
Liang et al. 
European Journal of Medical Research           (2023) 28:41  
https://doi.org/10.1186/s40001-023-00993-z

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

European Journal
of Medical Research

A novel machine learning model based 
on ubiquitin‑related gene pairs and clinical 
features to predict prognosis and treatment 
effect in colon adenocarcinoma
Liping Liang1†, Le Liu2†, Shijie Mai3 and Ye Chen1,2* 

Abstract 

Background  Ubiquitin and ubiquitin-like (UB/UBL) conjugations are essential post-translational modifications that 
contribute to cancer onset and advancement. In colon adenocarcinoma (COAD), nonetheless, the biological role, as 
well as the clinical value of ubiquitin-related genes (URGs), is unclear. The current study sought to design and verify a 
ubiquitin-related gene pairs (URGPs)-related prognostic signature for predicting COAD prognoses.

Methods  Using univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression, 
URGP’s predictive signature was discovered. Signatures differentiated high-risk and low-risk patients. ROC and Kaplan–
Meier assessed URGPs’ signature. Gene set enrichment analysis (GSEA) examined biological nomogram enrichment. 
Chemotherapy  and tumor immune microenvironment were also studied.

Results  The predictive signature used six URGPs. High-risk patients had a worse prognosis than low-risk patients, 
according to Kaplan–Meier. After adjusting for other clinical characteristics, the URGPs signature could reliably predict 
COAD patients. In the low-risk group, we found higher amounts of invading CD4 memory-activated T cells, follicular 
helper T cells, macrophages, and resting dendritic cells. Moreover, low-risk group had higher immune checkpoint-
related gene expression and chemosensitivity.

Conclusion  Our research developed a nomogram and a URGPs prognostic signature to predict COAD prognosis, 
which may aid in patient risk stratification and offer an effective evaluation method of individualized treatment in 
clinical settings.
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Introduction
Colon cancer is the most prevalent malignancy  affect-
ing  the gastrointestinal tract, with an estimated 101,420 
newly diagnosed  cases  and 51,020 deaths in the United 
States in 2019 [1]. Colon adenocarcinoma (COAD) 
accounts for over 80% of all colon malignancies, with 
sarcomas and squamous cell carcinomas responsible 
for the remaining 20% [1, 2]. COAD is typically treated 
with surgery, chemotherapy, radiation therapy, immu-
notherapy, and other treatments. Cass et  al. found that 
following complete primary resection, 37% of patients 
suffered a local recurrence and distant metastases, with 
the  most prevalent contributor to mortality  within 
5 years being  local recurrence in the absence of  clinical 
indication  of distant metastases [3]. Chemotherapy can 
be administered as adjuvant therapy after surgery or as 
neoadjuvant therapy before surgery in advanced COAD 
patients to help decrease the tumor. Despite this, 40–50% 
of advanced COAD patients die as a result of disease 
recurrence or metastasis [4]. As a result, a distinct COAD 
prediction signature is critical, with the potential to iden-
tify new therapeutic targets and prognosis markers.

Tumor cells can effectively change their microenviron-
ment by producing a variety of chemokines, cytokines, 
and other substances. Immunotherapy is commonly uti-
lized for the treatment of malignancies in humans. Over 
the last several decades, many inhibitory receptors have 
been shown to perform an integral function  in damp-
ening anti-tumor immune responses. Included among 
these are programmed death-ligand 1 (PD-L1), cytotoxic 
T lymphocyte-associated antigen-4 (CTLA4), and pro-
grammed cell death protein-1 (PD-1). COAD-related 
early treatment and first-line therapy include immune 
checkpoint blockade (ICB) to serve a greater number of 
patients. Other immune-associated indicators have also 
been discovered, opening the way for more efficacious 
immunotherapy and demonstrating immunotherapy’s 
promise as a COAD treatment regime.

Ubiquitin and ubiquitin-like (UB/UBL) conjugations 
are essential post-translation modifications that are 
required for almost all biological activities and pathways, 
particularly protein breakdown and turnover, DNA dam-
age repair, and cell cycle, as well as intercellular signal 
transmission. Ubiquitin is a protein that is  evolution-
ary  conserved and is known to modify  proteins post-
translationally either for degradation or non-degradative 
signaling. In addition, it is covalently linked to lysine 
residues sequentially by 3 enzymes, namely ubiquitin-
activating enzymes (E1s), ubiquitin-conjugating enzymes 
(E2s), and ubiquitin-protein ligases (E3s). UB’s C-ter-
minus is initially triggered by an E1 activating enzyme 
before being transported to the catalytic domain  of an 
E2 conjugating enzyme. Furthermore, an E3 ubiquitin 

ligase connects the target protein and the E2-ubiquitin 
intermediate to act as a catalyst for the  creation of an 
isopeptide bond between the UB C-terminal glycine and 
substrate lysine [7, 8]. Deubiquitinases (DUBs), which are 
Ub-specific proteases, act as catalysts for the elimination 
of UB from substrates since it is a reversible post-transla-
tional modification. There are roughly 100 distinct DUBs 
in humans, which may be roughly divided into seven 
structurally diverse superfamilies. DUBs regulate key 
cellular functions by cleaving UB bound to substrates or 
inside UB chains, acting as either switch to eliminate UB 
signals or rheostats to fine-tune the amount and kind of 
ubiquitylation [9, 10]. Furthermore, proteins with ubiqui-
tin-like domains (ULDs) and ubiquitin-binding domains 
(UBDs) perform an integral function  in ubiquitination 
regulation [9, 11]. Numerous human illnesses, including 
cancer and neurodegenerative disorder, have been linked 
to protein ubiquitination dysfunction, according to 
research [12]. However, no research has looked into the 
link between ubiquitin-related genes (URGs) and COAD 
patients’ prognosis.

