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Abstract 

Background  Neonatal sepsis (NS), a life-threatening condition, is characterized by organ dysfunction and is the most 
common cause of neonatal death. However, the pathogenesis of NS is unclear and the clinical inflammatory markers 
currently used are not ideal for diagnosis of NS. Thus, exploring the link between immune responses in NS patho-
genesis, elucidating the molecular mechanisms involved, and identifying potential therapeutic targets is of great 
significance in clinical practice. Herein, our study aimed to explore immune-related genes in NS and identify potential 
diagnostic biomarkers. Datasets for patients with NS and healthy controls were downloaded from the GEO database; 
GSE69686 and GSE25504 were used as the analysis and validation datasets, respectively. Differentially expressed 
genes (DEGs) were identified and Gene Set Enrichment Analysis (GSEA) was performed to determine their biological 
functions. Composition of immune cells was determined and immune-related genes (IRGs) between the two clus-
ters were identified and their metabolic pathways were determined. Key genes with correlation coefficient > 0.5 and 
p < 0.05 were selected as screening biomarkers. Logistic regression models were constructed based on the selected 
biomarkers, and the diagnostic models were validated.

Results  Fifty-two DEGs were identified, and GSEA indicated involvement in acute inflammatory response, bacte-
rial detection, and regulation of macrophage activation. Most infiltrating immune cells, including activated CD8 + T 
cells, were significantly different in patients with NS compared to the healthy controls. Fifty-four IRGs were identified, 
and GSEA indicated involvement in immune response and macrophage activation and regulation of T cell activation. 
Diagnostic models of DEGs containing five genes (PROS1, TDRD9, RETN, LOC728401, and METTL7B) and IRG with one 
gene (NSUN7) constructed using LASSO algorithm were validated using the GPL6947 and GPL13667 subset datasets, 
respectively. The IRG model outperformed the DEG model. Additionally, statistical analysis suggested that risk scores 
may be related to gestational age and birth weight, regardless of sex.
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Conclusions  We identified six IRGs as potential diagnostic biomarkers for NS and developed diagnostic models for 
NS. Our findings provide a new perspective for future research on NS pathogenesis.

Keywords  Neonatal sepsis, Immune infiltration, Diagnosis model, Biomarkers, Logistic regression

Background
Sepsis is a life-threatening organ dysfunction caused by 
a dysregulated host response to infection, mainly mani-
fested as an inflammatory response and immunosup-
pression, and is currently the main cause of death in 
critically ill patients worldwide [1]. In the US, the present 
incidence of sepsis is approximately three per thousand, 
and severe sepsis kills at least 200,000 people annually 
[2]. Severe sepsis and septic shock account for 30–50% of 
hospital-reported deaths around the world [3]. Neonatal 
sepsis (NS) refers to bacteraemia with systemic infection 
occurring within the first month of life [4]. It is the most 
common cause of neonatal death, and its associated mor-
tality is currently a major health concern worldwide [5]. 
NS can be divided into early- and late-onset, with 72  h 
after birth as the demarcation between the two. Neona-
tal infections account for an estimated 26% of under-five 
deaths [6]. In low- and middle-income countries, the 
reported incidence of NS in 2022 was 17.7% (5425/30577) 
and the mortality rate was 16.2% (877/5425) [7]. Devel-
opment of primary and secondary prevention strategies 
based on different types of infections has become a hot 
area of NS-related research in recent decades [8].

Immune and inflammatory responses play important 
roles in the pathogenesis of NS. Currently, the commonly 
used clinical inflammatory markers are interleukin-6 (IL-
6), C-reactive protein (CRP), and procalcitonin (PCT). 
IL-6 is a cytokine produced by mononuclear phago-
cytes, endothelial cells, fibroblasts, and decidual, chori-
onic, amniotic, and trophoblast cells upon stimulation 
with microbial products [9]. CRP, a protein synthesized 
in the liver, is currently used as an important biomarker 
to assess the severity and prognosis of NS [10]. PCT is 
produced by the parathyroid and neuroendocrine cells 
and acts as a precursor of calcitonin, which was formally 
proposed as a diagnostic marker for NS [11–13] in 2008 
and can increase more than 1000-fold during active 
infection. However, these are not ideal for the diagnosis 
and prognosis of NS [14]. In the early stages of NS, vari-
ous immune cells (such as monocytes and macrophages) 
and released inflammatory mediators and cytokines can 
induce an excessive inflammatory response, whereas in 
the late stage, immunosuppression is predominant [15, 
16]. Exploring the link between immune responses in the 
pathogenesis of NS, elucidating the molecular mecha-
nisms involved, and identifying potential therapeutic tar-
gets will be of great significance in clinical practice.

