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Abstract 

Background Acute coronary syndromes (ACS) are the leading cause of global death. Optimizing mortality risk pre-
diction and early identification of high-risk patients is essential for developing targeted prevention strategies. Many 
researchers have built machine learning (ML) models to predict the mortality risk in ACS patients. Our meta-analysis 
aimed to evaluate the predictive value of various ML models in predicting death in ACS patients at different times.

Methods PubMed, Embase, Web of Science, and Cochrane Library were searched systematically from database 
establishment to March 12, 2022 for studies developing or validating at least one ML predictive model for death 
in ACS patients. We used PROBAST to assess the risk of bias in the reported predictive models and a random-effects 
model to assess the pooled C-index and accuracy of these models.

Results Fifty papers were included, involving 216 ML prediction models, 119 of which were externally validated. The 
combined C-index of the ML models in the validation cohort predicting the in-hospital mortality, 30-day mortality, 
3- or 6-month mortality, and 1 year or above mortality in ACS patients were 0.8633 (95% CI 0.8467–0.8802), 0.8296 
(95% CI 0.8134–0.8462), 0.8205 (95% CI 0.7881–0.8541), and 0.8197 (95% CI 0.8042–0.8354), respectively, with the cor-
responding combined accuracy of 0.8569 (95% CI 0.8411–0.8715), 0.8282 (95% CI 0.7922–0.8591), 0.7303 (95% CI 
0.7184–0.7418), and 0.7837 (95% CI 0.7455–0.8175), indicating that the ML models were relatively excellent in predict-
ing ACS mortality at different times. Furthermore, common predictors of death in ML models included age, sex, sys-
tolic blood pressure, serum creatinine, Killip class, heart rate, diastolic blood pressure, blood glucose, and hemoglobin.

Conclusions The ML models had excellent predictive power for mortality in ACS, and the methodologies may need 
to be addressed before they can be used in clinical practice.

Keywords Acute coronary syndromes, Mortality, Predictive models, Machine learning, Meta-analysis, Systematic 
review

Introduction
Acute coronary syndromes (ACS) are the unstable and 
progressive stages of coronary heart disease, including 
ST-segment elevation myocardial infarction (STEMI), 
non-ST-elevation myocardial infarction (NSTEMI), and 
unstable angina (UA) [1]. Although advances in early 
reperfusion therapy and adjuvant drug therapy have 
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improved the prognosis of ACS patients, ACS remains 
the leading cause of death worldwide [2]. More than 5% 
of patients with ACS die in-hospital [3], even up to 26.7% 
in some subgroups [4], and up to 26.5% in long-term 
follow-up [5]. Appropriate management can significantly 
improve the prognosis of patients with ACS; thus, timely 
and accurate identification of mortality risk and early and 
appropriate risk stratification are essential.

Traditional risk stratification of ACS patients is based 
on risk scoring systems, of which the Global Registry of 
Acute Coronary Events (GRACE) risk score and Throm-
bolysis in Myocardial Infarction (TIMI) risk score are the 
most widely used mortality risk prediction tools [6, 7]. 
Although these risk scores have been validated and are 
generally accepted, they have limitations in current clini-
cal practice. First, these risk scores were developed based 
on data from earlier randomized controlled trials. During 
that period, contemporary therapies for acute myocar-
dial infarction (AMI) were not widely available, and drug 
eluting stents and newer generation antiplatelets were 
not introduced. Therefore, the predictive effect of these 
risk scores in current practice is questionable [8]. Sec-
ond, these risk scores use only selective variables based 
on traditional statistical methods, inevitably limiting the 
number of predictors and thus the possibility of missing 
important information [9]. In addition, traditional risk 
scores focus on predicting short-term mortality, such 
as in-hospital, 14-day, and 30-day mortality, and less 
on long-term mortality risk [10]. Therefore, widespread 
interest has been in exploring more accurate and com-
prehensive mortality risk prediction models.

Machine learning (ML) is a subdiscipline of artificial 
intelligence that uses algorithms to identify patterns in 
large data sets with multiple variables that can be con-
tinuously improved with additional data, resulting in pat-
tern algorithms that can predict various outcomes [11]. It 
constructs models based on test inputs and correlates all 
or some predictor variables with the results to make data-
driven predictions or decisions [12]. In recent years, ML 
has been increasingly used in the medical field, especially 
in the cardiovascular field, as the availability of medical 
data continues to increase and computer analysis capa-
bilities continue to improve. Emerging research indicates 
that the introduction of ML models as a clinical tool to 
accurately predict the risk of death in ACS patients has 
the great potential [13]. However, the performance of dif-
ferent models tends to vary, and it is unclear whether ML 
models have robust performance in predicting the risk of 
death in ACS. Therefore, we performed this systematic 
evaluation and meta-analysis.