In this research, we analyzed COAD patients’ gene 
expression patterns and clinicopathological data to 
develop a unique 6-ubiquitin-related gene pairs (URGPs) 
profile for predicting prognoses and immune responses. 
Our URGPs signature will offer an insightful comprehen-
sion of the tumor immune milieu and the treatment effi-
cacy in COAD.

Materials and methods
Acquisition and processing of data
The Cancer Genome Atlas (TCGA, https://​portal.​gdc.​
cancer.​gov/) was retrieved to acquire the transcriptomic 
data as well as the relevant clinicopathological data, 
which comprised 367 tumors tissues. The transcriptomic 
data were then subjected to background adjustment and 
normalization utilizing a style of fragments per kilo-
base million (FPKM) [13]. When any expression values 
of the genes were 0 occurring in over 50%  of the sam-
ples, they  would be deleted. In cases where genes were 
duplicated, an analysis of their average expression levels 
was performed. Patients who lacked matching RNA-seq 
data or clinical data, as well as those who had a survival 
duration of fewer than 30 days, were not included in the 
research. The TCGA database access guidelines were fol-
lowed for all of the obtained profiles. Additional file  1: 
Table S1 illustrates the comprehensive clinical data from 
the aforementioned datasets. Since the data for this study 
were acquired from publicly available sources, there 
was no need to acquire permission from the local ethics 
committee.

The iUUCD 2.0 database (http://​iuucd.​biocu​ckoo.​
org/) yielded a total of 807 URGs (Additional file  2: 

https://portal.gdc.cancer.gov/
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http://iuucd.biocuckoo.org/
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Table  S2) [14]. By screening  the TCGA-COAD dataset, 
we retrieved 782 URGs that had readily accessible mRNA 
expression. URGs having  a median absolute deviation 
(MAD) of less than 0.5 were eliminated  to guarantee 
accurate prediction.

To generate an index for every URGP present in each 
sample, a paired comparison translation was carried out 
between the potential URG expression values. When 
the expression levels  of the former URG were found to 
be  greater than that of the latter URG, then the URGP 
was allocated a value of 1; otherwise, it was given a value 
of 0. URGPs were retained if their gene ratios (1/0 or 0/1) 
were greater than 0.2 and less than 0.8.

Weighted gene co‑expression network analysis (WGCNA)
The R package ’WGCNA’ was used in our study to gener-
ate and analyze a co-expression network for URGs. Using 
average linkage and Pearson’s correlation coefficients, the 
COAD samples were clustered. To build the co-expres-
sion gene network, a power of 4 was chosen as the soft-
threshold parameter. Using the adjacency matrix, we then 
computed a topological overlap matrix (TOM). TOM 
dissimilarity was assessed in order to perform module 
partition analysis. To classify genes with similar expres-
sion patterns, a hierarchical clustering tree of genes was 
constructed. Following that, we used the Dynamic Tree 
Cut algorithm to obtain the network modules by cutting 
the tree’s branches. For further investigation, the most 
important genes in each module were chosen. There are 
two limiting factors in this step: gene significance (GS) 
and module membership (MM) [15].

Development of a risk model to analyze the risk score
First, the prognostic-associated URGPs were detected by 
conducting a univariate Cox regression analysis. Then, 
with the help of  the "glmnet" package in R software 
(version 4.0.4), the least absolute shrinkage,  and selec-
tion operator (LASSO) Cox regression analysis was per-
formed to determine the significant prognostic URGPs. 
Following that, a multivariate stepwise Cox regression 
proportional hazards regression model was developed 
to additionally  identify URGPs and for model optimiza-
tion [15]. Ultimately, a risk score equation was derived 
by combining the regression coefficients from the mul-
tivariate Cox analysis with the URGPs expression values 
that corresponded to those coefficients. The following is 
the risk score equation: Risk score = (exp URGP1 × coef 
URGP1) + (exp URGP2 × coef URGP2) + … + (exp 
URGPn × coef URGPn). Herein, "exp" refers to the 
expression of genes that have been optimized, while 
"coef" refers to the derived multivariate Cox regression 
coefficients.

Besides, Pearson analysis was used to identify tran-
scription factors (TFs) and enhancer RNAs (eRNAs) of 
interest (|Pearson cor|> 0.4 and p < 0.001), and a Sankey 
diagram was constructed to examine the potential rela-
tionship between URGs and TFs/eRNAs [15]. When con-
ducting a survival analysis, it is a usual practice to stratify 
the data premised on both the median value and the opti-
mum threshold value. In this case, we used the training 
dataset’s median risk score as the threshold value for the 
training and validation data sets. Kaplan–Meier curve 
analysis and area under receiver operating characteris-
tics (ROC) curve analysis were conducted utilizing the 
"survival" and  the "timeROC" packages, respectively,  to 
examine the prognostic significance of the URGPs-based 
signature. In addition to this, the testing dataset was 
applied  to confirm the robustness and accuracy of the 
URGPs signature. p values of less than 0.05 were used as 
the criterion for determining statistical significance.

