed with CodonCode Aligner 
(v.7.1.2) (Fig. 1B).

Results
Clinical findings
The proband (Fig. 1A, III-1) had suffered 2 syncope epi-
sodes without stress in the past year. Sinus rhythm, infre-
quent premature atrial contractions, and a prolonged QT 
interval in some leads were detected in his Holter record-
ing (Fig.  2A, C). The minimum Schwartz score [2] was 
3.5, indicating the high probability of LQT syndromes.

Concerning the family history, the younger brother 
(Fig.  1A, III-2) also had suffered syncope and exhibited 
similar symptoms. The mother (Fig. 1A, II-4) had experi-
enced chest pain and dyspnea in the preceding 5 months 
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(no notable ECG manifestations). The father (Fig.  1A, 
II-3) had no history of arrhythmia or syncope, with no 
signs of heart disease or aberrant ECGs in his clinical 
examinations.

Molecular findings
Whole-exome sequencing was performed on the 
proband (Fig.  1A, III-1) to discover the causative vari-
ant. A novel stop-gain pathogenic variant, c.968G > A, 
was found in the seventh exon of KCNQ1. This variant 

Fig. 1  The image presents the pedigree of the family with long QT (LQT) syndromes, as well as the results of the electrocardiogram (ECG) and 
sequencing chromatograms of the mutated nucleotide in the KCNQ1 gene. A The pedigree of the family with LQT syndromes is presented herein. 
The proband is indicated with the arrow. B The Sanger sequencing results of the KCNQ1 gene in the patient and his family members are shown 
here. The patients carried a heterozygous nonsense variant: c.G968A. C The image demonstrates the poor region of the Kv11.1 schematic structure 
with the W323X variant. D This region includes amino acids conserved among humans, mice, rats, rabbits, and horses
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substituted tryptophan at site 323 for a stop codon, pro-
posed to cause a premature KCNQ1 truncated protein 
and/or nonsense-mediated KCNQ1 mRNA decay. Nota-
bly, the variant has not yet been reported either in the 
1000 Genomes Project, ExAc, gnomAD, HGMD, and 
ClinVar or in publications. According to the ACMG, 
c.968G > A was determined as a pathogenic variant (cri-
teria: PVS1, PM2, PP1, and PP4). This nonsense variant 

was considered the cause of the disease by SIFT, Poly-
Phen-2, PROVEAN, FATHMM, and GERP +  + . The 
CADD Phred score was 41. The variant was confirmed in 
the proband (Fig. 1A, III-2) by PCR and Sanger sequenc-
ing in the heterozygous state. It was also detected in 
the proband’s affected brother (Fig.  1A, III-2) and the 
suspected mother (Fig.  1A, II-4) as a heterozygote. 
The father (Fig. 1A, II-3) had a normal sequence at this 

Fig. 2  A The baseline 12-lead standard electrocardiogram indicates a normal sinus rhythm, a normal QRS frontal axis, and a normal corrected 
QT interval. B Four minutes after exercise cessation, the corrected QT interval is about 480 ms, deemed prolonged for this situation. C The image 
presents the leads of ambulatory monitoring. The corrected QT interval is normal in most of the leads but is prolonged in the right lower panel
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position (Fig.  1B). DNA from the other pedigree mem-
bers was unavailable. A schematic secondary structure 
of the KCNQ1 protein is presented in Fig.  1C. In addi-
tion, based on the CLUSTALW results, tryptophan323 
was located in the conserved part of the KCNQ1 protein 
(Fig. 1D).

Discussion
In many populations, inherited LQT syndromes (~ 75% 
of LQT syndromes) occur due to variants of 3 genes: 
KCNQ1 (~ 35%), KCNH2 (~ 30%), and SCN5A (~ 10%), 
which encode Kv7.1, Kv11.1, and Nav1.5, respectively 
[14]. However, other major genes might exist in some 
populations. For instance, in our previous study, we dem-
onstrated that the common genes of LQT syndromes 
were responsible for only 43% of patients in a sample of 
the Iranian population [5]. Here, we describe an Iranian 
child suffering from syncope without stress and with a 
minimum Schwartz score of 3.5 due to a novel nonsense 
variant in KCNQ1.

Nonsense variants account for a lower percentage of 
point mutations in KCNQ1, with approximately 10% of 
KCNQ1 variants being nonsense [5]. In the present study, 
we found a novel nonsense variant, c.968G > A, leading 
to p.Trp323Ter in KCNQ1 in an Iranian proband whose 
brother and mother were also symptomatic. Notably, 
p.Trp323 is a hotspot in this gene because p.Trp323Ter 
due to c.969G > A (not c.968G > A) was reported in a 
patient by [4]. Our patients had bradycardia, a prolonged 
corrected QT interval (470 ms), sinus rhythm, infrequent 
premature atrial contractions, and a prolonged QT inter-
val in some leads.

The pathogenic variant introduced herein may lead to 
more severe phenotypes, although a genotype–pheno-
type correlation with a significant number of affected 
individuals is required to elucidate the effects of this vari-
ant on clinical presentations and arrhythmic events. Our 
in silico analyses showed that this variant is pathogenic, 
and p.Trp323 is a conserved position among different 
species. Further, p.Trp323 is located in a region of poor 
channel condition, so any change in this position could 
have a potential pathogenic effect on the function of the 
channel such that the IKs (K slowed delayed rectifier) 
current is severely affected. As shown, any dysfunction 
in this current may lead to a prolonged cardiac action 
potential and U-wave and T-wave changes and trigger 
torsade de pointes [9].

Chain termination variants, such as nonsense vari-
ants, lead to truncated proteins and severe symptoms, 
whereas missense variants result in amino acid substitu-
tions. Depending on their location and effects on mes-
senger RNAs and proteins, splicing variants may have 
variable phenotypes in patients with such variants. We 

recommend further research on the effects of different 
KCNQ1 variants on symptoms and signs among patients 
with chain termination, missense, and splicing variants. 
In this regard, we have previously reported the effects of 
the splicing variant in the MYO15A gene [7].

Our findings suggest that KCNQ1 might be the prin-
cipal cause of LQT in our population. There are many 
ethnicities in our country; the common genes of LQT 
syndromes should, therefore, be studied in these different 
ethnicities to determine the exact role of these genes in 
these subpopulations.
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