Methods
This meta-analysis was reported according to the crite-
ria of Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA 2020) [14]. Before 
the study initiation, the protocol was registered and 
approved in the PROSPERO International Prospective 
Systematic Evaluation Register (CRD42022322721).

Retrieval strategy
We extensively searched PubMed, Embase, Web of Sci-
ence, and Cochrane Library databases. Searches were 
conducted from database creation to March 12, 2022, 
with no language restrictions, to explore machine 
learning for predicting the risk of death in patients with 
ACS. We searched using a combination of MeSH (Med-
ical Subject Headings) terms and free-text terms. We 
used three sets of search terms, each of which had at 
least one word to match:

1. “acute coronary syndromes” “myocardial infarction” 
“ST-segment elevation myocardial infarction” “non-
ST-segment elevation myocardial infarction” and 
“unstable angina pectoris”;

2. “machine learning” “deep learning” “migration learn-
ing” “random forest” “artificial neural network” “sup-
port vector machine” “nomogram” “XGboost” “deci-
sion trees” and “predictive models”;

3. “death” “mortality” and survival”. (Additional file  1: 
Table S1 for specific retrieval strategy).

Inclusion and exclusion criteria
The inclusion criteria were as follows:

1. Participants with a precise diagnosis of ACS, includ-
ing STEMI, NSTEMI, and UA.

2. ML models and predictor variables were clearly 
described.

3. ML algorithms and predicted outcomes are provided. 
These outcome metrics focus on C-index, area under 
the curve (AUC), sensitivity, specificity, accuracy, 
confusion matrix, prediction model type, and critical 
predictors.

The exclusion criteria were as follows:

1. Conference abstracts, letters, editorials, systematic 
reviews or meta-analyses, consensus statements, and 
guidelines.

2. Studies where the time of death is unknown.
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3. The main interest is in assessing risk factors without 
constructing a mortality risk prediction model.

4. Studies for which the full text is not available.

Data extraction
Two reviewers (X–XZ and XW) constructed standard-
ized forms based on the Checklist for critical Appraisal 
and data extraction for systematic Reviews of predic-
tion Modelling Studies (CHARMS) [15]. They indepen-
dently extracted data from original research reports. 
Extracted data included study characteristics (first 
author, year of publication, study type, sample source, 
number of participants and number of events, time to 
death or follow-up), ML characteristics (external vali-
dation method, variable selection method, model type, 
predictors included in the final model and their num-
ber), reported outcomes (C-index, AUC, sensitivity, 
specificity, and accuracy) and methodological informa-
tion. In addition, if an article describes more than one 
model, we extract the data for each model separately. In 
articles examining the performance of the same predic-
tive model across outcomes or multiple timepoints, we 
retained the predictive model for the mentioned out-
come or timepoint as the primary analysis for the study.

Quality assessment
We assessed the risk of bias in reported prediction 
models using PROBAST, risk of a bias assessment tool 
designed to systematically evaluate diagnostic or prog-
nostic prediction models [16]. It contains 20 ques-
tions reflecting the quality bias of the original study 
from four domains: participants, predictors, outcomes, 
and statistical analysis. Each domain has several ques-
tions with responses of “yes” “probably yes” “no” “may 
or may not” or “no information” questions. A domain 
was considered low risk if it contained all questions 
with “yes” or “probably yes” answers, and the model 
was rated as low risk when all domains were consid-
ered low risk. A domain is regarded as high risk if it 
contains at least one question marked “no” or “probably 
no”. The model is considered high risk when at least one 
domain is regarded as high risk. A domain is consid-
ered an unclear risk if it contains at least one question 
indicated as uninformative. The overall risk of bias is 
considered unclear when at least one domain is consid-
ered unclear, and the other domains are at low risk of 
bias. Two investigators (X–XZ and LX–X) completed 
the assessment independently; discrepancies were dis-
cussed with a third party and resolved by consensus.

Outcomes indicators
Our outcome indicators for this systematic evalua-
tion are the C-index and accuracy of the mortality 
risk model. We can obtain the accuracy directly from 
the confusion matrix and indirectly from the sensitiv-
ity and specificity combined with the number of deaths 
and the total sample size.

