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Abstract 

Objective  Chronic kidney disease (CKD) patients with coronary artery disease (CAD) in the intensive care unit (ICU) 
have higher in-hospital mortality and poorer prognosis than patients with either single condition. The objective of 
this study is to develop a novel model that can predict the in-hospital mortality of that kind of patient in the ICU using 
machine learning methods.

Methods  Data of CKD patients with CAD were extracted from the Medical Information Mart for Intensive Care IV 
(MIMIC-IV) database. Boruta algorithm was conducted for the feature selection process. Eight machine learning algo-
rithms, such as logistic regression (LR), random forest (RF), Decision Tree, K-nearest neighbors (KNN), Gradient Boosting 
Decision Tree Machine (GBDT), Support Vector Machine (SVM), Neural Network (NN), and Extreme Gradient Boosting 
(XGBoost), were conducted to construct the predictive model for in-hospital mortality and performance was evalu-
ated by average precision (AP) and area under the receiver operating characteristic curve (AUC). Shapley Additive 
Explanations (SHAP) algorithm was applied to explain the model visually. Moreover, data from the Telehealth Intensive 
Care Unit Collaborative Research Database (eICU-CRD) were acquired as an external validation set.

Results  3590 and 1657 CKD patients with CAD were acquired from MIMIC-IV and eICU-CRD databases, respectively. 
A total of 78 variables were selected for the machine learning model development process. Comparatively, GBDT had 
the highest predictive performance according to the results of AUC (0.946) and AP (0.778). The SHAP method reveals 
the top 20 factors based on the importance ranking. In addition, GBDT had good predictive value and a certain 
degree of clinical value in the external validation according to the AUC (0.865), AP (0.672), decision curve analysis, and 
calibration curve.

Conclusion  Machine learning algorithms, especially GBDT, can be reliable tools for accurately predicting the in-hos-
pital mortality risk for CKD patients with CAD in the ICU. This contributed to providing optimal resource allocation and 
reducing in-hospital mortality by tailoring precise management and implementation of early interventions.
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Introduction
In the past few decades, chronic kidney disease (CKD) 
has become increasingly prevalent among various coun-
tries and regions around the world, increasing the enor-
mous financial burden of many countries [1]. A major 
cause of death among patients with chronic kidney dis-
ease is cardiovascular disease [2], and CKD patients with 
coronary artery disease (CAD) have a poorer prognosis 
than CKD patients without CAD [3, 4]. Moreover, the 
risk factors of patients with CKD combined with CAD 
are much different from those with only CAD [5]. Some 
studies demonstrated that atherosclerosis is the lead-
ing cause of death in advanced CKD patients with CAD, 
especially end-stage renal disease (ESRD) patients [6]. In 
addition, the pathogenesis of CKD patients with CAD 
has not been clearly elucidated [7]. Thus, the present 
indicators and prediction models perform poorly in pre-
dicting clinical outcomes for CKD patients with CAD.

Machine learning (ML) is a cutting-edge technol-
ogy with the rapid development of artificial intelligence 
[8]. Compared to the traditional statistical method, ML 
has better clinical predictive accuracy and performance 
with faster processing speed [9]. With the development 
of the online public standard database, such as the Medi-
cal Information Mart for Intensive Care IV (MIMIC-IV), 
ML has increasingly penetrated the medical analysis field 
[10]. However, a few ML algorithms focused on the mor-
tality prediction of CKD patients with CAD.

The purpose of our study is to (1) construct novel pre-
dictive models based on the various machine learning 
algorithm for in-hospital mortality of patients with CAD 
and CKD in intensive care units (ICU); (2) select an ML 
model with the best predictive performance and clinical 
value; and (3) validate these ML models via external set 
from the Telehealth Intensive Care Unit Collaborative 
Research Database (eICU-CRD) database.

Methods
Data sources
Data from the MIMIC-IV database were used in this 
study to establish predictive models for patients with 
CKD and CAD [11]. MIMIC-IV was a free, online acces-
sible public database containing more than 50,000 ICU 
admissions from 2008 to 2019 in Beth Israel Deacon-
ess Medical Center (Boston, Massachusetts). Data from 
eICU-CRD were used as an external validation cohort 
[12]. Over 200,000 ICU admissions from 208 hospitals 

across the country were compiled in the eICU-CRD, 
which was a publicly available multicenter database. The 
MIMIC-IV and the eICU-CRD database included the fol-
lowing information: demographics, vital signs, laboratory 
results, and diagnosis of International Classification of 
Diseases and Ninth Revision (ICD-9) codes. One author 
(ASY) obtained the certification to access these databases 
and extracted variables needed in the study (certifica-
tion number: 39674606). Patients in these databases were 
unidentified with their health information, so individual 
patient consent was not required.