Nomogram development and validation
Univariate and multivariate Cox analyses were utilized 
in the TCGA dataset to detect independent prognostic 
characteristics that integrated the URGPs signature and 
clinical-pathological features. Following that, a predic-
tive nomogram was designed for the prediction of COAD 
patients’  overall survival (OS) over one, three, and five 
years. To determine the nomogram’s predictive accuracy, 
calibration plots were generated. The performance of the 
nomogram was subsequently evaluated using Kaplan–
Meier curve analysis, the area under the curve (AUC) 
of the ROC curve, and the concordance index (C-index) 
(generated with the aid of the "survcomp" package). In 
this study, p values of < 0.05 were set as the criterion for 
determining statistical significance.

Gene set enrichment analysis (GSEA) for Kyoto 
Encyclopedia of Genes and Genomes (KEGG)
GSEA  is a method for determining if gene sets, as 
opposed to individual genes, exhibit variations across 
biological status groups and for confirming the enrich-
ment of gene sets within a clinical group [18]. The gene 
sets have already been established based on earlier stud-
ies and function annotations. Then, we selected gene sets 
from the KEGG pathway, which offers a compilation of 
pathway maps showing the molecular interactions, reac-
tions, and network relationship [19]. We carried out 
GSEA-KEGG analyses and generated enrichment plots in 
the TCGA cohort by employing "c2.cp.kegg.v7.4.entrez.
gmt" and the R packages "clusterProfiler"  with the filter-
ing criteria of p-value less than 0.05 and q-value less than 
0.05.
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Calculation of tumor microenvironment (TME) cell 
infiltration and correlation of risk score with microsatellite 
instability (MSI) and tumor mutation burden (TMB)
To determine the proportions of 22 distinct kinds of 
infiltrating immune cells in each of the COAD samples 
that were examined, the CIBERSORT algorithm was 
utilized [20]. The cutoff value that we utilized to deter-
mine whether or not a prediction of immune cell infil-
tration was accurate was set at p-value less than 0.05. 
Only the samples that met this criterion were eligible 
for further study. The "maftools" package was used 
to evaluate mutated genes in the various risk catego-
ries. The "limma" and "ggpubr" packages were used to 
investigate the relationship between TMB and URGPs-
associated prognostic genotyping. Additionally, we 
compared the connections between MSI and the high-
risk and low-risk groups.

Prediction of response to chemotherapy
To test the effectiveness of the model in the thera-
peutic intervention of COAD, we computed the IC50 
of several chemotherapy-related medications that are 
routinely used from the STAD dataset (TCGA). The 
American Joint Committee on Cancer (AJCC) recom-
mends utilizing chemotherapeutic medicines including 
mitomycin, paclitaxel, docetaxel, cisplatin, and doxo-
rubicin for treating colon cancers. Using the Wilcoxon 
signed-rank test, a calculation was made to determine 
the IC50 difference that existed between the low-  and 
high-risk groups. The results were displayed in the 
form of a box plot using the R packages "pRRophetic" 
and "ggplot2" [21].

Statistical analysis
Correlation coefficients were calculated through pear-
son analysis. The prognostic significance was exam-
ined utilizing the Kaplan–Meier method, the Cox 
regression model, and log-rank tests. All analyses of 
statistical data  were  done in a two-sided manner and 
the threshold for statistical significance was fixed at 
p-value < 0.05. R (version 4.0.4) was utilized through-
out the process to conduct all statistical analyses.

Results
Generating a weighted co‑expression network 
and identifying key modules
We retrieved the expression matrices from the 367 sam-
ples that were included in the TCGA-COAD dataset fol-
lowing the preprocessing and quality evaluation of the 
data. In COAD patients, co-expression modules were 
discovered by generating co-expression networks from 
the TCGA-COAD utilizing the WGCNA system biology 
approach. In the current investigation, a scale-free net-
work was constructed premised on a soft power of β = 5 
(Fig. 1A), and 7 modules were derived from the TCGA-
COAD dataset by means of the average linkage hierarchi-
cal clustering (Fig.  1B). In addition, we investigated the 
correlation of modules between clinical subsets (tumor 
and normal) and each module, which allowed us to dis-
cover  key modules and generate the heatmaps of mod-
ule–trait associations that are depicted  in Fig.  1C. The 
MEyellow modules included within the TCGA-COAD 
(r = 0.65, p < 0.001)  that were discovered as having the 
strongest correlation with tumor samples were chosen as 
clinically significant modules.

Construction of URGPs prognostic signature
TCGA-COAD patients were classified at random into 
training (discovery cohort, n = 245) and test (validation 
cohort, n = 122) groups in a 2:1 ratio approximately. We 
started by screening 782 URGs and ended up with 514 
URGPs. As per the findings of a univariate Cox regres-
sion analysis conducted on the training set, 9 URGPs 
were  shown to be linked to OS, whereby, two URGPs 
(MINDY1|CSTF1, RASD2|WDR76) predicted unfa-
vorable prognosis with a hazard ratio (HR) > 1 and seven 
URGPs (OTUB2|DTX1, PSMD7|TFG, NAE1|ANAPC5, 
ATG3|RNF34, ATG3|ANAPC7, ATG3|ATG16L1, 
RASD2|BRSK2) predicted favorable prognosis with a 
hazard ratio (HR) < 1 (Fig.  1D). To establish the URGPs 
signature, the LASSO-Cox proportional hazard regres-
sion method was utilized after the less-variable URGPs 
had been eliminated and clinical data had been analyzed 
in conjunction with it. Afterward, 6 URGPs comprised 
11 URGs were utilized to generate the risk score model 
(Fig. 1E, F). In the last step of this process, we utilized the 
URGPs signature to assign a risk score to each patient 

