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Abstract 

Background  RNA methylation (RM) is a crucial post-translational modification (PTM) that directs epigenetic 
regulation. It mostly consists of N1-methyladenosine (m1A), 5-methylcytosine (m5C), N3-methylcytidine (m3C), 
N6-methyladenosine (m6A), and 2′-O-methylation (Nm). The “writers” mainly act as intermediaries between these 
modifications and associated biological processes. However, little is known about the interactions and potential func-
tions of these RM writers in hepatocellular carcinoma (HCC).

Methods  The expression properties and genetic alterations of 38 RM writers were assessed in HCC samples from 
five bioinformatic datasets. Two patterns associated with RM writers were identified using consensus clustering. Then, 
utilizing differentially expressed genes (DEGs) from different RM subtypes, we built a risk model called RM_Score. 
Additionally, we investigated the correlation of RM_Score with clinical characteristics, tumor microenvironment (TME) 
infiltration, molecular subtypes, therapeutic response, immunotherapy effectiveness, and competing endogenous 
RNA (ceRNA) network.

Results  RM writers were correlated with TME cell infiltration and prognosis. Cluster_1/2 and gene.cluster_A/B were 
shown to be capable of distinguishing the HCC patients with poor prognosis after consensus and unsupervised 
clustering of RNA methylation writers. Additionally, we constructed RNA modification pattern-specific risk model and 
subdivided the cases into RM_Score high and RM_Score low subgroups. In individual cohorts or merged datasets, 
the high RM_Score was related to a worse overall survival of HCC patients. RM_Score also exhibited correlations with 
immune and proliferation related pathways. In response to anti-cancer treatments, the RM_Score had a negative 
correlation (drug sensitive) with drugs that focused on the MAPK/ERK and metabolism signaling, and a positive cor-
relation (drug resistant) with compounds targeting RKT and PI3K/mTOR signaling pathway. Notably, the RM_Score 
was connected to the therapeutic effectiveness of PD-L1 blockage, implying that RM writers may be the target of 
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immunotherapy to optimize clinical outcomes. Additionally, a ceRNA network was generated including 2 lncRNAs, 4 
miRNAs, and 7 mRNAs that was connected to RM writers.

Conclusions  We thoroughly investigated the potential functions of RNA methylation writers and established an 
RM_patterns-based risk model for HCC patients. This study emphasized the critical functions of RM modification in 
TME infiltration, targeted therapy, and immunotherapy, providing potential targets for HCC.

Keywords  RNA methylation, Writer, Hepatocellular carcinoma, Tumor microenvironment, RM_Score, Drug sensitivity, 
Immunotherapy

Introduction
Hepatocellular carcinoma (HCC), accounting for approx-
imately 90% of liver cancer, is the major histologic type 
of liver cancer. Annually, more than a million individuals 
are newly diagnosed with liver cancer, raising concerns 
on the world’s health [1]. As an inflammation-associated 
malignancy, HCC is frequently caused by a number of 
risk factors, including drinking, nonalcoholic steato-
hepatitis (NASH), and hepatitis B virus (HBV)/hepatitis 
C virus (HCV) infection [2]. In contrast to other solid 
cancers, HCC is commonly diagnosed at an advanced 
stage, until which it is too late for transplantation, sur-
gical resection, or local ablation. By decades, long-term 
improvements have been made in the management of 
advanced HCC. Sorafenib was first approved as an effec-
tive systemic option for advanced HCC. More recently, 
other targeted drugs such as lenvatinib, regorafenib, 
cabozantinib, nivolumab, and ramucirumab have also 
displayed clinical efficacy [3]. However, heterogeneity 
revealed by multiple omics poses a significant challenge 
for precision medicine and increases survival of HCC 
patients. Understanding the probable mechanisms of 
hepatocarcinogenesis, as well as searching for robust bio-
markers and targets, will thus tremendously benefit HCC 
treatment.

Benefiting from high-throughput sequencing and 
large-scale profiling, post-translational modification 
(PTM) has been uncovered in a variety of RNAs, such as 
messenger RNA (mRNA), transfer RNA (tRNA), ribo-
somal RNA (rRNA) long noncoding RNA (lncRNA), 
and  enhancer RNAs (eRNAs). RNA methylation (RM), 
including includes N1-methyladenosine (m1A), 5-methyl-
cytosine (m5C), N3-methylcytidine (m3C), N6-meth-
yladenosine (m6A), and 2′-O-methylation (Nm), is 
described as a crucial PTM in governing RNA matura-
tion, splicing, stability, and translation. Among all these 
RNA methylation modifications, N6-methylation of 
adenosines is the most common and abundant RNA 
methylation modification that occurs at stop codons and 
within 3′ UTRs. The m1A mutation is likewise found at 
the first position of the adenine base. Recently, m1A is 
also reported enriched at translation start sites (5′ UTRs). 
Nm, which is found on the 2′ hydroxyl ribose moiety of 

ribonucleosides, has been found in all major eukaryotic 
RNA [4]. In contrast, m5C and m3C, two isomeric cyti-
dine methylation modifications, present a methyl group 
on the nucleobase of cytidines. The newly identified RNA 
methylation type known as m3C differs from other well-
known modification patterns. It was first discovered in 
rRNA and tRNA, in which it took part in modeling RNA 
structure and protein–RNA interactions [5, 6]. However, 
the m3C modification in mRNA of mice and human was 
also recently discovered [7].