Study population and data extraction
All patients diagnosed with CAD and CKD were included 
in this study. Patients who stayed in ICU for less than 6 h, 
less than 18 years old, without baseline creatinine results, 
and with missing data > 30% were excluded. Only the first 
admission was taken into account if a patient had mul-
tiple admissions. Baseline creatinine was defined as the 
creatinine level in the patient’s first blood test after hos-
pital admission. Data of demographic information, lab 
results, hourly vital signs, comorbidities, medications 
(including aspirin, clopidogrel, ticagrelor, statin, beta-
blocker, NOAC, and warfarin), operative procedures, 
ICU stay details, and in-hospital mortality were extracted 
from MIMIC-IV and eICU-CRD database using pgAd-
min PostgreSQL tools (version 1.22.1).

Data preprocessing and feature selection
Variables with > 30% missing values were dropped, and 
multiple imputations were conducted for other vacant 
data. Multivariate Imputation by Chained Equations 
(MICE) was performed and returned an object contain-
ing five complete datasets. Then, statistical models such 
as linear regression or generalized linear model were 
applied to each complete dataset in turn for interpolation 
modeling. The pool function consolidates these individ-
ual analysis results into a group. The complete dataset is 
finally returned based on the standard errors and P-val-
ues of the model. MIMIC-IV and eICU (external valida-
tion data) databases were imputed separately using the 
fully conditional specification to avoid data leakage via 
the “mice” package in R [13].

Feature selection was a crucial process of reducing the 
number of features in a massive dataset according to the 
importance of the study variables. The Boruta algorithm 
was a wrapper method for feature selection built around 
the Random Forest Classifier algorithm. During the 
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model construction, Boruta created a copy of the original 
dataset features as Shadow Features and compared the 
Z-score between the actual features and shadow features 
calculated via Random Forest Classifier in each iteration. 
If the Z-score of an actual feature was higher than the 
maximum Z-score of shadow features, this feature was 
considered pivotal and kept; otherwise, it was dropped 
[14].

Statistical analysis
Patients were divided into two groups according to 
whether they survived to discharge. Categorical variables 
were summarized as numbers with percentages and com-
pared by Fisher’s exact probability method (or Chi-square 
tests). The Wilcoxon rank sum test was used to test con-
tinuous variables that were expressed as the median with 
interquartile ranges.

Eight machine learning models, including logistic 
regression (LR), random forest (RF), Decision Tree, 
K-nearest neighbors (KNN), Gradient Boosting Decision 
Tree Machine (GBDT), Support Vector Machine (SVM), 
Neural Network (NN), and Extreme Gradient Boosting 
(XGBoost), were established to develop the predictive 
models. 70% of the patients from MIMIC-IV were ran-
domly extracted as the training set, while the remaining 
30% was utilized for internal validation. Tenfold cross-
validation was performed in each model to prevent over-
fitting to acquire average accuracy. The performance of 

each model was evaluated by the area under the receiver 
operating characteristic (ROC) curve (AUC) and aver-
age precision (AP) from precision/recall (P-R) curves in 
the validation set. Further, the model with the best per-
formance was picked up to recognize the risk factors 
most related to in-hospital deaths interpreted by Shapley 
Additive Explanations (SHAP) method. The SHAP value 
visually exhibited each feature’s importance and contri-
bution to in-hospital mortality. In addition, data from 
eICU-CRD were used as external validation to assess the 
prediction model’s performance. Decision curve analysis 
(DCA), AUC, and calibration curves were conducted to 
evaluate the clinical application and the consistency of 
the predictive probabilities.

All statistical analyses, machine learning algorithms, 
and SHAP were implemented via Python (version 3.9.12). 
The Boruta algorithms were conducted by R (version 
4.1.3, Austria). A P-value lower than 0.05 (two-sided) was 
regarded as statistically significant.

Results
Baseline characteristics
A total of 3590 CKD patients with CAD from MIMIC-IV 
and 1657 CKD patients with CAD from eICU-CRD were 
included in this study cohort according to the inclusion 
and exclusion criteria. Figure  1 exhibits the screening 
process. In the MIMIC-IV database, 536 of 3590 (14.9%) 
CKD patients with CAD died during hospitalization, 

Patients not first admission (n=273)

Patients <18 years old  (n=6)

Patients stayed in ICU < 6 hours (n=10)

Patients with >30% missing data (n=15)

Patients without baseline creatinine (n=11)

Patients with CKD and CAD identified from MIMIC IV based on ICD-9 code
(n =19760)

Patients for final analysis 
(n =3590)

Patients not first admission (n=16067)

Patients <18 years old  (n=12)

Patients stayed in ICU < 6 hours (n=52)

Patients with >30% missing data (n=21)

Patients without baseline creatinine (n=18)

Patients with Chronic Kidney Disease (CKD) and Coronary Artery Disease (CAD) admitted to intensive care unit (ICU)

Algorithm Development (MIMIC-IV)

Patients with CKD and CAD identified from eICU-CRD based on ICD-9 code
(n =1972)

Patients for final analysis 
(n =1657)

External Validation (eICU-CRD)

Eight machine learning algorithms established and compared by AP and AUC

Shapley Additive Explanations (SHAP) algorithm was applied to explain the model visually

Fig. 1  Flowchart of patient selection from MIMIC-IV and eICU-CRD database. MIMIC Medical Information Mort for Intensive Care, eICU-CRD 
Telehealth Intensive Care Unit Collaborative Research Database
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while 3054 participants survived. The differences in 
baseline characteristics are summarized in Tables  1, 2. 
Patients who died during the hospitalization have higher 
serum creatinine and troponin level and higher myo-
cardial infarction, heart failure, and arrhythmia risks 
(P < 0.001).