Data analysis
We performed a random-effects model-based meta-
analysis to pool the C-index and accuracy of all included 
studies. We used the 95% confidence interval (CI) as 
the effect measure. For original studies that lacked con-
fidence intervals or standard errors for the C-index, we 
estimated them according to the formula proposed by the 
relevant study [17]. The formula follows: c is the reported 
C-statistic, n is the number of observed events, m is the 
total number of non-events, and m ∗  = n ∗  = ½(m + n)-
1. We used R4.2.0 (R Development Core Team, Vienna, 
http:// www.R- proje ct. org) in Metafor, Matrix, and Meta 
packages for all statistical analyses.

SE(c) ≈

√

c(1− c)[1+
n∗(1−c)
2−c

+ m∗c

1+c
]

mn

Fig. 1 Flow chart of literature search and selection

http://www.R-project.org
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Results
Literature screening results
The search identified a total of 28,084 articles, of which 
6,424 were duplicates. Subsequently, 20,588 irrelevant 
articles were excluded after screening titles and abstracts, 
leaving 1072 articles for full-text screening. The final 50 
eligible articles [18–67] evaluated the predictive effec-
tiveness of the ML algorithm-based prediction model for 
predicting the risk of death in patients with ACS. Figure 1 
shows the screening process.

Eligible studies and the characteristics
All included studies were published as research articles 
in peer-reviewed medical journals from 2006 to 2022. 
We noted a broadly upward trend in publication, with 
32 studies (64%) published since 2019, 18 studies (36%) 
published from 2006 to 2018, and no studies published 
before 2006. The 50 included studies involved 1,592,034 
participants, and we calculated mortality using a single-
arm meta-analysis: in-hospital mortality, 30-day mortal-
ity, 3- or 6-month mortality, and 1 year or more mortality 
were approximately 5.2% (95%CI 3.6–7.5), 6.5% (95%CI 
4.9–8.5), 6.3% (95%CI 2.4–15.3), 8.3% (95%CI5.9–11.5), 
respectively. (Additional file  1: Fig. S1 for specific out-
comes).These articles described a total of 216 ML mod-
els for predicting the risk of death in ACS, 119 of which 
were externally validated, involving logistic regres-
sion (LR), random forest (RF), artificial neural network 
(ANN), decision tree (DT), support vector machine 
(SVM), eXtreme Gradient Boosting (XGBoost), naive 
Bayesian (NB), adaptive boosting algorithm (AdaBoost), 
Bayesian Net classifier (BN), k-nearest neighbors algo-
rithm (KNN), linear discriminant analysis (LDA), and 
more than 12 common prediction models. LR (n = 74) is 
the most commonly used modeling method, followed by 
RF (n = 35), which may be due to LR’s excellent perfor-
mance in visualizing its model scores using nomograms. 
21 studies had samples from public databases, including 
the Medical Information Mart for Intensive Care III data-
base (MIMIC-III database) and multiple national acute 
myocardial infarction registry databases, 8 studies had 
samples from clinical trials, and 21 studies had samples 
from electronic health records. The key characteristics 
of the included studies are presented in Additional file 1: 
Table S2.

Quality assessment of the selected studies
We assessed the risk of bias for all developed or exter-
nally validated models according to PROBAST. Overall, 
ML models had a high risk of bias, mainly due to a large 

number of studies with subjects derived from retrospec-
tive case–control studies or without estimation of sample 
size according to the Events per variable (EPV) princi-
ple, thus not ensuring adequate sample size. In addition, 
59 models were not externally validated. Moreover, the 
risk models covered mostly chose univariate + stepwise 
regression, LASSO regression, and the importance rank-
ing of the models’ features (e.g., RF, SVM) in terms of 
feature selection. We summarized the risk of bias of the 
models by the four domains of PROBAST (Fig. 2).

A meta‑analysis of prediction model C‑index and actual 
prediction accuracy
C‑index for in‑hospital mortality
The training cohort of 19 studies [18, 19, 22, 23, 26, 27, 
29, 32, 34, 38, 40, 44–46, 54, 59–61, 64] developed 69 ML 
models predicting in-hospital mortality with a combined 
C-index of 0.8491 (95% CI 0.8337–0.8649). The valida-
tion cohort of 15 studies [18, 19, 23, 26–28, 32, 38, 45, 46, 
54, 59–61, 64] reported 53 ML models predicting in-hos-
pital mortality with a combined C-index of 0.8633 (95% 
CI 0.8467–0.8802) (Table 1) (Additional file 1: Fig. S2A).