Bioinformatic analysis helps to understand the under-
lying mechanisms of NS by screening gene expression 
datasets. In the present study, differentially expressed 
genes (DEGs) between NS and healthy controls were 
identified through bioinformatic analysis, and the under-
lying pathology of NS was explored through detection of 
the immune microenvironment, clustering, and protein–
protein network analysis. In addition, we constructed a 
diagnostic model of six identified DEGs using least abso-
lute shrinkage and selection operator (LASSO) regres-
sion analysis. Finally, we confirmed the effectiveness of 
the diagnostic model of immune-related genes (IRGs) 
using the GSE25504 dataset. In the present study, we 
explored the pathogenesis of NS from the perspectives of 
immunity and inflammation, which can identify potential 
targets for treating NS.

Results
Gene expression features of NS samples
The DEGs between NS and normal samples are shown in 
Fig. 1. t-Distributed stochastic neighbour embedding (t-SNE) 
was conducted to evaluate the differences in gene expres-
sion between NS and normal samples (Fig. 1a, see Additional 
file 1: Table S1). Compared with normal samples, 52 DEGs 
were found in NS samples, most of which were up-regulated 
(Fig. 1b). Heatmaps were conducted to visualize the 52 DEGs 
(Fig. 1c). Gene Set Enrichment Analysis (GSEA) analysis was 
also carried out to explore the functional pathways between 
NS and normal samples, and the results indicated that the 
DEGs were considerably enriched in acute inflammatory 
response, detection of bacterium, and regulation of mac-
rophage activation (Fig. 1d).

Immunological characteristics of NS samples
To explore the immune microenvironment in patients 
with NS, the concentration of immune cells was quanti-
fied. As shown in Fig. 2a, most of the infiltrating immune 
cells showed significant differences in patients with NS, 
which was also demonstrated by hierarchical clustering 
analysis (Fig. 2b) and t-SNE plot (Fig. 2d). In addition, the 
concentration of most of the immune cells were consid-
erably correlated (Fig. 2c). The all detected immune cells 
see Additional file 2: Table S2.

The IRGs in patients with NS were further explored. 
UMAP plot showed that there were significant differ-
ences in gene signatures between the two clusters divided 
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by immune cell composition (Fig.  3a). Compared with 
normal samples, 54 IRGs were found, with 30 down-reg-
ulated and 24 up-regulated genes (Fig. 3b, see Additional 
file  3: Table  S3). Heatmaps were generated to visualize 
IRG expression in the two clusters (Fig.  3c). GSEA was 
carried out, and the results indicated that the functions of 
IRGs were considerably enriched in activation of immune 
response, macrophage activation, and regulation of T cell 
activation (Fig. 3d).

Significance of gene expression signatures in NS diagnosis
After filtering gene signatures with random forest 
method, 20 DEGs and 15 IRGs were used to build the 

diagnostic models, as shown in Fig.  4a and b. LASSO 
algorithm was used to construct a diagnostic model to 
classify the training dataset into NS and control groups. 
Two diagnostic models were built, respectively, with DEG 
and IRG signatures (see Additional file 4: Table S4, Addi-
tional file 5: Table S5). For the DEG model, 5 regulators 
(PROS1, TDRD9, RETN, LOC728401, and METTL7B) 
and corresponding coefficients were identified with 
minimum fivefold cross-validated mean square error in 
GSE69686. For the IRG model, there was only one regu-
lator NSUN7. The risk score for each patient was calcu-
lated as the product of coefficient and the sum of gene 
expression. As shown in Fig.  4c, the risk scores of gene 

Fig. 1  Gene expression characteristics in neonatal sepsis (NS) samples. a Dimension reduction algorithm was used to evaluate the differences 
between patients with NS and normal samples. b The differentially expressed genes (DEGs) in total RNA expression profiles between NS and 
normal samples were visualized by Vioplot. c Heatmaps presented the expression of all DEGs. d Gene Set Enrichment Analysis (GSEA) analysis was 
performed to evaluate the differences of the biological states between NS and normal samples
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signatures could robustly predict diagnosis for patients 
in both models. Additionally, bootstrap method was 
adopted to confirm the robustness of the two diagnostic 
models. The results of 1000 repeated tests are shown in 
Fig. 4d.