Feature selection
According to the Boruta algorithm analysis, 76 of 124 
variables most closely associated with in-hospital mor-
tality were selected (Fig.  2). Based on the Z-values, the 
top twenty variables are the history of cardiac arrest, 
sequential organ failure assessment (SOFA) score, the 
maximum values of aspartate aminotransferase (AST) 
and phosphate, the average values of spo2, white blood 
cell (WBC), AST, systolic blood pressure (sbp), sodium 
and platelet, and the minimum values of oxyhemoglobin 
saturation (spo2), SBP, heart rate, WBC, AST, glucose, 
phosphate, partial thromboplastin time (PTT), and mean 
blood pressure (mbp). Although the Z-values for acute 
coronary syndromes and diabetes were lower than the 
maximum Z-value of shadow feature, they were included 
in the analyses based on clinical experience. Therefore, a 
total of 78 variables were selected for the machine learn-
ing model development process.

Machine learning model development and comparisons
Eight machine learning models were generated to pre-
dict the in-hospital mortality in CKD patients with CAD. 
Among the eight models, GBDT had the best predic-
tive value of in-hospital death, with AUC = 0.946 and 
AP = 0.778. Figure  3 exhibited the discrimination per-
formance of these machine learning models via ROC and 
P-R curves after ten cross-fold-validation in the test set. 
The SVM (AUC = 0.937), XGBOOST (AUC = 0.939), and 
GBDT had superior performance in the predictive abil-
ity for in-hospital death of CKD patients with CAD com-
pared to the traditional logistic regression model. A set of 
detailed performance metrics for various machine learn-
ing models is presented in Table 2.

Visualization by SHAP
The SHAP algorithm was conducted to visually exhibit 
each factor’s importance to the hospital mortality pre-
dicted by the GBDT model. Figure 4A shows the feature 
importance plot, including 20 significant variables most 
correlated to in-hospital death in descending order. The 
age factor had the most potent predictive power, followed 
by the minimum value of spo2 and warfarin. Figure  4B 
presents whether that feature is high (in red) or low (in 
blue) for that observation according to the SHAP value. 

The utilization of warfarin has a negative impact on in-
hospital mortality.

Subgroup analysis
Subgroup analyses were conducted stratifying by ACS 
and dialysis condition. Age was no longer the most 
potent predictive factor in ACS and non-ACS patients 
and warfarin dropped out of the top 20 significant vari-
ables in ACS patients. SOFA score had the most potent 
predictive value in dialysis patients followed by glucose 
level. Interestingly, phosphate level was one of the top 20 
influencing factors in non-dialysis patients, but its pre-
dictive value in dialysis patients was limited (Additional 
file 1: Fig. S1, Additional file 2: Fig. S2).

External validation
A total of 1657 CKD patients with CAD were extracted 
from the eICU-CRD database as an external valida-
tion dataset to verify the predictive accuracy of the 
selected GBDT model. Additional file 3: Table S1 exhib-
its the baseline characteristics of these patients. A 
total of 211 (12.7%) patients died during hospitaliza-
tion. Taken together, GBDT had good predictive values 
(AUC = 0.865, AP = 0.672), while the clinical value was 
limited in the validation cohort based on the result of 
DCA and calibration curve (Fig. 5).

Discussion
Patients with CKD and CAD became more and more 
popular in recent decades. And mortality in patients suf-
fering from these two conditions is twice as compared to 
patients with CAD alone [4]. Despite the increased inci-
dence and incredibly lethal, their patients were excluded 
from most clinical trials due to the disease complexity 
and treatment conflicts. To date, factors associated with 
the prognosis in CKD patients with CAD were not clear 
and current risk stratification tools could not be applied 
to these patients. With the development of artificial intel-
ligence, accurate prediction of these complex conditions 
could be achieved using machine learning methods.