C‑index for 30‑day mortality
The training cohort of 10 studies [20, 30, 41, 49–52, 64, 
65] developed 30 ML models predicting 30-day mortal-
ity with a combined C-index of 0.8208 (95% CI 0.7940–
0.8485). The validation cohort of 5 studies [30, 35, 50, 52, 
64] reported 17 ML models predicting 30-day mortal-
ity with a combined C-index of 0.8296 (95% CI 0.8134–
0.8462) (Table 2) (Additional file 1: Fig. S2B).

C‑index for 3‑ or 6‑month mortality
Twenty ML models predicting 3- or 6-month mortality 
were developed in the training cohort of 6 studies [23, 24, 

Fig. 2 Risk of bias assessment (using PROBAST) based on four 
domains
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26, 49, 56, 66] with a combined C-index of 0.8227 (95% 
CI 0.8001–0.8460). The validation cohort of 5 studies 
[23, 24, 39, 56, 66] reported 8 ML models predicting 3- 
or 6-month mortality with a combined C-index of 0.8205 
(95% CI 0.7881–0.8541) (Table 3) (Additional file 1: Fig. 
S2C).

C‑index for 1 year or more mortality
The training cohort of 19 studies [23, 25–27, 31, 33, 36, 
37, 42, 43, 47, 48, 52, 55, 57, 62–64, 67] developed 58 ML 
models predicting 1 year or more mortality with a com-
bined C-index of 0.8352 (95% CI 0.8214–0.8493). The 
validation cohort of 11 studies [21, 23, 25, 26, 33, 42, 47, 

Table 1 C-index for in-hospital mortality

No Model Training cohort Validation cohort

Number of models C‑index (95% CI) Number of models C‑index (95% CI)

1 LR 25 0.8603 [0.8330; 0.8886] 21 0.8576 [0.8284; 0.8878]

2 RF 9 0.8370 [0.7985; 0.8773] 12 0.8501 [0.8237; 0.8773]

3 ANN 10 0.8487 [0.8190; 0.8795] 2 0.9200 [0.9025; 0.9379]

4 DT 6 0.7957 [0.7390; 0.8567] 5 0.7691 [0.6674; 0.8864]

5 SVM 8 0.8491 [0.8048; 0.8958] 6 0.8737 [0.8551; 0.8927]

6 XGBoost 6 0.8953 [0.8526; 0.9401] 4 0.9295 [0.9094; 0.9500]

7 NB 1 0.8750 [0.8601; 0.8901] 2 0.8539 [0.8251; 0.8837]

8 KNN 1 0.7560 [0.7217; 0.7919] 1 0.9500 [0.9302; 0.9702]

9 Other 3 0.8416 [0.7825; 0.9051]

10 Overall 69 0.8491 [0.8337; 0.8649] 53 0.8633 [0.8467; 0.8802]

Table 2 C-index for 30-day mortality

No Model Training cohort Validation cohort

Number of models C‑index (95% CI) Number of models C‑index (95% CI)

1 LR 7 0.8249 [0.7952; 0.8556] 6 0.8298 [0.8135; 0.8464]

2 RF 3 0.9051 [0.8914; 0.9191] 5 0.8118 [0.7903; 0.8340]

3 ANN 3 0.8478 [0.8262; 0.8699] 2 0.8181 [0.7828; 0.8549]

4 DT 4 0.7831 [0.6766; 0.9063] 1 0.7800 [0.7701; 0.7901]

5 SVM 3 0.8919 [0.8752; 0.9089] 3 0.8852 [0.8635; 0.9075]

6 NB 4 0.7992 [0.7429; 0.8598]

7 AdaBoost 1 0.8700 [0.8405; 0.9005]

8 BN 2 0.7712 [0.7351; 0.8091]

9 LDA 1 0.8410 [0.8069; 0.8766]

10 Other 2 0.6400 [0.5944; 0.6890]

11 Overall 30 0.8208 [0.7940; 0.8485] 17 0.8296 [0.8134; 0.8462]

Table 3 C-index for 3- or 6-month mortality

No Model Training cohort Validation cohort

Number of models C‑index (95% CI) Number of models C‑index (95% CI)