Specific “writers” (methyltransferase), “readers” 
(binding proteins), and “erasers” (demethylases), in 
that order, can deposit, recognize, and remove labeled 
RNA methylation modifications, respectively. These 
enzymes have been connected to immune responses, 
cell differentiation, DNA replication, DNA repair, and 
other common biological processes. However, a grow-
ing number of studies have shown the critical functions 
of dysregulated modification modulators, particularly 
“writers”, in modulating the malignant phenotypes of 
various cancer types. For HCC, the oncogenic roles of 
m6A writers have drawn more attentions. Through the 
HuR-ETS1-p21/p27 axis, WTAP-induced m6A altera-
tion enhanced the progression of HCC [8]. METTL3-
mediated m6A modification contributed to sorafenib 
resistance of HCC cells in the hypoxic tumor microen-
vironment [9]. METTL14, on the other hand, impeded 
the invasion of HCC cells by suppressing EGFR/PI3K/
AKT signaling [10]. Given the biological features of 
m6A writers, these inhibitors are promising drug can-
didates for tumor therapy, including FB23-2, R-2HG, 
BTYNB, and CS1 [11]. By recruiting H19 lncRNA to 
methylate, the typical m5C methylase NSUN2 accel-
erated carcinogenesis, cell migration, and invasion of 
HCC cells. 2′-O-methylation writer Fibrillarin (FBL) 
was correlated with advanced TNM stage and poor 
survival of HCC cases [12]. According to the most 
recent study, TRMT6/TRMT61A-mediated m1A 
methylation enhanced liver tumorigenesis and CSC 
development via activating Hedgehog and PPAR sign-
aling [13]. More intriguingly, despite the fact that m3C 
has been specifically identified in the HBV-infected 
HCC cell line Huh7, the relationship between m3C 
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writers and the evolution of HCC has not been fully 
understood [14]. It has been postulated that this meth-
ylation modification may play an important role in 
liver cancer brought on by viral infection.

Given the aforementioned, RNA methylation modi-
fication authors may be essential for the development 
of HCC. Though recent studies highlighted the sig-
nificance of RNA methylation modification in tumo-
rigenesis, the comprehensive analyses of the RNA 
methylation writers for HCC remain limited [15, 16]. 
In the current study, we investigated thoroughly the 
writers’ expression and mutation levels of 5 RNA 
methylation types (m1A, m5C, m3C, m6A, and Nm) in 
5 HCC cohorts. Additionally, utilizing various cluster-
ing algorithms, we constructed an RNA methylation 
model to forecast tumor microenvironment (TME) 
alterations, immunotherapy response, and survival sta-
tus. As a result, an integrated investigation of the pat-
terns of RNA methylation may uncover the interaction 
regulatory mechanisms and provides potential HCC 
targets.

Methods
Data collection and processing
The study’s flowchart was depicted in Fig. 1 for reference. 
Gene expression levels and clinical information were 
downloaded from Gene-Expression Omnibus (GEO), 
the Cancer Genome Atlas (TCGA) database and ICGC 
database. mRNA expression, miRNA expression, lncRNA 
expression, somatic mutation, SCNAs were retrieved 
from TCGA database (https://​portal.​gdc.​cancer.​gov/). 2 
GEO liver cancer cohorts (GSE76427 and GSE54236) [17, 
18], 2 ICGC cohorts (LIRI-JP and LICA-FR), and TCGA-
LIHC cohort were included for combined analysis (Addi-
tional file 2: Table S1). The log transformed FPKM values 
from TCGA, LIRI-JP, and LICA-FR were integrated with 
the gene array data (GSE76427 and GSE54236). Batch 
effects were corrected by using “ComBat” algorithm of 
svaPackage. IMvigor210 cohort, including 348 meta-
static  urinary tract transitional cell carcinoma cases 
administrated with atezolizumab, was included to eval-
uate the predictive value of RM_Score in predicting 
immunotherapy [19, 20]. The genomic, transcriptomic, 
and clinical data were obtained from http://​resea​rch-​pub.​
gene.​com/​IMvig​or210​CoreB​iolog​ies.

Fig. 1  Flowchart of this study. The expression and mutation features of RNA methylated modification writers were investigated in 5 HCC 
datasets. Following clustering algorithms, a RNA methylation-based model was constructed to forecast tumor microenvironment alterations, 
immunotherapy response, targeted drug sensitivity, and survival status of HCC individuals

https://portal.gdc.cancer.gov/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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Mutation status and copy number variations of the RM 
writers
A total of 38 RM writers were involved in this analy-
sis (Additional file  2: Table  S2), including m6A writers 
(METTL3, METTL14, METTL16, ZCCHC4, WTAP, 
RBM15, RBM15B, ZC3H13, KIAA1429), m5C writers 
(NOP2, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, 
NSUN7, TRDMT1), Nm writers (CMTR1, CMTR2, 
FBL, TRMT13, TRMT44, TARBP1, HENMT1, FTSJ1, 
FTSJ3, MRM1, FTSJ2, RNMTL1), m1A writers (TRMT6, 
TRMT61A, TRMT61B, TRMT10C, RRP8), and m3C 
writers (METTL2A, METTL2B, METTL6, METTL8). 
The “maftools” package was utilized to demonstrate the 
mutation levels of the RNA methylation writers in pan-
cancers of TCGA dataset. The patients were split into 
groups with and without mutations, which were further 
compared for their overall survival. Copy number varia-
tions was calculated to evaluate the expression levels and 
copy number.