MIMIC-IV and eICU-CRD were large-scale and high-
quality databases performed in many crucial pieces of 
research in recent years. In this retrospective study, CKD 
patients with CAD admitted to ICU were extracted from 
MIMIC-IV to develop predictive models for in-hospital 
mortality via various ML algorithms. The GBDT model 
outperformed the predictive performance of seven 
other ML algorithms, including LR, RF, Decision Tree, 
KNN, SVM, NN, and XGBoost, according to the fea-
tures selected by the Boruta algorithm. Next, the SHAP 
method was conducted to explain GBDT visually, ensur-
ing clinical interpretability and facilitating the utilization 
of the prediction model. The performance and clinical 
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Table 1  Baseline characteristics, vital signs, laboratory results of patients with CKD and CAD from MIMIC-IV database

Overall Survivor P-Value

3590 3054

Age (years) 76.0 [68.0, 84.0] 75.0 [68.0, 83.0] < 0.001

Male, n (%) 2451 (68.3) 2100 (68.8) 0.146

los_icu (day) 2.2 [1.2, 4.1] 2.2 [1.2, 4.0] 0.01

scr_baseline (mg/dL) 1.4 [1.1, 2.0] 1.4 [1.1, 1.9]  < 0.001

eGFR (mL/min/1.73 m2) 47.2 (24.2) 48.4 (23.8)  < 0.001

CKD stage, n (%)

 1 166 (4.6) 142 (4.6)  < 0.001

 2 871 (24.3) 792 (25.9)

 3 1581 (44.0) 1373 (45.0)

 4 655 (18.2) 506 (16.6)

 5 137 (3.8) 92 (3.0)

 Dialysis 180 (5.0) 149 (4.9)

ACS, n (%) 1049 (29.2) 886 (29.0) 0.545

Myocardial infarct, n (%) 2423 (67.5) 2014 (65.9)  < 0.001

Congestive heart failure, n (%) 2313 (64.4) 1925 (63.0)  < 0.001

Peripheral vascular disease, n (%) 847 (23.6) 713 (23.3) 0.437

Cerebrovascular disease, n (%) 573 (16.0) 468 (15.3) 0.015

Dementia, n (%) 189 (5.3) 150 (4.9) 0.031

Chronic pulmonary disease, n (%) 1067 (29.7) 890 (29.1) 0.078

Rheumatic disease, n (%) 138 (3.8) 119 (3.9) 0.788

Peptic ulcer disease, n (%) 111 (3.1) 92 (3.0) 0.602

Diabetes with control, n (%) 1359 (37.9) 1181 (38.7) 0.018

Diabetes without_control, n (%) 1065 (29.7) 887 (29.0) 0.058

Malignant cancer, n (%) 338 (9.4) 265 (8.7)  < 0.001

Mild liver disease, n (%) 262 (7.3) 189 (6.2)  < 0.001

Severe liver disease, n (%) 74 (2.1) 46 (1.5)  < 0.001

HT, n (%) 3300 (91.9) 2811 (92.0) 0.582

Atrial fibrillation or flutter, n (%) 1638 (45.6) 1339 (43.8)  < 0.001

Ventricular arrhythmia, n (%) 195 (5.4) 129 (4.2)  < 0.001

Cardiac arrest, n (%) 160 (4.5) 79 (2.6)  < 0.001

PCI, n (%) 195 (5.4) 175 (5.7) 0.075

CABG, n (%) 624 (17.4) 610 (20.0)  < 0.001

Aspirin, n (%) 3009 (83.8) 2622 (85.9)  < 0.001

Clopidogrel, n (%) 1114 (31.0) 975 (31.9) 0.007

Ticagrelor, n (%) 2 (0.1) 1 (0.0) 0.276

Statin, n (%) 3005 (83.7) 2647 (86.7)  < 0.001

Beta_blocker, n (%) 2618 (72.9) 2334 (76.4)  < 0.001

NOAC, n (%) 262 (7.3) 243 (8.0)  < 0.001

Warfarin, n (%) 908 (25.3) 835 (27.3)  < 0.001

Inhospital hemodialysis, n (%) 250 (7.0) 193 (6.3)  < 0.001

Inhospital peritoneal_dialysis, n (%) 8 (0.2) 8 (0.3) 0.615

Inhospital CRRT, n (%) 587 (16.4) 449 (14.7)  < 0.001

Troponin_max (ng/mL) 0.2 [0.1, 1.2] 0.2 [0.1, 0.9]  < 0.001

Troponin_min (ng/mL) 0.1 [0.1, 0.5] 0.1 [0.0, 0.4]  < 0.001

Troponin_mean (ng/mL) 0.2 [0.1, 0.8] 0.2 [0.1, 0.7]  < 0.001

WBC_max (K/µL) 14.1 [10.5, 19.3] 13.6 [10.1, 18.4]  < 0.001

WBC_min (K/Ul) 6.8 [5.3, 8.6] 6.7 [5.2, 8.3]  < 0.001

WBC_mean (K/Ul) 10.0 [7.8, 12.7] 9.6 [7.6, 12.1]  < 0.001



Page 6 of 13Ye et al. European Journal of Medical Research           (2023) 28:33 

Table 1  (continued)