1 LR 7 0.8334 [0.8046; 0.8632] 3 0.8362 [0.7974; 0.8768]

2 RF 3 0.8304 [0.7542; 0.9143] 1 0.8500 [0.8450; 0.8550]

3 ANN 5 0.8436 [0.8041; 0.8850] 3 0.8054 [0.7340; 0.8838]

4 DT 1 0.7700 [0.7406; 0.8006] 1 0.7800 [0.7221; 0.8425]

5 SVM 2 0.7031 [0.6336; 0.7803]

6 XGBoost 2 0.8119 [0.7599; 0.8675]

7 Overall 20 0.8227 [0.8001; 0.8460] 8 0.8205 [0.7881; 0.8541]
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48, 52, 57, 64] reported 41 ML models predicting 1 year 
or more mortality with a combined C-index of 0.8197 
(95% CI 0.8042–0.8354) (Table 4) (Additional file 1: Fig. 
S2D).

Accuracy for in‑hospital mortality
The accuracy of 42 ML models to predict in-hospital 
mortality was reported in the training cohort of 15 stud-
ies [18, 19, 22, 23, 25, 27, 34, 38, 40, 44, 53, 54, 59–61] 
with a combined accuracy of 0.8434 (95% CI 0.8166–
0.8669). The validation cohort of 13 studies [18, 19, 
26–28, 38, 46, 53, 54, 59–61, 64] reported the accuracy 
of 45 ML models to predict in-hospital mortality with a 
combined accuracy of 0.8569 (95% CI 0.8411–0.8715) 
(Table 5) (Additional file 1: Fig. S2E).

Accuracy for 30‑day mortality
The training cohort of 4 studies [20, 51, 52, 65] reported 
the accuracy of 17 ML models to predict 30-day mortal-
ity with a combined accuracy of 0.8257 (95% CI 0.7694–
0.8707). The validation cohort of 2 studies [30, 64] 
reported the accuracy of 11 ML models to predict 30-day 
mortality with a combined accuracy of 0.8282 (95% CI 
0.7922–0.8591) (Table 6) (Additional file 1: Fig. S2F).

Accuracy for 3‑ or 6‑month mortality
The training cohort of 3 studies [23, 24, 26] reported 
the accuracy of 15 ML models to predict 3- or 6-month 
mortality, with a combined accuracy of 0.7089 (95%CI 
0.6737–0.7418). The validation cohort of 1 study [24] 
reported the accuracy of 2 ML models to predict 3- or 
6-month mortality, with a combined accuracy of 0.7303 
(95%CI 0.7184–0.7418) (Table 7) (Additional file 1: Fig. 
S2G).

Table 4 C-index for 1 year or more mortality

No Model Training cohort Validation cohort

Number of models C‑index (95% CI) Number of models C‑index (95% CI)

1 LR 23 0.8266 [0.8070; 0.8466] 11 0.8110 [0.7974; 0.8249]

2 RF 7 0.8623 [0.8284; 0.8975] 8 0.8127 [0.7898; 0.8362]

3 ANN 5 0.8172 [0.7804; 0.8557] 6 0.8454 [0.7989; 0.8946]

4 DT 8 0.8281 [0.7865; 0.8719] 3 0.7868 [0.7383; 0.8384]

5 SVM 7 0.8195 [0.7814; 0.8594] 6 0.7972 [0.7491; 0.8484]

6 XGBoost 3 0.8619 [0.8051; 0.9226] 2 0.8075 [0.7776; 0.8385]

7 NB 2 0.8930 [0.8621; 0.9249]

8 AdaBoost 1 0.9100 [0.9001; 0.9201] 3 0.8905 [0.8248; 0.9615]

9 KNN 1 0.7840 [0.7498; 0.8198]

10 Other 1 0.9240 [0.9190; 0.9290] 2 0.8869 [0.8581; 0.9166]

11 Overall 58 0.8352 [0.8214; 0.8493] 41 0.8197 [0.8042; 0.8354]

Table 5 Accuracy for in-hospital mortality

No Model Training cohort Validation cohort

Number of models Accuracy (95% CI) Number of models ACC (95% CI)