(See figure on next page.)
Fig. 1  Identification and establishment of the URGPs signature in COAD. A Soft-thresholding power in WGCNA. B Tree of gene clusters. The 
dynamic tree cutting approach was applied to discover modules by separating the tree diagram at significant branch points. This was premised 
on an adjacency-based mismatch that was found in the hierarchical gene clustering chart. In the horizontal bar immediately below the tree 
diagram, various colors have been designated for each module. C Associations between modules and traits in normal and malignant tissues. 
The table is organized such that each row signifies a color module while each column signifies a clinical characteristic. The correlation coefficient 
between each module and clinical features and the p-value corresponding to that coefficient is shown by the numbers in each cell. D The forest 
plot depicting the prognostic-associated URGPs as determined by the univariate Cox proportional hazards regression model in COAD patients. 
E The calculation of penalties by one thousand rounds of cross-validation to get the optimal values for the parameters. F LASSO-Cox regression 
analysis was performed by computing the minimal criterion
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Fig. 1  (See legend on previous page.)
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within the discovery cohort. The computation of the risk 
score for the signature model was as follows =​ ​(C​oef​fi c​ien​
tURGP1 × ScoreURGP1) + (CoefficientURGP2 × ScoreURGP2) 
+ … + (CoefficientURGP6 × ScoreURGP6) (Additional file  3: 
Table S3).

Validation of prognostic gene expression profiles
To evaluate the function of the prognostic genes identi-
fied by the COAD-related predictive signature, we exam-
ined their gene expression levels in the TCGA database 
and their protein expression levels in the Human Protein 
Atlas (HPA) database. Three prognostic genes’ expression 
levels were substantially changed in COAD compared 
to non-tumor tissues, as depicted  in Fig.  2A (All p-val-
ues < 0.001), whereas the expression levels of six prognos-
tic genes were considerably altered in the high-risk group 
in contrast with the low-risk group (Fig.  2B, all p-val-
ues < 0.05). Figure 2C depicts the prognostic genes’ char-
acteristic immunohistochemistry images in tumor and 
normal samples, and the results illustrated considerable 
upregulation of the OTUB2 protein expression in COAD 
relative to normal tissue. On the contrary, decreased 
RASD2 protein expression was discovered in the COAD 
tissue. All of these factors support the results of our 
research on the differential expression of these genes. 
In addition, a Sankey diagram was used to illustrate the 
created TFs-hub genes network. This network was found 
to include 13 TFs as well as three hub genes (Fig.  2D). 
WDR76 served as the most important node among all 
the genes since it had the greatest degree; it was con-
trolled by six TFs, comprising numerous essential genes 
related to tumors, such as CDK2, E2F7, and EZH2. Addi-
tionally, eRNAs are a subclass of lncRNAs that are known 
to exert a broad range of effects in human malignancies, 
here Pearson correlation analysis was implemented to 
predict eRNA–hub gene connections and investigate the 
underlying regulation mechanism by eRNAs in humans. 
As depicted in Fig. 2E, among the eRNA–hub gene inter-
action pairs, 3 eRNAs related to URGs were subsequently 
selected, and DTX1 had the greatest degree of connec-
tion; it was targeted by two eRNAs (PTGDS, TP73-
AS1), indicating an association with human cancer that 
is increasing. Briefly, the TFs–hub gene interaction net-
work, as well as the found eRNA–hub gene pairs, may 
shed light on the continued investigation of the molecu-
lar mechanisms underlying COAD.

Verification of the URGPs signature and assessment 
of survival prediction
We developed a predictive risk model for COAD 
patients using the 6-URGPs signature and estimated 

each patient’s risk score in the training set. In the train-
ing, validation, and TCGA sets, we discovered that 
the group with a high risk showed  a worse prognosis 
in contrast with  the group with a low risk premised 
on the median risk score (log-rank test p-value 0.05; 
Fig.  3A–C). In the training sets, the 1-, 3-, and 5-year 
AUC values were 0.720, 0.840, and 0.692, correspond-
ingly (Fig.  3D). In addition, it is noteworthy that, for 
the 3-year AUC, the findings in each set indicated that 
all AUC values are > 0.75 (Fig.  3D–F), signifying that 
this model has a higher predictive value. These find-
ings indicate that our 6-URGPs signature is an effective 
prognostic indicator for COAD.

Prognostic significance of the URGPs signature and its link 
to clinical and pathological characteristics
Figure  3G–L depicts the distribution of URGPs signa-
ture together with the relevant survival status depend-
ing on the risk curve. In each of the three datasets, as 
the risk score became larger, the number of fatalities 
and the percentage of patients who were at high risk 
got higher as well. We conducted univariate and multi-
variate Cox regression analyses of the URGPs signature 
and clinical and pathological parameters, compris-
ing age, sex, stage, and TNM staging, to confirm the 
clinical utility of the URGPs signature. The findings 
showed that the URGP signature was a predictive fac-
tor for COAD that was independent of other variables 
(p < 0.001) (Fig. 4A, B). After that, we evaluated how the 
risk score varied depending on the clinicopathological 
characteristics that were included. It was found that the 
risk score distribution differed considerably when com-
paring stages I–II and III–IV, as well as N0 and N1–2 
(p < 0.05, Fig.  4C, D). In summary, we completed a 
stratified survival analysis to ascertain the level of accu-
racy possessed by the URGPs signature in distinguish-
ing distinct clinicopathological feature subgroups.