Overall Survivor P-Value

RBC_max (m/µL) 3.7 [3.3, 4.2] 3.7 [3.3, 4.2] 0.029

RBC_min (m/Ul) 2.8 [2.4, 3.3] 2.8 [2.4, 3.2] 0.144

RBC_mean (m/Ul) 3.2 [2.9, 3.6] 3.2 [2.9, 3.6] 0.176

Hemoglobin_max (g/dL) 11.1 [9.9, 12.4] 11.1 [10.0, 12.4] 0.012

Hemoglobin_min (g/dL) 8.2 [7.2, 9.6] 8.2 [7.2, 9.6] 0.034

Hemoglobin_mean (g/dL) 9.6 [8.6, 10.7] 9.6 [8.7, 10.7] 0.049

Hematocrit_max (%) 34.1 [31.0, 38.1] 34.1 [31.0, 38.1] 0.473

Hematocrit_min (%) 25.3 [22.3, 29.7] 25.2 [22.3, 29.6] 0.949

Hematocrit_mean (%) 29.4 [26.9, 32.8] 29.4 [26.9, 32.7] 0.838

Platelet_max (K/µL) 247.0 [186.0, 325.0] 250.5 [191.0, 329.0]  < 0.001

Platelet_min (K/µL 136.0 [100.0, 185.0] 138.0 [102.0, 187.0]  < 0.001

Platelet_mean (K/µL) 186.2 [144.1, 239.8] 189.3 [148.0, 241.4]  < 0.001

ALT_max (IU/L) 27.0 [16.0, 62.0] 25.0 [16.0, 49.0]  < 0.001

ALT_min (IU/L) 18.0 [12.0, 31.0] 18.0 [12.0, 29.0]  < 0.001

ALT_mean (IU/L) 23.2 [15.0, 45.5] 21.8 [14.0, 39.0]  < 0.001

AST_max (IU/L) 42.0 [24.0, 104.0] 38.0 [23.0, 82.0]  < 0.001

AST_min (IU/L) 25.0 [18.0, 38.0] 24.0 [17.0, 35.0]  < 0.001

AST_mean (IU/L) 33.3 [22.0, 63.0] 31.0 [21.0, 52.2]  < 0.001

ALP_max (IU/L) 93.0 [70.0, 134.0] 90.0 [68.0, 125.8]  < 0.001

ALP_min (IU/L) 77.0 [59.0, 102.0] 76.0 [58.0, 100.0]  < 0.001

ALP_mean (IU/L) 86.0 [67.0, 115.5] 84.0 [66.0, 111.0]  < 0.001

Bilirubin_total_max (mg/dL) 0.6 [0.4, 1.0] 0.6 [0.4, 0.9]  < 0.001

Bilirubin_total_min (mg/dL) 0.4 [0.3, 0.7] 0.4 [0.3, 0.7]  < 0.001

Bilirubin_total_mean (mg/dL) 0.5 [0.4, 0.8] 0.5 [0.3, 0.8]  < 0.001

Creatinine_max (mg/dL) 2.4 [1.6, 4.0] 2.2 [1.6, 3.7]  < 0.001

Creatinine_min (mg/dL) 1.4 [1.1, 2.0] 1.4 [1.1, 1.9]  < 0.001

Creatinine_mean (mg/dL) 1.8 [1.4, 2.9] 1.8 [1.3, 2.7]  < 0.001

BUN_max (mg/dL) 52.0 [36.0, 77.0] 50.0 [34.0, 73.0]  < 0.001

BUN_min (mg/dL) 24.0 [17.0, 36.0] 23.0 [17.0, 34.0]  < 0.001

BUN_mean (mg/dL) 38.4 [27.0, 54.0] 36.3 [26.1, 50.9]  < 0.001

Potassium_max (mEq/L) 5.0 [4.6, 5.6] 5.0 [4.6, 5.5]  < 0.001

Potassium_min (mEq/L) 3.6 [3.3, 4.0] 3.6 [3.4, 3.9] 0.278

Potassium_mean (mEq/L) 4.3 [4.0, 4.6] 4.3 [4.0, 4.5]  < 0.001

Sodium_max (mEq/L) 142.0 [140.0, 145.0] 142.0 [140.0, 145.0] 0.049

Sodium_min (mEq/L) 134.0 [131.0, 137.0] 135.0 [131.0, 137.0] 0.005

Sodium_mean (mEq/L) 138.3 [136.0, 140.7] 138.3 [136.2, 140.6] 0.386

Total_calcium_max (mg/dL) 9.1 [8.7, 9.6] 9.1 [8.7, 9.5] 0.533

Total_calcium_min (mg/dL) 8.0 [7.6, 8.4] 8.1 [7.7, 8.5]  < 0.001