1 LR 15 0.8302 [0.7800; 0.8709] 16 0.8487 [0.8250; 0.8697]

2 RF 6 0.8106 [0.7462; 0.8617] 12 0.8881 [0.8639; 0.9084]

3 ANN 3 0.8864 [0.7927; 0.9409] 2 0.8651 [0.8364; 0.8893]

4 DT 4 0.8824 [0.8094; 0.9299] 2 0.8464 [0.7164; 0.9232]

5 SVM 4 0.7902 [0.7333; 0.8376] 6 0.8199 [0.7772; 0.8559]

6 XGBoost 6 0.8679 [0.8033; 0.9136] 4 0.8505 [0.8332; 0.8663]

7 NB 1 0.7984 [0.7892; 0.8073] 2 0.7615 [0.7342; 0.7869]

8 KNN 1 0.9112 [0.8973; 0.9233]

9 Other 3 0.8800 [0.7551; 0.9458]

10 Overall 42 0.8434 [0.8166; 0.8669] 45 0.8569 [0.8411; 0.8715]
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Accuracy for 1 year or more mortality
The training cohort of 12 studies [23, 26, 31, 33, 36, 
37, 43, 48, 52, 55, 62, 63] reported the accuracy of 31 
ML models predicting 1 year or more mortality with a 

combined accuracy of 0.7697 (95% CI 0.7360–0.8002). 
The validation cohort of 7 studies [21, 26, 33, 47, 48, 57, 
64] reported the accuracy of 33 ML models predicting 
1 year or more mortality with a combined accuracy of 

Table 6 Accuracy for 30-day mortality

No Model Training cohort Validation cohort

Number of models Accuracy (95% CI) Number of models ACC (95% CI)

1 LR 4 0.7893 [0.6364; 0.8891] 3 0.8095 [0.7946; 0.8236]

2 RF 1 0.8429 [0.8289; 0.8560] 5 0.8533 [0.7843; 0.9029]

3 ANN 1 0.7669 [0.7623; 0.7714]

4 DT 3 0.8209 [0.6871; 0.9054]

5 SVM 3 0.8014 [0.7862; 0.8157]

6 NB 3 0.8845 [0.8104; 0.9321]

7 AdaBoost 1 0.8088 [0.7937; 0.8230]

8 BN 2 0.9212 [0.9068; 0.9335]

9 Other 2 0.6536 [0.5015; 0.7797]

10 Overall 17 0.8257 [0.7694; 0.8707] 11 0.8282 [0.7922; 0.8591]

Table 7 Accuracy for 3- or 6-month mortality

No Model Training cohort Validation cohort

Number of models Accuracy (95%CI) Number of models ACC (95% CI)

1 LR 5 0.6977 [0.6622; 0.7310] 1 0.7218 [0.7069; 0.7363]

2 RF 2 0.7440 [0.6572; 0.8151]

3 ANN 3 0.7079 [0.6674; 0.7454] 1 0.7387 [0.7240; 0.7529]

4 DT 1 0.6969 [0.6824; 0.7110]

5 SVM 2 0.7233 [0.4934; 0.8752]

6 XGBoost 2 0.6937 [0.6446; 0.7387]

7 Overall 15 0.7089 [0.6737; 0.7418] 2 0.7303 [0.7184; 0.7418]

Table 8 Accuracy for 1 year or more mortality

No Model Training cohort Validation cohort

Number of models Accuracy (95%CI) Number of models ACC (95% CI)

1 LR 12 0.7410 [0.7005; 0.7778] 8 0.7433 [0.7128; 0.7717]

2 RF 4 0.7982 [0.6922; 0.8744] 8 0.8032 [0.7253; 0.8632]

3 ANN 3 0.7481 [0.7252; 0.7697] 4 0.7995 [0.7004; 0.8718]

4 DT 4 0.7805 [0.6733; 0.8598] 1 0.7580 [0.7521; 0.7638]

5 SVM 2 0.6147 [0.5908; 0.6381] 6 0.7105 [0.6070; 0.7959]

6 XGBoost 3 0.8261 [0.7011; 0.9058] 2 0.7431 [0.6838; 0.7946]

7 NB 1 0.8698 [0.8499; 0.8874]

8 AdaBoost 1 0.8657 [0.8603; 0.8709] 2 0.8261 [0.7392; 0.8884]

9 KNN 1 0.8304 [0.8085; 0.8502]

10 Other 2 0.9370 [0.9208; 0.9501]

11 Overall 31 0.7697 [0.7360; 0.8002] 33 0.7837 [0.7455; 0.8175]
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0.7837 (95%CI 0.7455–0.8175) (Table  8) (Additional 
file 1: Fig. S2H).