In addition, we combined the aforementioned clin-
icopathological markers with age, stage, and our 
6-URGPs signature. Afterward, a nomogram was devel-
oped to objectively predict the COAD patients’ prog-
noses using the previously indicated clinicopathological 
criteria and the URGPs signature. Because gender  did 
not contribute significantly to the predictive outcomes, 
it was excluded from the univariate analysis (p = 0.999). 
Then, age, stage, and URGPs signature were added to 
the nomogram to enhance the accuracy of the COAD 
prognostic prediction model (Fig.  4E). In the training 
group, the AUC for predicting 1 year, 3 years, and 5 
years of overall survival in COAD was 0.756, 0.827, and 
0.721, respectively, demonstrating strong discrimina-
tion (Fig. 4F). Figure 4G is a depiction of the calibration 
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Fig. 2  The expression of the genes involved in COAD patients’ prognoses. A The expression profiles of the 3 genes in COAD and normal samples 
of the colon. Wilcoxon rank-sum tests were carried out to analyze the differences in the levels of gene expression that were observed between the 
tumor and the normal samples. ***p < 0.001. B A heat map of gene expression in the low- and high- risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. C 
Immunohistochemistry images of 2 URGs (OTUB2, RASD2) in COAD and normal samples of the colon. D Sankey diagrams representing the potential 
regulatory relationships of URGs and TFs. E Sankey diagrams representing the potential regulatory relationships of URGs and eRNAs
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Fig. 3  Assessment and confirmation of the predictive significance of the URGPs signature in COAD. A Plots representing the Kaplan–Meier overall 
survival data for the training group depending on the risk scores. B Plots of overall survival calculated using Kaplan–Meier for the test group as per 
risk scores. C The Kaplan–Meier plots show the overall survival rate in relation to the risk scores for the whole group. D In the training set, the ROC 
for overall survival was calculated. E ROC representing the overall survival rate of the test group. F ROC measures survival rates in the whole group. 
G The risk score distribution in the training group. H The risk score distribution in the test group. I The risk score distribution in the whole group. 
J Plot depicting the survival rates of patients belonging to the training group. K Survival plots of patients in the test group. L Plots showing the 
survival of patients in the whole group
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Fig. 4  A nomogram that incorporates both clinical and pathological variables and the URGPs signature. A Univariate Cox regression examination 
of OS-related factors. B OS-related factors subjected to a multivariate Cox regression analysis. C Wilcoxon rank-sum test showed COAD risk scores 
were associated to clinical stage. D Wilcoxon rank-sum test showed COAD risk scores were connected to lymph node metastasis. E The nomogram 
for prognostic prediction in COAD. F The nomogram-based ROC curve analysis displays 1-, 3-, and 5-year OS and the corresponding AUC values for 
COAD patients from the TCGA cohort. G The calibration curve used to verify the predictive performance of the model
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curve that was utilized to assess the predictive accuracy 
of the model, which demonstrates excellent congruence 
between the expected and actual results in the training 
datasets.

Function and signaling pathways analysis of URGPs 
in the prognosis module
The ability of the model created by six URGPs to discrim-
inate against patients with varied prognoses shows that 
patients having varying risk scores might be implicated 
in distinct critical pathways that contribute to disparities 
in prognosis. Premised on the aforementioned hypoth-
eses, we conducted GSEA analyses on low- and high-
risk patients, correspondingly, to verify major pathways 
in each group and the putative biological mechanisms 
of the URGPs signature involved in COAD progression. 
As per the findings of the KEGG  enrichment, there are 
two distinct groups, each of which has its own signature 
pathways. Patients who have a low-risk score had higher 
upregulation levels regarding several pathways, including 
those related to autoimmune_thyroid_disease, asthma, 
antigen_processing_and_presentation, allograft_rejec-
tion, and systemic_lupus_erythematosus. Conversely, 
five pathways were shown to be upmodulated in the 
high-risk group, including, encompassing hypertrophic_
cardiomyopathy_hcm, ecm_receptor_interaction, 
dilated_cardiomyopathy, axon_guidance, and arrhythmo-
genic_right_ventricular_cardiomyopathy (Fig.  5A, B). 
The enrichment of the low- and high-risk groups in 
the Gene Ontology biological process (GOBP)  is dis-
played  in Fig.  5C, D. We discovered an enrichment of 
the low-risk group in cornification, negative_regula-
tion_ of_gene_expression_epigene, protein_dna_com-
plex_subunit_organization, dna_packaging_complex, and 
protein_dna_complex. Conversely, the high-risk group 
was predominantly enriched in axon development, exter-
nal_encapsulating_structure_organization, neuron_pro-
jection_guidance, and so on. The results of the most 
significant terms enriched by the hallmark gene set indi-
cated that epithelial_mesenchymal_transition, hedge-
hog_signaling, myogenesis, and pancreas _beta _cells 
were activated by the high-risk group of the URGPs sig-
nature. Furthermore, gene sets such as myc_targets_v1, 
interferon_gamma_response, g2m_checkpoint, e2f_tar-
gets, and oxidative_phosphorylation were activated by 
the low-risk subgroup (Fig. 5E, F). These findings corrob-
orated the above-mentioned findings that hub genes may 
have substantial interactions with one another, highlight-
ing the critical function of hub genes in COAD tumor 
initiation and growth.