In addition, we evaluated the effectiveness of the two 
diagnostic models in the validation dataset GSE25504 

(platform GPL6947 as validation dataset 1 and platform 
GPL13667 as validation dataset 2). It should be noted 
that the DEG model’s regulator LOC728401 is missing in 
both validation datasets; however, the coefficient is much 
smaller than other regulators (about 1/5) and could be 
ignored. Receiver operating characteristic (ROC) curve 
and bootstrap methods were used again (Fig. 5). The results 

Fig. 2  Characteristics of the immune cell microenvironment in NS. a Differences in immune cell compositions between NS and normal samples. 
b The differences of immune cell compositions between NS and normal samples were visualized by heatmap; grouped by age. c The correlation 
of the immune cells was visualized by corrplot. d Dimension reduction algorithm was conducted to evaluate the differences in immune cell 
compositions between NS and normal samples. t-SNE, t-distributed stochastic neighbour embedding
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showed that both models were applicable to validation 
dataset 1 (Fig. 5a, b), and the IRG model was more robust 
than the DEG model in validation dataset 2, because it had 
only one gene signature (Fig. 5c, d).

Finally, the relationship between risk scores of the diag-
nostic models and phenotype in the validation datasets was 
analysed (Table 1). The results showed that the risk scores 
were probably related to gestational age and birthweight 
and not to sex.

Discussion
NS, a life-threatening condition, can lead to microcircu-
latory disturbances, immune dysfunction, and tissue and 
organ dysfunction, and is becoming the most common 

cause of neonatal death worldwide [4]. Hence, NS and 
its related mortality and complications represent a major 
global health concern [2–6].

Impaired inflammatory immune responses during the 
onset and recovery phases are considered a hallmark 
of severe NS. Abnormal activation of macrophages and 
neutrophils occurs in the early stage of NS [17], and the 
recovery period is mainly characterized by immuno-
suppression. Sepsis is characterized by upregulation of 
CD4 + and CD8 + T cells, T helper 17 cells, and regula-
tory T cells [16], lymphopenia, and loss of immune func-
tion. Microarray analysis has indicated abnormalities 
in the expression of immune-related genes in children 
with sepsis, including FYN, FBL, ATM, WDR75, FOXO1, 

Fig. 3  Gene expression characteristics of the two immune-related clusters. a Dimension reduction algorithm was used to evaluate the differences 
between cluster 1 and cluster 2. b Immune-related DEGs (IRGs) of total RNA expression profile between cluster 1 and cluster 2 were visualized by 
Vioplot. c Heatmaps presented the expression of all IRGs. d GSEA was performed to evaluate the differences of the biological states between cluster 
1 and cluster 2
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and ITK [18]. Alterations in gene expression related to 
innate immunity have also been reported in NS [19, 20]. 
The innate immune response in NS is driven by genes 
involved in innate immunity, such as IL1R2, ILRN, and 
SOCS3 [21]. The risk of developing NS is also associ-
ated with polymorphisms in exon 1 of mannose-binding 
lectin and Toll-like receptor 4 [22]. Based on the immu-
nomodulatory effects of rhIL-7 in sepsis [23], targeting T 
cell immunometabolism in early or late sepsis has great 
therapeutic potential [16]. However, the pathogenesis of 
NS has not yet been fully established and needs further 
understanding.

In the present study, bioinformatic analysis and GSEA 
of DEGs in the merged dataset showed significant enrich-
ment of immune and inflammatory responses, including 

acute inflammatory response, bacterial detection (includ-
ing coagulase-negative Staphylococcus, Enterococcus 
species, et  al. [19, 24]), and regulation of macrophage 
activation, which play important roles in the patho-
genesis of NS. Most infiltrating immune cells were sig-
nificantly different in patients with NS compared to the 
control group; activated CD8 + T and B cells, CD56 nat-
ural killer cells, naïve dendritic cells, and T helper cells 
were significantly enriched in the sepsis group, whereas 
activated dendritic cells, memory CD8 + T cells, mac-
rophages, plasmacytoid dendritic cells, and neutrophils 
were significantly enriched in the control group. GSEA 
of IRGs showed that their functions were significantly 
enriched in the activation of immune response, mac-
rophage, and the regulation of T cells. The diagnostic 