Clustering expression pattern of RNA methylation “writers”
Following excluding genes missed in any of the datasets 
(NSNU7 missed in LIRI-JP, RBM15B and MRM1 missed 
in LICA-FR), a total of 35 writers covering the 5 types of 
RNA methylated modification were included for further 
analyses, including 11 Nm writers (CMTR1, CMTR2, 
FBL, TRMT13, TRMT44, TARBP1, HENMT1, FTSJ1, 
FTSJ3, FTSJ2, RNMTL1), 8 m6A modification enzymes 
(METTL3, METTL14, METTL16, ZCCHC4, WTAP, 
RBM15, ZC3H13, KIAA1429), 7 m5C writers (NOP2, 
NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, TRDMT1), 
4 m3C writers (METTL2A, METTL2B, METTL6, 
METTL8), and 5 m1A writers (TRMT6, TRMT61A, 
TRMT61B, TRMT10C, RRP8). Consensus clustering 
algorithm was performed to cluster analysis of 35 RM 
writers in combined liver cancer cohorts by performing 
“ConsensusClusterPlus” package with 100 repetitions.

Gene set variation analysis and TME analysis
By using the "GSVA" R package, gene set variation analy-
sis (GSVA) was performed to investigate the impact of 
RNA modification clusters on biological processes and 
pathways [21]. “c2.cp.kegg.v7.1.symbols.gmt” and “h.all.
v7.4.entrez.gmt.txt” for GSVA analysis was downloaded 
from the MSigDB database (https://​www.​gsea-​msigdb.​
org/​gsea/​index.​jsp). 35 RM genes were functionally 
annotated using the clusterProfiler R Package. he levels 
of infiltration of 28 different types of immune cells were 
measured using single sample gene set enrichment analy-
sis (ssGSEA) in the "GSVA" R package. By analyzing 547 
immune-cell signature genes, CIBERSORT (https://​ciber​
sort.​stanf​ord.​edu/) was used to determine the relative 
abundance of 22 different immune cell types.

Construction of the RM_Score model
Using the Limma R package, DEGs associated to RNA 
methylation phenotype were identified between Cluster 
1 and Cluster 2. Then we performed unsupervised clus-
tering to obtain gene.cluster_A and gene.cluster_B. The 
prognostic value of DEGs was further determined using 
a univariate Cox regression model. Then, to establish a 
scoring system, DEGs related to survival were retrieved. 
RM_Score of each patient was calculated as follows: 
RMScore = 

∑
PC1 +

∑
PC2 . RMScore is equal to PC 1 

plus PC 2. The optimal cut-off value for the RM_Score, 
which separated the cases into high RM_Score group and 
low RM_Score group, was defined using the surv_cut-
point function in the survminer R package.

Association analysis of RM_Score and drug sensitivity
The transcription profiles for about 1000 cancer cell 
lines, drug response measurements as AUC for antitu-
mor drugs in cancer cell lines, and targets/pathways of 
drugs are downloaded from Genomics of Drug Sensi-
tivity in Cancer (GDSC, http://​www.​cance​rrxge​ne.​org/​
downl​oads) [64]. We performed Spearman correlation 
analysis to calculate the correlation between drug sensi-
tivity and RM_Score. |Rs|> 0.3 and FDR < 0.05 (Benjamini 
and Hochberg adjusted) were considered as significant 
correlation.

Construction of competing endogenous RNA (ceRNA) 
network
miRNA–mRNA interactions were retrieved from the 
miRTarBase(http://​mirta​rbase.​mbc.​nctu.​edu.​tw/​php/​
index.​php), TargetScan (http://​www.​targe​tscan.​org/​vert_​
72/) and miRDB (http://​mirdb.​org/). miRNA–mRNA 
interactions overlapped in the three databases were uti-
lized for further analysis. lncRNA–miRNA interactions 
were predicted by TargetScan. Cytoscape were per-
formed to generate mRNA–miRNA–lncRNA network.

Statistics
The data were analyzed using R (version 3.6.2) and R 
Bioconductor packages. Receiver operating characteris-
tic (ROC) curve, Kaplan–Meier method and univariate/
multivariate Cox regression model were used to verify 
the validity of the model. RCircos package was used to 
present the distribution of the RM writers in the chromo-
some. p value less than 0.05 was considered as statisti-
cally significant.

Results
Genetic alterations of five types of RM writers in HCC
38 “writers” of the five most prevalent RNA methyla-
tion modifications were analyzed in this study, includ-
ing 5 m1A writers, 8 m5C writers, 9 m6A writers, 4 m3C 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
http://www.cancerrxgene.org/downloads
http://www.cancerrxgene.org/downloads
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
http://mirdb.org/
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writers, and 12 Nm writers. 69 of the 377 liver cancer 
samples tested positive for the mutations of writers 
mentioned above. Among them, KIAA1429 displayed 
relatively higher mutation frequency (Fig. 2A). Despite 
the fact that there were no appreciable differences in 
survival between HCC patients with or without muta-
tions (Additional file 1: Fig. S1A, B), the poor progno-
sis of HCC patients was substantially associated with 
mutations of the 20 RNA methylated modification 
writers (FTSJ2, FTSJ3, FTSJD1, HENMT1, KIAA1429, 
METTL2A, METTL2B, METTL8, METTL14, NSUN2, 
NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, RBM15, 
TRDMT1, TRMT6, TRMT44, and TRMT61B; Addi-
tional file  1: Fig. S1C, P < 0.05). It was speculated that 

the writers’ genetic alterations may have contributed to 
the development of HCC.