Immune landscape in patients with COAD 
and immunotherapy analysis
After that, we utilized CIBERSORT to study the associa-
tion between the two risk groups and the immune infil-
tration by analyzing 22 distinct immune cell phenotypes 
from the training set. Figure 6A depicts the percentages 
of immune cell types in the training dataset’s low- and 
high-risk groups. T cells CD4 memory-activated, follicu-
lar helper T cells, M1 and M2 macrophages, and resting 
dendritic cells were shown to be substantially elevated 
in low-risk patients. We discovered immune checkpoint 
inhibitors (ICIs)-related indicators by conducting a lit-
erature search and analyzing the therapeutic applications 
and advantages of these ICIs. We found that there were 
substantial differences between the two groups in the 
expression of a large number of immune checkpoints, 
indicating the two groups’ varied immunological proper-
ties and immunotherapy effects (Fig. 6B).

In addition to this, it was discovered that the expres-
sions of the majority of genes related to ferroptosis were 
higher in the low-risk group than they were in the high-
risk group (Fig.  6C), and patients in the low-risk group 
also displayed a higher level of pyroptosis-related gene 
expressions than patients in the high-risk group did 
(Fig.  6D). All of these data reinforced the finding that 
COAD patients who were in the low-risk group pos-
sessed an immune "hot" profile and would benefit more 
from immunotherapeutic treatments. In other words, the 
URGPs signature may accurately predict the immunolog-
ical features of human COAD.

Changes in MSI and TMB can have an impact on the 
effectiveness of immunotherapy. As a result of our inves-
tigation, we found that MSS and MSI-L were more likely 
to occur in the high-risk group compared with the low-
risk group, but the proportion of MSI-H was significantly 
higher in the low-risk group than in the high-risk group 
(24% vs. 8%; Fig. 6E). The MSI-H patients exhibited lower 
risk scores than the MSI-L and MSS patients (p < 0.01; 
Fig. 6F). Treatment with immunotherapy was particularly 
beneficial for patients with low risk. We compared the 
TMB of high- and low-risk groups and discovered statis-
tically significant differences (p < 0.01; Fig.  6G). Further-
more, the TMB was inversely associated to the URGPs 
risk score (p = 0.09; Fig. 6H).

Analysis of the association between risk assessment 
models and chemotherapeutics
Besides  the checkpoint blockade treatment, we estab-
lished the connection that exists between risk assessment 
models and the effectiveness of conventional chemo-
therapeutic drugs in the treatment of COAD. With the 
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aid of the pRRophetic algorithm, we discovered a link 
between high-risk score and decreased half-inhibitory 
concentration (IC50) of dasatinib (p = 0.012, Fig. 6K), and 
elevated IC50 for cisplatin (p = 0.0011, Fig. 6I), cytarabine 

(p = 0.0013, Fig. 6J), docetaxel (p = 0.00088, Fig. 6L) and 
gemcitabine (p = 0.017, Fig. 6M). According to the find-
ings provided above, this risk-adjusted model could be a 
feasible predictor of patient sensitivity to chemotherapy.

Fig. 5  URGPs signature association with biological functions. A, B KEGG findings for the low- and high-risk groups. C, D Findings of the GOBP for 
the low- and high-risk groups. E, F GSEA reveals the hallmark pathways enriched in the low- and high-risk groups of the URGPs signatures in COAD
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Fig. 6  Correlation of URGPs risk score with MSI, TMB, and drug sensitivity in COAD patients. A The immunity infiltration difference 
between high- and low-risk scores. B The expression of immune checkpoint genes in the high- and low-risk groups. C Box plot depicting 
ferroptosis-related gene expression in two groups. D Box plot illustrating the expression of pyroptosis-related genes in two groups. E, F Relationship 
between the URGPs risk score and the MSI. G Comparison of TMB differences in the high- and low-risk groups. H Pearson correlation analysis of 
URGPs risk score and TMB. I–M The IC50 of 5 routinely used chemotherapy-related drugs (cisplatin, cytarabine, dasatinib, docetaxel and gemcitabine)
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Discussion
The death rate associated with COAD is among the high-
est of all malignancies affecting the digestive system. It is 
more prevalent in guys older than 40. Nonetheless, early 
detection of COAD is extremely challenging, and the 
majority of patients who were identified with COAD have 
progressed malignancy, which resulted in a poor prog-
nosis. It is possible to remarkably improve  the COAD 
patients’ prognoses  through  early detection and treat-
ment, which also reduces  the patients’ financial burden 
and enhances  their quality of life. Due to the advance-
ment of RNA sequencing technologies, several molecular 
markers have been described as predictors of prognosis 
and therapy success in colorectal cancer (CRC). Recent 
research has found that epigenetic alterations, such as 
gene malfunction and aberrant expression, are implicated 
in the onset and advancement of numerous human can-
cers. Some research has looked into whether core epi-
genetic modification-related genes could be employed 
as cancer biomarkers. UB is the founding member of 
the structurally conserved protein family that is respon-
sible for the modulation of a wide variety of functions in 
eukaryotic cells, particularly, substrate activation or inac-
tivation, protein activation, and protein–protein interac-
tions [22]. Protein ubiquitination and deubiquitination 
play a critical role in protein stability, localization, and 
signal pathway regulation, and disruptions in protein 
homeostasis can lead to a range of illnesses, including 
neurological disorders, autoimmune disorders, and can-
cers. It has been discovered that aberrant E3s expres-
sion and DUBs might impact human cancers by altering 
the activities of tumor-associated proteins. RING-finger 
E3 ubiquitin ligase MDM2 is primarily responsible for the 
monoubiquitination of p53, which influences p53 activity 
by modulating p53 localization and transcription func-
tions. Numerous E4 ubiquitin ligases (E4s), which  are 
responsible for the extension  of these monoubiquitin 
chains, have also been identified [23, 24]. Nonetheless, 
only a limited number of ubiquitin molecules have been 
investigated in-depth, with the majority of studies focus-
ing on the function of specific genes. Using expression 
profile information, few research reports have compre-
hensively investigated the molecular features and prog-
nostic potential of URGs. This is the first research that 
we know that utilizes URGPs to design a risk model for 
predicting COAD patients’ prognoses.