Fig. 4  Construction of NS diagnostic models based on DEGs and IRGs. a Top 20 DEGs sorted by mean decrease accuracy based on random forest 
method. b Top 15 IRGs sorted by mean decrease accuracy based on random forest method. c Receiver operating characteristic (ROC) curves 
were calculated to evaluate the diagnostic efficiency of the DEG and IRG gene signatures with the training dataset. d AUC values of both models 
obtained by 1000 repeated tests based on bootstrap methods were shown in the density plot to validate the conclusions. AUC, area under the 
curve; CI, confidence interval; DEG, differentially expressed gene; IRG, immune-related gene
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model of DEG containing five genes (PROS1, TDRD9, 
RETN, LOC728401, and METTL7B) and that of IRG 
with one gene (NSUN7) were constructed using LASSO 
algorithm, and their diagnostic performance verified by 
correlation and logical analyses showed good area under 
the curve (AUC) scores. Additionally, the DEG and IRG 
models were verified in the GPL6947 and GPL13667 
sub-datasets, respectively. The IRG model performed 
better than the DEG model. The IRG model contained 
only NSUN7 suggesting that this gene may be important 
for the diagnosis and treatment of NS. Finally, statistical 
analysis of the validation datasets suggested that the risk 
scores may be related to gestational age and birth weight, 
regardless of sex.

Current knowledge of human B and T cells in sepsis is 
sparse, discordant, and at variance with findings reported 
from animal models. Our research find the activated B 
cell and activated CD8 T cells showed lesser expression in 
sepsis cases compared to control. These data are in agree-
ment with those published in previous studies. Hotchkiss 
et al. [25] demonstrated that patients with sepsis show a 
severe B-cell deficiency. Monserrat et al. [17] pointed that 
B-cell lymphopenia affects the B-cell subsets heterogene-
ously, with marked reduction of CD19 + CD23 + B cells 
(activated regulatory B cells) and CD19 + CD5 + B cells 
(natural responder B-1a cells), but with normal num-
bers of CD19 + CD69 + early activated B cells. Similar 
findings were reported by other groups [26]. Meanwhile 

Fig. 5  Evaluation of NS diagnostic models based on DEGs and IRGs. a ROC curves were calculated to evaluate the diagnostic efficiency of the 
DEG and IRG gene signatures with the validation dataset 1. b AUC values of both models obtained by 1000 repeated tests based on bootstrap 
methods were shown in the density plot to validate the conclusions. c ROC curves were calculated to evaluate the diagnostic efficiency of the 
DEG and IRG signatures with the validation dataset 2. d AUC values of both models obtained by 1000 repeated tests based on bootstrap methods 
were shown in the density plot to validate the conclusions. AUC​ area under the curve, CI confidence interval, DEG differentially expressed gene, IRG 
immune-related gene
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Table 1  Relationship between risk scores of both diagnostic models and phenotype in the two validation datasets

DEG differentially expressed gene, SD standard deviation, IRG immune-related gene

Validation dataset 1 (DEG model)

Level High risk Low risk P value

n = 31 n = 32

Group (%)

 Control 13 (41.9) 24 (75.0) 0.011

 Infected 18 (58.1) 8 (25.0)

Sex (%)

 Female 13 (41.9) 13 (40.6) 1

 Male 18 (58.1) 19 (59.4)

Corrected gestational age (mean (SD)) 236.90 (36.03) 262.69 (35.67) 0.006

Birthweight (mean (SD)) 1863.29 (1233.33) 2593.25 (1389.79) 0.031

Validation dataset 1 (IRG model)

Level High risk Low risk P value

n = 31 n = 32

Group (%)

 Control 9 (29.0) 28 (87.5)  < 0.001

 Infected 22 (71.0) 4 (12.5)

Sex (%)

 Female 14 (45.2) 12 (37.5) 0.613

 Male 17 (54.8) 20 (62.5)

Corrected gestational age (mean (SD)) 223.94 (28.09) 275.25 (27.65)  < 0.001

Birthweight (mean (SD)) 1394.23 (929.43) 3047.66 (1204.01)  < 0.001

Validation dataset 2 (DEG model)

Level High risk Low risk P value

n = 10 n = 10

Group (%)

 Control 1 (10.0) 5 (50.0) 0.141

 Infected 9 (90.0) 5 (50.0)

 Sex (%)

Female 2 (20.0) 2 (20.0) 1

 Male 8 (80.0) 8 (80.0)

Corrected gestational age (mean (SD)) 242.50 (18.74) 234.40 (25.98) 0.434

Birthweight (mean (SD)) 1344.50 (309.98) 1029.50 (385.61) 0.059

Validation dataset 2 (IRG model)