Total_calcium_mean (mg/dL) 8.6 [8.2, 8.9] 8.6 [8.2, 8.9]  < 0.001

Free_calcium_max (mmol/L) 1.2 [1.1, 1.2] 1.2 [1.1, 1.2]  < 0.001

Free_calcium_min (mmol/L) 1.1 [1.0, 1.1] 1.1 [1.0, 1.1]  < 0.001

Free_calcium_mean (mmol/L) 1.1 [1.1, 1.2] 1.1 [1.1, 1.2]  < 0.001

Magnesium_max (mg/dL) 2.5 [2.3, 2.8] 2.5 [2.3, 2.8] 0.234

Magnesium_min (mg/dL) 1.8 [1.7, 2.0] 1.8 [1.7, 2.0] 0.559

Magnesium_mean (mg/dL) 2.1 [2.0, 2.3] 2.1 [2.0, 2.3] 0.002

Phosphate_max (mg/dL) 4.9 [4.0, 6.2] 4.7 [4.0, 5.8]  < 0.001

Phosphate_min (mg/dL) 2.8 [2.2, 3.4] 2.8 [2.3, 3.3]  < 0.001

Phosphate_mean (mg/dL) 3.8 [3.2, 4.5] 3.7 [3.2, 4.3]  < 0.001

INR_max 1.5 [1.2, 2.3] 1.4 [1.2, 2.0]  < 0.001
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application value of GBDT were also validated by an 
external set from the eICU-CRD database. This is the 
first prediction method especially for CKD patients with 
CAD to evaluate the in-hospital mortality with precise 
efficiency in two large cohorts, which means good gener-
alization to extend to clinical practice.

Depending on the visualization technique SHAP, our 
study identified several crucial variables related to the 
in-hospital mortality of patients with CKD and CAD 
in the ICU. This study identified a factor strongly asso-
ciated with the in-hospital mortality observed in our 
study which was serum phosphate. Previous studies have 
shown that elevated serum inorganic phosphorous (P) 
is tightly associated with cardiac death in CKD patients 
[15]. A national study illustrated that hyperphosphatemia 

could lead to a predisposition to metastatic calcifica-
tion and the development and progression of second-
ary hyperparathyroidism, which may contribute to the 
abundant morbidity and mortality of patients with ESRD 
[16]. Another research with a 2-year follow-up also iden-
tified strong relationships between hyperphosphatemia 
and cardiac causes of death in hemodialysis patients 
[17]. Moreover, a cross-sectional study showed elevated 
serum levels of P were significantly related to calcified 
coronary atherosclerotic plaque detected by cardiac com-
puted tomography, even in patients with normal kidney 
function [18]. The previous studies exhibited the signif-
icance of P in prognosis in CKD patients. In our study, 
we focused on CKD patients with CAD and showed that 
serum P was a strong predictor of in-hospital mortality. 

Table 1  (continued)