Predictive variables for risk of death in ACS
To clarify the variables with the greatest predictive power 
in ML models, the data were further examined and 
counted, and 27 ML prediction models (10.96%) were 
found not to specify the predictors used by the model. 
Age was the most widely used predictor for short-term 
and long-term mortality prediction. Sex, systolic blood 
pressure, heart rate, serum creatinine, Killip classifica-
tion, diastolic blood pressure, glucose, and hemoglobin 
were important predictors, all ranking in the top 15 pre-
dictor variables. We listed the most common predictors 
of ML models used to predict different times of death in 
ACS patients (Fig. 3, top 15).

Discussion
Our systematic review included 50 original studies and 
reported 216 ML mortality risk prediction models con-
structed based on large samples. We found that (1) ML 
models predicting death in ACS patients at different 
times showed a relatively excellent prediction with a good 
composite C-index and accuracy; (2) the specific type of 
model and the variables included in the model severely 
affected the prediction of the model, with specific ML 

models predicting death in ACS patients showing excel-
lent performance; (3) age, sex, systolic blood pressure, 
serum creatinine, Killip classification, heart rate, dias-
tolic blood pressure, blood glucose, and hemoglobin were 
commonly used predictors, with age being the most com-
monly used and important predictor variable described.

ACS is a leading cause of death worldwide, and rapid 
identification of high-risk patients remains unmet clini-
cal needs. For this purpose, several risk scores have 
been developed, among which the GRACE risk score 
is one of the best validated predictive tools. However, 
this score was developed based on traditional statisti-
cal methods that were useful and robust [13] but had 
inherent limitations. This limitation limits their ability 
to handle large data sets with multiple variables and 
samples [68]. The chosen predictor variables are run the 
same way for each individual and uniformly across the 
range [13]. There are non-linear relationships and com-
plex interactions between ACS risk factors, and large 
population-level studies can provide critical insights 
into ACS risk factors [69]. Therefore, the inherent char-
acteristics of traditional statistical methods may lead to 
low model predictive power. ML is an area of artificial 
intelligence that is part of a broader approach to data 
analysis [68]. Unlike traditional predictive models that 
use selected variables for computation, ML algorithms 

Fig. 3 A variables of in-hospital mortality; B variables of 30-day mortality; C variables of 3- or 6-month mortality; D variables of 1 year or more 
mortality
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can easily combine many variables while capturing 
complex relationships between variables [69, 70]; and 
search for the best fit randomly or deterministically 
according to different algorithms 13 to construct robust 
prediction models. Most importantly, ML algorithms 
can better describe the complexity and unpredictability 
of human physiology in many cases [70]. These advan-
tages make ML technology suitable for the medical 
field, especially for outcome prediction. Recent studies 
have shown that ML algorithms outperform traditional 
statistical modeling methods [13]. Our present sys-
tematic review supports the above view, showing that 
the ML algorithm-based prediction model has a more 
desirable integrated C-index and accuracy.

To visualize the contribution of each characteristic to 
the risk of occurrence of death in ACS, we calculated the 
importance of each characteristic. We identified nine 
variables commonly used to predict short- and long-term 
mortality in patients with ACS, including five variables 
from the GRACE score (age, systolic blood pressure, 
serum creatinine, Killip classification, heart rate) and 
four new variables (sex, diastolic blood pressure, blood 
glucose, and hemoglobin). These parameters describe 
non-modifiable risk factors and different pathophysi-
ological contexts, such as hemodynamics, cardiovas-
cular metabolism, and cardiomyocyte injury. Existing 
theories and studies also support these risk factors. Age 
was a well-established predictor and the most commonly 
used predictor variable found in our current study. Age-
related pathological changes in the vascular system play a 
key role in morbidity and mortality in the elderly. As we 
age, changes in cardiovascular structure, function, and 
phenotype accelerate the progression of coronary artery 
disease, so older patients have more severe lesions and a 
higher risk of death [71].

There are gender differences in the outcomes of ACS 
patients. Studies have consistently shown that women 
with ACS have poorer short- and long-term outcomes 
than men, with a disproportionate risk of death [72, 73]. 
Female patients with ACS have different risk factor pro-
files and clinical presentations than male patients. In 
general, female ACS patients have a higher prevalence of 
cardiovascular risk factors, such as diabetes, hyperten-
sion, and psychosocial risk factors, such as depression 
[74]; more atypical symptoms, such as neck pain, fatigue, 
and dyspnea [75]; longer duration of ischemia due to 
pre-hospital delays, evidence-based diagnosis and inad-
equate treatment [76]; as well as a high rate of complica-
tions during hemodynamic reconstruction [77]. All of the 
above contribute to the high risk of death in women with 
ACS.