To assess the differences between the individuals 
with and without mutation, Gene Set Variation Analy-
sis (GSVA) was conducted using hallmark gene sets. As 
shown in Fig. 2B, the mutant group exhibited increased 
expression of cancer-related signals such as MYC targets, 
E2F targets, DNA repair, oxidative phosphorylation, and 
G2M checkpoint pathways. In contrast, TNFα signal-
ing, inflammatory response, and interferon-γ response 
were downregulated. Next, we examined somatic copy 
number alterations of the RM writers. Of them, TARBP1, 
KIAA1429, MTEEL3, RBM15, RBM15B, and TARBP1 
had extensive somatic mutation among pan-cancers 
(Fig.  2C). For HCC patients, the highest frequency of 

Fig. 2  Comprehensive landscape of RNA methylated modification writers in liver cancer. A The mutation frequency of RNA modification writers 
in liver cancer patients from the TCGA cohort. B GSEA elucidating the samples with or without writer mutation. C The mutation landscape of the 
RNA modification writers among pan-cancers in TCGA cohort. D Different CNV types of RNA modification writers in the TCGA-LIHC cohort. E The 
expression of RNA modification writers in paired normal and cancer tissues in TCGA-LIHC cohort
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copy number variation (CNV) gain was observed in 
TARBP1 and KIAA1429, while the highest frequency 
of CNV loss was identified in RNMTL1 and METTL16 
(Fig.  2D). Apart from the genetic variations, the major-
ity of the writers had considerably higher levels of mRNA 
expression in HCC samples compared to that in normal 
tissues. In contrast, m5C writer NSUN6 displayed down-
regulated expression levels in HCC tissues (Fig.  2E). 
In order to comprehend more about the discrepancy 
between CNV and mRNA expression, we examined the 
subgroups of CNV levels, such as normal tissues, CNV 
gain, CNV loss, and/or non-significant CNV altera-
tions (Additional file  1: Fig. S2). Indeed, patients with 
CNV gain showed frequently higher mRNA expression 
than those with CNV loss. However, ZC3H13, NSUN6, 
NSUN7, and RNMTL1 showed significant downregu-
lation or non-significant alteration in CNV loss group 
compared to normal tissues. Thus, it suggested that CNV 
could partially modulate mRNA expression of the writers 
in HCC, indicating a high heterogeneity of genetic land-
scape and RM writer expression in HCC.

Distinct patterns of RM writers associated with cancer 
hallmarks and immune infiltration
As shown in Fig. 3A, the “writers” of the RNA methyla-
tion modifications exhibited distinct gene distributions. 
To comprehensively understand the expression pattern of 
the “writers” engaged in carcinogenesis, we selected five 
HCC datasets (TCGA, LIRI-JP, LICA-FR, GSE76427, and 
GSE54236) containing 955 HCC samples and 179 nor-
mal samples. Following excluding genes missed in any 
of the datasets, 5 writers covering 5 RM categories were 
recruited for further analysis. According to PCA analy-
sis, these writers were able to effectively discriminate 
tumor samples and normal samples (Fig.  3B). Univari-
ate Cox regression showed that 27 of 35 RM writers were 
substantially correlated with prognosis of HCC patients 
(Additional file 1: Fig. S3A). Additionally, consensus clus-
tering showed that these writers had potentially negative 
or positive correlations (Fig. 3C).

The spearman correlation analysis found that the 
majority of these writers had favorable correlations. 
However, NSUN6 and ZC3H13 had weak or negative 
associations with other writers (Fig. 3D). It was hypoth-
esized that the writers of the various RNA methylation 
modification patterns might interact with one another. 
After consensus clustering, 955 patients from the pooled 
datasets were stratified into Cluster_1 and Cluster_2 
(Fig. 3E; Additional file 2: Table S3). Remarkably, patients 
at Cluster 1 had better prognosis than that of Cluster 2 
modification pattern (Fig.  3F, p < 0.0001). Subsequently, 
we conducted GSVA enrichment analysis to explore the 
biological implications of these different RM patterns 

(Additional file  2: Table  S4, Table  S5). According to the 
top 60 enriched pathways from KEGG analysis, DEGs 
of the two Clusters were mainly enriched in metabolism 
and pathways associated with proliferation, spliceosome 
and RNA modification. In the Hallmark analysis, DEGs 
were substantially associated with a number of immu-
nological and oncogenic pathways, including Kras sign-
aling, PI3K/AKT/mTOR signaling, IL2/IL6 signaling, 
interferon α/γ response, and TNFA signaling (Fig.  3G), 
suggesting the potential role of “writers” in immune 
and TME. Actually, there may be a specific association 
between TME cell infiltration and RM “writers” (Addi-
tional file 1: Fig. S3B). For example, NSUN6, METTL14, 
and ZC3H13 were significantly negatively correlated with 
T Cells CD4 memory activated, while FTSJ1, METTL6, 
NSUN4 and WTAP were positively correlated with such 
cells. Then, differences in TME cell infiltration were cal-
culated between the two RM clusters (Additional file  2: 
Table S6). As observed in Fig. 3H, the infiltration of mac-
rophages M0 (p = 0.027) and T cells CD4 memory rest-
ing (p = 9.03 × 10− 3) was higher in Cluster_1. In line 
with this, M0 macrophage and T cell CD4 memory rest-
ing marker gene expression was considerably elevated in 
Cluster_1 (Fig. 3I). It was hypothesized that RM patterns 
impacted the degree of infiltration by various immune 
cell types.