In this work, several URGs were identified by conduct-
ing an analysis of the COAD dataset included within the 
TCGA database. Following that, the gene modules asso-
ciated with the onset and progression of COAD were 
filtered by WGCNA in a systematic manner. As an unsu-
pervised algorithm, WGCNA can build a relationship 
between gene expression and clinical traits [25]. Rather 

than focusing solely on differentially expressed genes, 
WGCNA identifies gene sets of interest and performs 
extensive association analysis with phenotypes, trans-
forming the problem of multiple hypothesis testing cor-
rections by transforming the correlation of thousands 
of genes with phenotypes into the association of several 
gene sets. Then an in-depth examination of the genes 
contained within the module was performed. Finding the 
optimum approach still poses challenges despite the fact 
that numerous research have employed various machine 
learning techniques to choose the appropriate variables. 
In this investigation, we employed the most traditional, 
widely applied technique [26, 27].The LASSO regression 
technique is a penalized form of regression that reduces 
the size of certain coefficients  to produce a more accu-
rate model by the construction of a penalty function. It is 
an estimator that is biased because it processed data that 
have complicated collinearity. However, it is frequently 
employed in high-dimensional regression and may help 
compensate for the deficiencies of univariate Cox regres-
sion analysis [28, 29]. Following additional processing 
using LASSO regression, 6 URGPs linked to the advance-
ment of the tumor were ultimately found. These gene 
pairs were subsequently subjected to  the multivariate 
Cox regression to establish a risk model for predicting the 
patients’  prognoses. Additionally, it was discovered 
through ROC curve validation of the model’s effective-
ness that its prediction capacity of COAD patients’ sur-
vival over 1, 3, and 5 years in the dataset was moderately 
accurate. In summary, both the univariate and the final 
multivariate Cox  regression analyses illustrated that 
the risk model independently functioned as  prognos-
tic indicators. We observed that the established  nomo-
gram premised  on this model performed well when we 
calibrated it. Numerous  earlier research reports  have 
constructed risk models that could accurately anticipate 
the  COAD prognosis, and the majority of these models 
incorporate multiple functional gene sets. For instance, 
Chen et al. developed and validated a COAD predictive 
risk model using a total of 8 lncRNAs that are associated 
with endoplasmic reticulum (ER) stress [30]. Rong H and 
colleagues discovered a novel genetic signature that is 
associated with the invasion of COAD. This study created 
a risk model for forecasting COAD prognoses as well as 
a nomogram based on this model to collectively examine 
the prognosis of patients with TNM staging, providing 
insights and guidance for fundamental COAD research 
[31]. Many of these studies have been reported in other 
types of cancer, such as lung adenocarcinoma (LUAD) 
[32, 33].

In our study, 6 URGPs were incorporated in our 
signature, of which OTUB2|DTX1, PSMD7|TFG, 
ATG3|ATG16L1, RASD2|BRSK2 were determined 
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to be risk protective markers. The remaining 2 pairs 
(MINDY1|CSTF1, RASD2|WDR76) were determined to 
be risk-related indicators. Previous research has estab-
lished that several genes within each of these gene pairs 
perform an integral function  in the advancement of 
COAD. One study suggests that deubiquitinase OTUB2 
exacerbates colorectal cancer growth by increasing 
PKM2 activity and glycolysis [34]. Lower levels of DTX1 
could promote breast cancer (BC) cell proliferation and 
migration and are associated with advanced BC [35]. 
While MINDY1, a member of the motif interacting with 
Ub-containing novel DUB family, has been identified 
as a potential estrogen receptor α (ERα) deubiquitylase 
in BC. High MINDY1 expression was linked to a poor 
prognosis of BC [36]. In LUAD, PSMD7 expression was 
linked to not only tumor laterality, but also lymph node 
invasion. In LUAD patients, an elevated level of PSMD7 
was linked to the unfavorable OS and disease-free sur-
vival, and PSMD7 silencing considerably attenuated 
the proliferative ability of cells and triggered the G0/
G1-phase cell cycle arrest, cell senescence, and apoptosis 
[37]. ATG3 and ATG16L1 were key players with impor-
tant roles in different stages of autophagy. The research-
ers Huang et  al. found that overexpression of ATG3, 
which was caused by downregulation of miR-435-5p, 
increases proliferative  and invasive capacities  in CRC 
via an autophagy-dependent process [38]. The results 
from Florin et al. suggested that ATG16L1 T300A poly-
morphism may be associated with gastric carcinogenesis 
[39]. RASD2 encodes a Ras-related GTP-binding protein 
and involves in the development and metastasis of Uveal 
melanoma [40]. In CRC, RAS stabilization is a critical 
event for hyperactivation of Wnt/-catenin signaling and 
cancer stem cell activation. WDR76 has been shown to 
destabilize RAS and serves as a tumor inhibitor in CRC 
by suppressing cancer stem cell activation [41]. BRSK2, 
which belongs to the serine/threonine-protein kinase of 
the AMPK family, was recognized to be a risk factor for 
pancreatic ductal adenocarcinoma (PDAC). BRSK2 was 
induced by nutritional deprivation in PDAC cells, which 
inhibited TORC1 activity through tuberous sclerosis 
complex 2 (TSC2) phosphorylation [41].