Independent of pre-existing metabolic dysregula-
tion in diabetes, hyperglycemia at admission to ACS is 

associated with poor outcomes, regardless of diabetes 
status [78]. The mechanisms underlying the association 
between hyperglycemia and increased mortality in ACS 
patients are multifactorial. Increased local and systemic 
inflammatory responses [79], altered platelet function 
and thrombo-fibrinolytic system [80], increased oxidative 
stress [81], endothelial dysfunction [82], arrhythmic ten-
dencies [83], and impaired myocardial contractility [84], 
all ultimately lead to increased atherosclerotic burden 
and plaque instability, and an increased risk of death.

We found hemoglobin to be a significant predictor of 
death in ACS. Recent studies have consistently shown 
that anemia on admission is always associated with 
poorer outcomes in ACS, as evidenced by increased 
mortality at different observed timepoints [85, 86]. An 
imbalance in myocardial oxygen supply and demand 
is necessary to develop ACS. Low hemoglobin levels 
worsen the myocardial ischemic injury by reducing the 
oxygen supply to the damaged myocardium. In contrast, 
increased myocardial oxygen demand exacerbates this 
imbalance due to the need for higher cardiac output to 
maintain adequate systemic oxygen supply [87]. Other 
plausible explanations are the reduced number of func-
tionally impaired peripheral endothelial progenitor cells 
and impaired vascular healing capacity in ACS patients 
with low hemoglobin levels [88]. In addition, stud-
ies have shown that the inflammatory factor C-reactive 
protein(CRP) is negatively correlated with hemoglobin 
levels in patients with ACS, which may further increase 
the risk of death [89].

The present study found that LR was currently the 
most widely used modeling method in ACS mortality risk 
prediction models. It performed better in mortality risk 
models across time and even sometimes better than oth-
ers, indicating the importance of valid predictors. There-
fore, the development or updating of prediction models 
should be inclined to incorporate valid, easily collected, 
minimally invasive predictors.

Limitations and strengths
Although the current results indicate that the predic-
tive ability of ML models appears satisfactory, there are 
some methodological flaws or limitations to the inclu-
sion of the original study. First, the ML models with dif-
ferent times of death were combined separately in the 
current study, and their discriminatory performance 
was assessed according to C-index and accuracy. Still, 
most risk models were not constructed with overfitting 
in mind. Second, a large amount of risk model data was 
derived from retrospective case–control studies and pri-
marily generated training and validation cohorts at a cer-
tain ratio (e.g., 7/3) without external validation using an 
utterly new validation cohort. In addition, the modeling 
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methods of most studied ML models are not clearly 
described, such as insufficient disclosure of information 
on hyperparameter tuning and external validation of 
ML algorithms. The development of predictive models 
helps in clinical decision-making and resource allocation. 
However, the risk of bias, reproducibility, and potential 
usefulness of predictive models can only be fully assessed 
if the modeling steps of predictive models are adequately 
and clearly reported [90]. The transparent reporting of 
a multivariable prediction model for individual progno-
sis or diagnosis (TRIPOD) statement presents a list of 22 
items, thereby increasing the transparency of predictive 
modeling  studies91. We strongly recommend detailed and 
standardized reporting of predictive models according to 
the TRIPOD statement, which not only helps to improve 
the quality of ML models but also helps to assess their 
reliability and increase their credibility.

Although we acknowledge the limitations of the origi-
nal study, we believe that our meta-analysis still has some 
merit and clinical relevance. First, this is the first meta-
analysis to systematically assess the predictive value of 
ML models for death at different times in patients with 
ACS. Second, we ranked the model variables of the origi-
nal study according to importance, providing the most 
valuable variables for predicting ACS death, comple-
menting variables not included in the GRACE risk score, 
which can guide further development of mortality risk 
models. In addition, the original studies included in our 
systematic review used different authoritative databases, 
including the MIMIC-III database and multiple national 
registry databases for acute myocardial infarction. The 
extensive use of different databases adds to some extent 
to the reliability of our results.

Conclusion
Risk stratification of ACS patients is crucial for the early 
identification of high-risk patients to provide effective 
interventions. The ML model is a good prediction tool 
for predicting the long-term and short-term mortal-
ity risk in ACS patients. The commonly used predictors 
were age, sex, systolic blood pressure, serum creatinine, 
Killip classification, heart rate, diastolic blood pressure, 
blood glucose, and hemoglobin. These can guide future 
risk scoring systems’ development or update.
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