Construction of RM writer signature
To further characterize the functional role of the two RM 
patterns above, we identified 62 RM phenotype-related 
DEGs and performed enrichment analysis. We discov-
ered that these genes were enriched in metabolic activi-
ties, including drug catabolic process, alpha-amino acid 
metabolic process, and steroid metabolism (Additional 
file  1: Fig. S4A), which was also implicated in pentose 
phosphate pathway, glycolysis, PPAR signaling path-
way (Additional file 1: Fig. S4B). The patients were then 
categorized into two genomic subtypes known as gene.
cluster_A and gene.cluster_B using unsupervised clus-
tering analyses based on the DEGs (Additional file  1: 
Fig. 4A; Additional file 2: Table S7). As shown in the sur-
vival analysis in Fig. 4B, patients at the subgroup of gene.
cluster_ B had a worse prognosis than those in gene.
cluster_A (p < 0.0001). We then developed an RM_Score 
algorithm to characterize the RNA modification profile 
of individual HCC patients based on these RM-related 
DEGs. We found that RM_Score of Cluster_2 and gene.
cluster_B were significantly higher than Cluster_1 and 
gene.cluster_A (Fig.  4C, D). To further assess the clini-
cal relevance of the RM_Score, we divided patients into 
RM_Score-low and -high groups with the cut-off value of 
0.05859662 determined by the “surv_cutpoint” algorithm 
of “survminer” package (Additional file 2: Table S8). We 
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performed overlap analysis of these three different clas-
sifiers based on the Wayne diagram and the histogram 

of frequency distribution (Additional file  2: Table  S9). 
As shown in Fig.  4E-H, these three computational 

Fig. 3  Cancer hallmarks and immune infiltration of the RNA methylation writers. A The genomic distribution of the RNA methylation writers. 
B PCA of the RNA methylation writers for distinguishing tumor and normal patients in TCGA-LIHC cohort. C The regulatory network of the RNA 
methylation writers based on the consensus analysis. D Spearman correlation analysis showed positive or negative correlation among RNA 
methylation writers in HCC. E Consensus clustering of RNA methylation writers in 5 cohorts. F Kaplan–Meier curves demonstrating the overall 
survival of Cluster_1 and Cluster_2. G GSVA enrichment analysis shows the correlation of the two clusters with biological pathways and cancer 
hallmarks. H The difference of immune cell infiltration in TME between Cluster_1 and Cluster_2. I The expression difference M0 macrophage and 
CD4 T cell between Cluster_1 and Cluster_2
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techniques of categorization had a high degree of 
coincidence.

Clinical characteristics associated with RM_Score in HCC
HCC can be divided into 3 molecular subtypes, named 
iCluster1–3 with distinct molecular features. Alluvial 
diagrams were plotted to display the association between 
different classifiers and the subtypes (Fig. 5A, Additional 
file  2: Table  S10). To examine the association between 
the RM_Score and subtypes, we then calculated the 
RM_Scores of different subtypes. As shown in Fig.  5B, 
RM_Scores dramatically varied among subtypes, with 
iCluster 1 achieving the highest score. Additionally, more 
advanced stages and grades of HCC cases were associ-
ated with higher RM_Score (Fig. 5C, D), implying poten-
tial relevance for RM patterns with tumor progression. 
As elucidated in Fig.  5E-H, patients with higher RM_
Score experienced worse survival in the pooled cohorts 
or single cohort of the TCGA, ICGC, and GSE54236. 

At 3, 6, and 12 months of overall survival, the AUCs of 
ROC curves based on RM_Score were 0.63, 0.72, and 
0.71, respectively (Fig.  5I). Then RM_Score was exam-
ined using multivariate Cox regression analysis as an 
independent prognostic factor. In the combined cohorts, 
RM_Score (Fig. 5J; HR = 2.78, 95% CI 2.04–3.8, p < 0.001), 
together with stage, were independent prognostic bio-
markers. Consistently, RM_Score (Fig. 5K; HR = 2.8, 95% 
CI 1.87–4.1, p < 0.001) and stage were also defined as 
independent markers in TCGA cohort.

Pathways and immune activity with RM_Score
Then, we initially compared the two RM_Score sub-
groups-related pathways in the combined cohorts. DNA 
replication, cell cycle, immune checkpoints, DNA repair, 
the Wnt pathway, and DNA replication were enriched 
in the RM_Score-high group, whereas angiogenesis and 
antigen processing were involved in the RM_Score-low 
group (Fig.  6A). In TCGA cohort, the DEGs between 

Fig. 4  Construction of RM writers-related signature. A Unsupervised clustering of the RNA methylation-related genes. B Kaplan–Meier curves 
demonstrating the overall survival of gene.cluster_A and gene.cluster_B. C Comparison of RM_Score between Cluster_1 and Cluster_2. D 
Comparison of RM_Score between gene.cluster_A and gene.cluster_B. E–H The overlap and frequency of classifiers of RM_Score model with 
Cluster_1/2 and gene.cluster_A/B. ns, p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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RM_Score high and low groups were also predominantly 
enriched in proliferation- and immune-related pathways 
(Fig.  6B). Furthermore, we also explored into whether 
the two groups differed in terms of mutation. Although 
the two groups had identical altered genes, as illus-
trated in Fig.  6C, the mutation frequency and type sig-
nificantly varied, particularly for TP53, TTN, CTNNB1, 
and MUC4/16. Additionally, we identified a connection 
between RM_Score and immune cells in TME. Neutro-
phil and activated CD4 T cell proportions showed the 
most notable differences in cell proportion (Additional 
file  1: Fig. S5). The immune score and estimate score 
were both positively correlated with RM_Score, whereas 
tumor purity was considerably adversely correlated with 
this score (Fig.  6D; Additional file  2: Table  S11). Track-
ing Tumor Immunophenotype (TIP) discovered an obvi-
ous distinction between RM_Score high and low groups 