Overall Survivor P-Value

INR_min 1.1 [1.0, 1.2] 1.1 [1.0, 1.2]  < 0.001

INR_mean 1.3 [1.1, 1.6] 1.2 [1.1, 1.5]  < 0.001

PT_max (s) 16.1 [13.6, 24.3] 15.7 [13.4, 22.3]  < 0.001

PT_min (s) 12.4 [11.4, 13.8] 12.2 [11.4, 13.4]  < 0.001

PT_mean (s) 14.1 [12.6, 17.2] 13.8 [12.5, 16.1]  < 0.001

PTT_max (s) 45.4 [31.9, 105.2] 42.5 [31.4, 97.8]  < 0.001

PTT_min (s) 27.6 [25.3, 30.7] 27.4 [25.2, 30.2]  < 0.001

PTT_mean (s) 35.9 [29.4, 54.2] 34.7 [29.1, 52.0]  < 0.001

Glucose_max (mg/dL) 194.0 [149.0, 271.0] 189.0 [147.0, 261.0]  < 0.001

Glucose_min (mg/dL) 88.0 [74.0, 103.0] 87.0 [74.0, 101.0]  < 0.001

Glucose_mean (mg/dL) 131.2 [111.8, 162.7] 128.2 [110.6, 157.7]  < 0.001

SOFA 6.0 [4.0, 8.0] 5.0 [3.0, 7.0]  < 0.001

BMI (kg/m2) 28.0 [24.2, 32.6] 28.1 [24.3, 32.6] 0.018

sbp_max (mmHg) 155.0 [140.0, 172.0] 156.0 [141.0, 173.0]  < 0.001

sbp_min (mmHg) 85.0 [75.0, 96.0] 87.0 [78.0, 97.0]  < 0.001

sbp_mean (mmHg) 117.7 [107.9, 129.5] 119.1 [109.9, 130.6]  < 0.001

dbp_max (mmHg) 93.0 [80.0, 109.0] 93.0 [80.0, 109.0] 0.08

dbp_min (mmHg) 39.0 [33.0, 46.0] 40.0 [34.0, 47.0]  < 0.001

dbp_mean (mmHg) 58.7 [52.8, 65.2] 59.0 [53.2, 65.7]  < 0.001

mbp_max (mmHg) 108.0 [96.0, 125.0] 108.0 [96.0, 124.0] 0.52

mbp_min (mmHg) 53.0 [46.0, 60.0] 54.0 [47.0, 61.0]  < 0.001

bmp_mean (mmHg) 74.9 [69.4, 81.4] 75.6 [70.1, 82.0]  < 0.001

HR_max (beats/min) 102.0 [88.0, 120.0] 100.0 [88.0, 116.0]  < 0.001

HR_min (beats/min) 62.0 [55.0, 70.0] 62.0 [56.0, 70.0]  < 0.001

HR_mean (beats/min) 79.8 [71.4, 88.9] 79.0 [71.0, 87.4]  < 0.001

spo2_max 100[100.0, 100.0] 100[100.0, 100.0] 0.004

spo2_min 90.0 [86.0, 93.0] 91.0 [88.0, 93.0]  < 0.001

spo2_mean 96.7 [95.6, 97.8] 96.7 [95.6, 97.8] 0.005

los_icu length of stay in intensive care unit, scr serum creatinine, eGFR estimated glomerular filtration rate, CKD chronic kidney disease, ACS acute coronary 
syndrome, HT hypertension, PCI percutaneous coronary intervention, CABG coronary artery bypass grafting, NOAC non-vitamin K Antagonist Oral Anticoagulant, 
CRRT​ continuous renal replacement therapy, max maximum, min minimum, WBC white blood cell, RBC red blood cell, ALT alanine aminotransferase, AST aspartate 
aminotransferase, ALP alkaline phosphatase, BUN blood urea nitrogen, INR International Normalized Ratio, PT prothrombin time, PTT partial thromboplastin time, 
SOFA sequential organ failure assessment, sbp systolic blood pressure, dbp diastolic blood pressure, mbp mean blood pressure, HR heart rate, spo2 oxyhemoglobin 
saturation
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Therefore, phosphate is a promising therapeutic target to 
improve the clinical outcome in CKD patients with CAD. 
Both dietary and pharmacological therapeutic strategies 
should be used to reduce of serum phosphate levels to 
prevent hyperphosphatemia in CKD patients with CAD.

Whether Coronary Artery Bypass Grafting (CABG) 
or PCI is the better approach for revascularization of 
CAD in CKD patients was still controversial. Several 
observational studies reported CABG was associated 
with lower mortality than PCI in CKD patients [19–21]. 
But the Coronary REvascularization Demonstrating 
Outcome Study in Kyoto PCI/CABG Registry Cohort-2 
study showed the risk of all-cause death was similar 
between PCI and CABG in ESRD patients requiring 
dialysis [22], which was consistence with the result of 
ISCHEMIA-CKD research [3]. Another meta-analy-
sis also pointed out that patients with stage 3–5 CKD 

who underwent either approach to revascularization 
did not experience significant differences in mortality. 
However, CABG significantly reduced the myocardial 
infarction risks and required fewer additional revas-
cularization procedures [23]. Different results in these 
studies might be attributed to different study partici-
pants, some focused on advanced CKD patients, while 
others focused on ESRD patients. Our study included 
patients with all staged CKD, ML visible results showed 
that both PCI and CABG were beneficial to the progno-
sis of CKD patients with CAD, and CABG was a more 
critical feature than PCI to the in-hospital mortality in 
those patients in ICU.

A growing number of machine learning applications 
in cardiovascular medicine have been made possible by 
the development of artificial intelligence [24, 25]. Using 
machine learning, it has been possible to predict death 
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Fig. 2  Feature selection analyzed by Boruta algorithm. The horizontal axis is the name of each variable, and the vertical axis is the Z-value of each 
variable. The box plot shows the Z-value of each variable in the model calculation. The green boxes represent the 76 important variables, the yellow 
represents tentative attributes, and the red represents unimportant variables. los_icu length of stay in intensive care unit, scr serum creatinine, 
eGFR estimated glomerular filtration rate, CKD chronic kidney disease, ACS acute coronary syndrome, HT hypertension, PCI percutaneous coronary 
intervention, CABG coronary artery bypass grafting, NOAC Non-vitamin K Antagonist Oral Anticoagulant, CRRT​ continuous renal replacement 
therapy, max maximum, min minimum, WBC white blood cell, RBC red blood cell, ALT alanine aminotransferase, AST aspartate aminotransferase, 
ALP alkaline phosphatase, BUN blood urea nitrogen, INR International Normalized Ratio, PT prothrombin time, PTT partial thromboplastin time, 
SOFA sequential organ failure assessment, sbp systolic blood pressure, dbp diastolic blood pressure, mbp mean blood pressure, HR heart rate, spo2 
oxyhemoglobin saturation
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Fig. 3  Discrimination performance of eight machine learning models. A ROC of eight machine learning models. B P-R curves of eight machine 
learning models. The GBDT algorism exhibited the best performance both in ROC and P-R curves. ROC Receiver Operating Characteristic, P-R curve 
precision/recall curve, SVM support vector machine, GBDT Gradient Boosting Decision Tree Machine, KNN k-nearest neighbors, NN neural network, 
XGBoost Extreme Gradient Boosting, AUC​ area under the curve