This URGPs signature exhibited an excellent diagnos-
tic capacity and may be utilized to distinguish COAD 
patients with an unfortunate prognosis, as determined 
by the survival and ROC curve analyses in the TCGA 
dataset. Additionally, the URGPs may  predicted  the OS 
of COAD patients in various clinical and pathological 
stratifications, and results showed that the signature was 
substantially linked to advanced clinical and pathologic 
stage. In the end, a nomogram was designed to fulfill the 
need for an easy-to-understand and practical scoring 
system, as well as to facilitate clinical decision-making. 

In addition, the gene functional enrichment analysis has 
shown that the URGPs are implicated in the onset and 
progression of COAD by engaging in a range of critical 
biological processes. Immunotherapy is a field that is now 
undergoing intensive research and innovation in COAD. 
Recent research has revealed that although TME per-
forms an instrumental function  in immunotherapy, the 
particular processes implicated  are not yet completely 
understood [43]. Therefore, it is vital to conduct further 
studies  on the involvement of the TME to increase the 
immunotherapeutic efficacy. COAD’s TME consists of 
stromal cellular components, tumor cells, and immune 
cells. There is significant evidence that immune cells pre-
sent in the TME impact carcinogenesis. The dysfunction 
of immune cells can have a range of outcomes, including 
those that are antitumorigenic or protumorigenic.

In this investigation, we adopted the CIBERSORT algo-
rithms to ascertain  the infiltration levels of immune 
cells correspondingly. In addition, we discovered that 
COAD samples having  low-risk scores  were linked to 
greater infiltration  levels of follicular helper T cell, and 
CD4 memory activated T cell, as well as higher  M1 
macrophages. Immune checkpoint molecules, which 
function as inhibitory receptors, are detected on the 
immune cells’ surface and are responsible for regulating 
the immune response. According to a growing body of 
research, the expression of immune checkpoint biological 
markers may serve as a positive predictive indicator  for 
the effectiveness of immunotherapeutic interventions. 
As a result, we subsequently  evaluated the relationship 
of  the URGPs signature with  the expression of immune 
checkpoint biological markers and discovered that 
COAD patients who were in the low-risk group exhibited 
elevated expression levels of immune checkpoint biologi-
cal markers in contrast with those who were in the high-
risk group. To summarize, "immune active" was the term 
used to describe the immunological landscape of low-
risk tumors, which were characterized by a significant 
infiltration of immune cells. This was accomplished by 
cleaving UB that was attached to substrates or contained 
inside UB chains. In the regulation of key cellular func-
tions, DUBs serve critical  functions, functioning either 
as switches that eliminate UB signals or as rheostats to 
fine-tune the degree and kind of ubiquitylation that 
takes place. Furthermore,  the immune milieu  of high-
risk cancers was described as "immune inactive" with 
limited  infiltration levels. This suggests that  the current 
URGPs signature may accurately predict the immuno-
logical aspects of COAD, and patients who are within the 
low-risk group have a greater likelihood of gaining ben-
efit from anti-tumor immunotherapeutic intervention as 
opposed to those within the high-risk group.
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According to our current knowledge, a predictive 
model that is premised on URGPs and the related nom-
ogram in COAD are yet to be investigated. This model 
showed an excellent prediction accuracy, and it might 
help distinguish  patients who have a high recurrence 
risk and choose the appropriate treatment. Nevertheless, 
there are a few drawbacks to consider. Firstly, this work is 
a retrospective examination of publicly available datasets, 
which makes it prone to bias. As a result, a large-sample 
prospective clinical investigation needs to be carried out 
to evaluate the robustness of the signature model. Sec-
ondly, further research needs to be done to better under-
stand the specific molecular processes and biological 
activities of the URGs. Lastly, the methodology that is 
dependent on gene-level prognostic features to anticipate 
the cost of samples is expensive, and there is significant 
clinical promotion resistance.

Conclusions
Using bioinformatics approaches, we thoroughly evalu-
ated the prognostic value of URGPs and developed a 
predictive model for COAD. The nomogram integrating 
clinicopathological data and the proposed URGPs signa-
ture can accurately predict COAD patients’ prognoses 
and aid doctors in the selection of individualized treat-
ments. Additionally, it describes the connection between 
our signature and the sensitivity of immunological check-
points as well as targeted medicines. These findings will 
aid in enhancing the predictive value of conventional 
clinical detection, which may be used to evaluate COAD 
clinical outcomes and contribute to precision medicine. 
Prospective research is required to confirm its validity.
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