(Fig.  6E). The RM_Score-high group was triggered in 
Step1.Releasing of cancer cell antigens, Step4.Th22 cell.
recruiting, Step4.Neutrophil.recruiting, Step4.Th17 cell.
recruiting, and Step4.MDSC.recruiting. Contrarily, 
Step6.Recognition of cancer cells by T cells, Step7. Killing 
of cancer cells were implicated in RM_Score-low group.

The RM_Score model predicts response to immunotherapy
Developing biomarkers to forecast immunotherapy 
response has been a top priority. The expression of 
the checkpoint genes was then discovered in the two 
groups. CTLA4, PDCD1 and SLAMF7 were signifi-
cantly elevated in high RM_Score group (Fig. 7A). Con-
sidering the potential association between RM_Score 
and immunological milieu, we examined the predictive 
capacity of the RM_Score towards ICB therapy. In the 
IMvigor210 cohort, we discovered that patients with 

Fig. 5  The clinical implications and prognostic value of the RM_Score system. A The correlation of molecular subtypes with Cluster_1/2, gene.
cluster_A/B, and RM_Score high/low. B-D The comparison of RM_Score in patients at different iClusters, stages, and grades. E Kaplan–Meier curves 
demonstrating the overall survival of RM_Score high and RM_Score low subgroups in combined cohorts. F–H Kaplan–Meier curves demonstrating 
the overall survival of RM_Score high and RM_Score low subgroups in TCGA, LIRI, and GSE54236 cohorts, respectively. I The ROC curves of the 
RM_Score in predicting the overall survival of the liver cancer patients. J, K the Multivariate Cox regression model analysis to evaluated RM_Score as 
an independent prognostic factor in combined cohorts and TCGA-LIHC cohort. ns, p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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low RM_Score (cut-off value = 0.002636961) showed 
substantially therapeutic benefits and had a noticeably 
extended overall survival (Fig.  7B, p = 0.00022). Addi-
tionally, the 348 individuals in the IMvigor210 cohort 
responded to anti-PD-L1 blockers with varying degrees 
(Additional file  2: Table  S12). As shown in Fig.  7C, 
patients with high RM_Scores exhibited larger ratios of 
stable disease (SD) and progressive disease (PD) than 
patients with low RM_Scores. Additionally, the patients 
with complete response (CR) and partial response (PR) 
showed reduced RM_Score than SD and PD patients 
(Fig. 7D; Additional file 2: Table S13). Submap analysis 

indicated that the low RM_Score group was more 
inclined to respond to anti-PD-1 treatment (Fig.  7E). 
We further calculated the RM_Score of the three 
immune subtypes of IMvigor210, including “immune 
inflamed”, “immune excluded”, and “immune desert”. 
The results revealed that the “immune inflamed” type 
had lower RM_Score than two other groups (Fig.  7F). 
Likewise, the TMB and neoantigen burden were con-
siderably higher in the group with a low RM_Score than 
in the group with a high RM_Score (Fig. 7G, H), indi-
cating a potential correlation between the RM_Score 
model and immunotherapy.

Fig. 6  Potential characteristics underlying the RM_Score. A, B The differences of enriched signaling pathways between RM_Score-high and -low 
subgroups in combined datasets and the TCGA-LIHC dataset. C The mutational genes with top frequency in RM_Score high and low subgroups. 
D The correlation of RM_Score with STROMAL score, Immune score, Estimate score, and tumor purity. E the Tracking Tumor Immunophenotype 
analysis of RM_Score high and low subgroups
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Potential therapeutic value of the RM_Score and ceRNA 
network development
Given the availability of targeted therapy for HCC, we 
assessed sorafenib sensitivity in both groups. To ensure 
the stability of the prediction results, prediction mod-
els were trained using the Genomics of Drug Sensitivity 
in Cancer (GDSC) cell line dataset by ridge regression 
and validated using tenfold crossover. For each sample, 
subsequently, IC50 values were calculated and the dis-
crepancies were compared. We identified that the high 
score group in the discovery cohort was more likely to 
be responsive to sorafenib (Fig.  8A, p = 3.2 × 10−7). In 
the GDSC database, we found 28 strongly associated 
pairs between RM_Score and drug sensitivity using the 
Spearman correlation analysis (Fig.  8B). Among them, 
9 pairs showed that drug resistance correlated with the 
RM_Score, e.g., FLT3 inhibitor (quizartinib, Rs = 0.46, 
p = 2.28 × 10−20), BCL2 inhibitor (venetoclax, Rs = 0.37, 
p = 3.41 × 10−13), mTOR inhibitor (OSI-207, Rs = 0.41, 
p = 3.94 × 10−16; PI-103, Rs = 0.31, p = 8.0 × 10−10; 
rapamycin, Rs = 0.35, p = 4.86 × 10−12) and ALK 
inhibitor (LDN-193189. Rs = 0.39, p = 1.24 × 10−14). 
19 pairs showed drug sensitivity, e.g., MEK inhibitor 
(trametinib, Rs =  − 0.59, p = 2.57 × 10− 35; refametinib, 
Rs =  − 0.44, p = 5.18 × 10− 19; PD0325901, Rs =  − 0.47, 

p = 5.70 × 10− 22; CI-1040, Rs =  − 0.47, p = 1.37 × 10− 

21) and ERK inhibitor (SCH772984, Rs =  − 0.54, 
p = 7.44 × 10− 30; ulixertinib, Rs =  − 0.48, p = 1.26 × 10− 