Fig. 4  SHAP analysis result. A Bar charts that rank the importance of the top 20 significant variables most correlated to in-hospital death in GBDT 
model. B Impact of each feature on the in-hospital mortality in GBDT model by SHAP values. GBDT Gradient Boosting Decision Tree Machine, 
SHAP Shapley Additive Explanations, spo2 oxyhemoglobin saturation, HR heart rate, WBC white blood cell, CABG coronary artery bypass grafting, 
SOFA sequential organ failure assessment, sbp systolic blood pressure, BUN blood urea nitrogen, PTT partial thromboplastin time, ALT alanine 
aminotransferase, AST aspartate aminotransferase, PT prothrombin time
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risk among CAD patients more accurately than before. 
Motwani et  al. constructed a boosted ensemble algo-
rithm combining clinical and coronary computed tomo-
graphic angiography (CCTA) to predict 5-year all-cause 

mortality with higher AUC (0.79) than clinical or CCTA 
metrics alone [26]. Silva et  al. established a prognostic 
model using health conditions, including age and maxi-
mal exercise capacity, to precisely predict the mortal-
ity of CAD patients via the survival tree (ST) algorithm 
(C-index 0.729) [27]. In addition, Pezel and colleagues 
developed multiple fractional polynomial algorithm ML 
models, including 31,752 consecutive patients, to pre-
dict 10-year death [28]. This ML model also has a higher 
prognostic value than traditional clinical or Cardiac 
Magnetic Resonance scores (AUC 0.76). However, the 
mechanism of CKD combined with CAD is more com-
plex and harder to explain than the mechanism of CAD 
alone [4]. For example, statin lipid-lowering therapy is 
still contradictory in improving the prognosis of patients 
with ESRD and CAD [29]. Predictions based on the tra-
ditional model cannot be made with reasonable accuracy 

Fig. 5  External validation for the GBDT model in the eICU-CRD dataset. A DCA curve of the GBDT model in external validation. B calibration curve 
of the GBDT model in external validation. C ROC of the GBDT model in external validation. D P-R curves of the GBDT models in external validation. 
DCA showed the GBDT model had some net benefit compared with the “treat-none” or “treat-all” strategies with a certain degree of clinical utility. 
The AUC (0.865) and AP (0.672) results demonstrated the GBDT model had good predictive values in external validation. DCA decision curve 
analysis, ROC Receiver Operating Characteristic, P-R curve precision/recall curve, GBDT Gradient Boosting Decision Tree Machine, eICU-CRD Telehealth 
Intensive Care Unit Collaborative Research Database

Table 2  The performance of different machine learning models

Machine learning AUC​ Precision

Random forest 0.9 0.696

Logistic regression 0.921 0.754

SVM 0.937 0.773

Decision tree 0.721 0.323

GBDT 0.946 0.778

KNN 0.747 0.385

NN 0.9 0.601

XGBOOST 0.939 0.776
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and comprehensiveness for patients suffering from such 
complex diseases [5, 30]. For this reason, machine learn-
ing is of great significance.

The GBDT algorithm, also known as the multiple addi-
tive regression trees, has more accurate predictive ability 
and sophisticated algorithms than the LR, decision tree, 
and random forest algorithms [31]. It has many nonlinear 
transformations and solid, expressive ability, and does not 
require complex feature engineering and transformation 
[32]. The XGBoost model, a modified GBDT algorithm, 
could cope efficiently and flexibly with missing data and 
combines weak predictors to produce accurate predic-
tions [33]. The no free lunch theorem (NFL) illustrates 
that the expected performance of each learning algo-
rithm is the same if all possible problems are considered, 
which means there is no single, universal best machine 
learning algorithm for every situation [34]. Among eight 
ML models, the GBDT model performed the best clinical 
predictive value in in-hospital mortality risks in this kind 
of patient.

The advantages of this study were that it was the first 
study focusing on the in-hospital mortality for CKD 
patients with CAD in ICU based on a public database 
and constructed an ML model to predict it with exter-
nal validation. Some limitations must be acknowledged. 
First, MIMIC-IV was a single-center database; most 
white patients may lead to racial bias and limit the appli-
cability to other populations. However, external valida-
tion was applied using data from a multicenter database, 
eICU-CRD. Second, the deviation of missing data was 
inevitable because the data were extracted from the open 
public database. We performed fully conditional speci-
fication (FCS) implemented by the MICE algorithm to 
multiply and impute the missing data. Third, the selec-
tion bias was inevitable because this was a retrospective 
and observative study. Data were extracted from two dif-
ferent databases as internal and external sets, and fur-
ther multicenter and large-scale clinical research was 
still needed. Nevertheless, the constructed ML model 
still may contribute to clinicians improving the progno-
sis and treating CKD patients with CAD at high risk in 
ICU timely. Collecting clinical data on ICU patients have 
been difficult due to the impact of the CoronaVirusDis-
ease2019 outbreak. Public databases have helped tide 
clinical workers over worldwide. But more prospective 
multicenter clinical studies should also be established for 
further research.

Conclusions
In conclusion, machine learning algorithms can be reli-
able tools for accurately predicting the in-hospital mor-
tality risk for CKD patients with CAD in the ICU. GBDT 

technology had the best predictive performance, which 
may provide optimal resource allocation and reduce in-
hospital mortality by tailoring precise management and 
implementing early interventions.
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