22). Further, we analyzed the signaling pathways of 
the genes targeted by these drugs. We discovered that 
compounds that were sensitive to high RM_Score pri-
marily targeted the signaling pathways for MAPK/ERK 
and metabolism. In contrast, low RM_Score associ-
ated drugs targeted RKT and PI3K/mTOR signaling 
pathway (Fig.  8C). Thus, it indicated that RNA meth-
ylation patterns are correlated with drug sensitivity, 
which provides potential treatment strategies. In order 
to investigate the RM_Score-related potential key axis, 
we further constructed the ceRNA network based on 
the identification and validation of the clinical implica-
tions. By mincing the TCGA dataset, 735 differentially 
expressed mRNA (|logFC|> 1, p < 0.05), 165 differen-
tially expressed miRNA (|logFC|> 1, p < 0.05) and 302 
differentially expressed lncRNA (|logFC|> 1, p < 0.05) 
were identified between high RM_Score and low RM_
Score samples (Fig. 8D). By utilizing Cytoscape, 2 DEl-
ncRNAs, 4 DEmiRNAs and 7 DEmRNAs were used 
to construct the ceRNA network (Fig.  8E, Additional 
file 2: Table S14).

Fig. 7  The capacity of RM_Score model in predicting immunotherapy response. A The expression of immune-related genes in RM_Score-high 
and -low subgroups. B Kaplan–Meier curves show overall survival in the RM_Score-high and -low subgroups after the PD-L1 immunotherapy in 
the IMvigor210 cohort. C The proportion of patients in the IMvigor210 cohort with different responses to PD-L1 blockade immunotherapy. D The 
difference of clinical outcomes with anti-PD-L1 treatment in the RM_Score high and low subgroups in the IMvigor210 cohort. E The similarity of 
gene expression profiles between RM patterns and melanoma patients treated with ICB (n = 47). F The RM_Score in three immune subtypes of 
IMvigor210, including “immune inflamed”, “immune excluded”, and “immune desert”. G, H The TMB and neoantigen burden in the RM_Score-low 
and RM_Score subgroups. ns, p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Discussion
Methylation modification is a common procedure that 
occurs in practically all biological processes. Methyla-
tion modifications on DNA and proteins have been thor-
oughly investigated during the past few decades [22, 23]. 
The characteristics and mechanisms of various RNA 
methylation modifications on eukaryotic RNA, how-
ever, are still largely unknown. The involvement of RNA 
methylation modifications dysregulation in several dis-
eases, particularly malignancies, are being highlighted 
by a growing body of studies [24]. There have been sev-
eral “writers” of RNA methylation modifications that 
have been associated with the onset or progression of 
liver cancer [25, 26]. A thorough study of the character-
istics of RNA methylation modifications might enable 
to improve survival prediction and uncover potential 
molecular targets for HCC. In the current study, for 
the first time, we provided a comprehensive overview 
of five RNA methylation alteration types in HCC, with 
an emphasis on the writers. According to the mutation 
data of TCGA, 20 mutated writers were correlated with 
poor survival of HCC patients, of which KIAA1429 and 
FTSJD2 had highest mutation frequency. DEGs between 
HCC patients with and without writer mutation were 
mainly enriched in proliferation and inflammatory path-
ways. While two m5C writers, NSUN6 and TRDMT1, 

were downregulated in HCC tissues, the majority of writ-
ers were overexpressed in HCC samples. Subsequent 
CNV analysis revealed significant genetic heterogeneity 
and RNA modification "writer" expression discrepancies 
between the normal and HCC samples.

Following the exclusion of missing genes, 35 writers 
were recruited to investigate the expression pattern in 
five HCC datasets. Positive interactions were discovered 
among the authors, indicating a cross-talk of the various 
RNA methylation modification types. HCC individuals 
were categorized into two clusters based on consensus 
clustering, with distinct overall survival. Additionally, 
Cluster_1 was enriched in RNA processing pathways, 
whereas Cluster_2 was implicated in metabolic pathways. 
Next, we examined the probable functions of “writers” in 
TME. Diverse immune cell types were infiltrated into two 
clusters, indicating that RNA modification was involved 
in the infiltration of particular immune cell types.

Then, using unsupervised clustering, we established 
two genomic subgroups using RNA methylation modifi-
cation-related DEGs. A poorer prognosis was attributed 
to gene.cluster B. Additionally, we generated an RNA 
methylation modification DEGs-based model to score 
HCC  individuals  in the pooled  cohort, which was then 
divided into two groups based on the RM_Score. This 
stratification using the RM_Score was particularly related 

Fig. 8  RM_Score-related Therapeutic sensitivity and ceRNA network. A IC50 values of sorafenib in RM_Score high and low groups in Genomics 
of Drug Sensitivity in Cancer (GDSC) cell line dataset. B The Spearman correlation analysis discovered the association between the RM_Score and 
drug sensitivity in the GDSC database. C The signaling pathways targeted by these RM_Score sensitive drugs. D The volcano map and heatmaps 
elucidating the differentially expressed mRNA, miRNA, lncRNA between RM_Score high cases and RM_Score low cases E The ceRNA network 
consisting of 2 DElncRNAs, 4 DEmiRNAs and 7 DEmRNAs



Page 13 of 15Zhang et al. European Journal of Medical Research           (2023) 28:46 	

to the other two computational methods. The relation-
ship between the RM_Score and clinical parameters was 
then assessed. Molecular subtype iCluster 1 had a higher 
RM_Score than iCluster 2/3. According to a previous 
study, iCluster 1 had a higher tumor grade, more macro-
vascular invasions, and a considerably worse prognosis 
than the other two clusters [27]. RM_Score is consistently 
elevated  in HCC cases compared  with higher grades or 
stages. Moreover, ROC and multivariate Cox regression 
analysis showed that the RM_Score model had remark-
able prediction performance for the survival of HCC 
patients. In addition, patients with high RM_Score have 
significantly shorter overall in pooled or either dataset. 
It was hypothesized that the high RM_Score might be 
related to the clinical prognosis and HCC features. P53, 
widely acknowledged as a tumor suppressor, is inacti-
vated with mutation, which promotes tumor progression 
[28]. It is interesting to note that the prevalence of TP53 
mutations in the RM_Score-high group was more than 
twice as high as that in the RM_Score-low group, point-
ing to a possible link between aggressive traits related to 
RM_Score and TP53 mutation.

On the basis of the enrichment analysis, we further 
investigated the relationship between RM_Score and 
tumor immunity. Although there was no discernible 
difference in the proportion of immune cells between 
the groups, RM_Score was favorably associated with 
immune score, estimate score, and tumor immunophe-
notypes including Th22/Th17 cell recruitment, release of 
cancer cell antigens, and neutrophil/MDSC recruitment. 
It also implied a connection between RM_Score and 
tumor immune. Nowadays, immunotherapy is gaining 
popularity as a promising treatment option for advanced 
HCC with immune escape [29, 30]. In light of this, we 
assessed the RM_Score model’s accuracy in predicting 
immunotherapy response. Patients with low RM_Scores 
may benefit from ICB treatment and have significantly 
longer overall survival. Patients with high RM_Score, on 
the other hand, showed less response after therapy, indi-
cating a correlation between RM_Score and ICB resist-
ance. In addition, RM_Score was varied in different levels 
of TMB and neoantigen burden, which were frequently 
correlated with immunotherapy efficacy. Thus, the RM_
Score is a candidate model for predicting ICB response.

Tyrosine kinase inhibitor (TKI) sorafenib was approved 
by the USA FDA in 2007 for the treatment of advanced 
HCC. Increasing oral multi-targeted TKIs were subse-
quently awarded permission for use in treating HCC 
worldwide [31, 32]. Furthermore, we evaluated the rela-
tionship between RM_Score and Sorafenib sensitivity. 
Interestingly, the group with a high RM_Score demon-
strated enhanced sorafenib sensitivity. The administra-
tion of sorafenib might be advantageous for those who 

experienced ICB resistance. For other targeted drugs, 
according to the analyses in GDSC database, high RM_
Score drug indicated resistance to BCL2 inhibitor, JAK 
inhibitor, mTOR inhibitor and ALK inhibitor, while low 
RM_Score showed drug sensitivity of MEK inhibitor 
and ERK inhibitor. Thus, it indicated that RNA methyla-
tion patterns are correlated with sensitivity of targeted 
drug, providing potential treatment strategies for HCC 
patients. Additionally, a ceRNA network associated with 
RM_Score was developed to further explore clinical 
implications or malignant behaviors. It should be noted 
that LINC00998 and DHRS4-AS1 were found to be hub 
lncRNAs that were associated with miRNAs and mRNAs. 
Multiple tumor types have been found to be suppressed 
by LINC00998 [33, 34]. However, LINC00998-encoded 
peptide accelerated HCC tumorigenesis and facilitated 
aggressive behaviors [35]. DHRS4-AS1 was also defined 
as an anti-oncogenic ncRNA, which could inhibit prolif-
eration of HCC cells [36].

As previously stated, the findings presented here dem-
onstrate that these RM networks enable connections 
between clinical and RNA modification by stratifying 
patients’ prognosis and therapy responses. However, this 
study had some limitations as well. Though the promising 
conclusions were based on the integrative bioinformat-
ics in multiple levels, future functional and mechanistic 
research on these RNA writers will reveal clinical phe-
notypes that are caused by RNA methylation writers. To 
fully illustrate the network of RNA methylation modifi-
cations, future studies should also include “readers” and 
“erasers” and other RNA methylation like m7G and A-I 
modification. In addition, larger and multi-center clini-
cal cohorts should be employed to assess the accuracy 
of RNA methylation-based classifier and the RM_Score 
prognostic model.

Conclusions
In conclusion, we have demonstrated that RNA methyla-
tion modification patterns may serve crucial role in the 
progression of liver  malignancy and immune dysfunc-
tion. Additionally, the subgroup classification based on 
RNA methylation writers may distinguish individuals 
with poor survival and forecast the efficacy of immuno-
therapy or targeted therapy. Moreover, RNA methylation 
modification regulators are also highlighted as robust 
biomarkers or potential targets for HCC.
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