Level High risk Low risk P value

n = 10 n = 10

Group (%)

 Control 0 (0.0) 6 (60.0) 0.011

 Infected 10 (00.0) 4 (40.0)

Sex (%)

 Female 4 (40.0) 0 (0.0) 0.087

 Male 6 (60.0) 10 (100.0)

Corrected gestational age (mean (SD)) 244.20 (24.56) 232.70 (19.64) 0.263

Birthweight (mean (SD)) 1156.00 (348.22) 1218.00 (420.14) 0.724
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it is established that septic shock is associated with a 
severe exhaustion and depletion of T lymphocytes [27]. 
So the present results establish an association between 
decreased lymphocytes and sepsis but do not establish 
causality between lymphocyte apoptosis and outcome in 
patients with sepsis, which required further investigation.

Sun RNA methyltransferase 7 (NSUN7) belonging to 
the methyltransferase superfamily is located on chromo-
some 4p14 and consists of 12 exons and 718 amino acids. 
It reduces protein activity and motility of sperms and is 
associated with male infertility [28]. High expression of 
NSUN7 is associated with shortened survival in low-
grade gliomas [29]. The overall survival in Ewing sarcoma 
is significantly associated with NSUN7 immunoreactiv-
ity, an independent favourable prognostic marker [30]. 
NSUN7 may also serve as a pivotal biomarker for pre-
dicting biochemical recurrence in patients with prostate 
cancer [31]. An increase in the mean precursor strength 
of plasma protein polypeptides, such as NSUN7, is asso-
ciated with sepsis [32]. NSUN7 may also be associated 
with psychiatric disorders, including schizophrenia, 
bipolar disorder [33], and major depressive disorders. 
In eukaryotes, the NSUN family is the major RNA m5C 
modifying enzyme and includes seven family members 
(NSUN1–7). The biological function and significance of 
RNA m5C modification in maintaining mRNA stability 
is essential during early embryonic development and in 
the post-embryonic immune system. NSUN7 has been 
systematically studied in male sperm motility, but its 
mechanism of action in tumours and sepsis has not been 
elucidated. In the present study, NSUN7 expression was 
up-regulated in the NS group. Combined with bioinfor-
matic analyses, NSUN7 may be used as a biomarker for 
the pathogenesis of NS.

Resistin (RETN), located on chromosome 19p13.2, 
encodes an anti-retro-transcriptional protein and belongs 
to the resistance protein-like gene family. Its encoded 
protein, a 114 amino acid polypeptide (12.5  kDa) hor-
mone, is secreted by adipocytes and is a member of the 
cysteine-rich small secreted protein gene family [34, 
35]. RETN activates monocytes and macrophages and 
induces the release of proinflammatory cytokines includ-
ing lipopolysaccharides, IL-1, IL-6, and tumour necro-
sis factor (TNF)-α [36–38]. RETN promotes endothelial 
cell activation and smooth muscle cell proliferation [39]. 
Elevated RETN levels have been reported in sepsis sam-
ples [40–43]. Clinical observations have indicated that 
plasma RETN levels are highly correlated with the lev-
els of inflammatory markers, such as CRP and IL-6 [44]. 
Additionally, RETN increases endothelial cell perme-
ability, thereby promoting the adhesion and infiltration 
of endothelial cells and monocytes. RETN also medi-
ates immunosuppression, directly suppresses neutrophil 

function, and is associated with poor outcomes in sep-
sis [45]. These findings suggest a link between RETN, 
immunity, and inflammation. In the present study, RETN 
expression was up-regulated in the NS group, indicating 
that RETN may be involved in the occurrence and devel-
opment of NS.

Protein S1 (PROS1), located on chromosome 3q11.1, 
is a vitamin K-dependent plasma protein that activates 
coagulation factors V and VIII by activating protein C 
while promoting the clearance of early apoptotic cells 
[46]. Tyrosine kinase receptor (TAM receptor) regulates 
the basic mediator of inflammatory response; PROS1 
acts as a ligand of TAM receptor; and the expression of 
proinflammatory factors, such as TNF-α and CCL3, is 
increased during PROS1 deficiency [45]. PROS1 expres-
sion is positively correlated with neutrophil count and 
activity and oxidative burst, and is a potential therapeu-
tic target for decompensated cirrhosis and sepsis [46]. 
PROS1 can be used as a targeted drug for the treatment 
of inflammatory diseases, such as spinal cord injury and 
ankylosing spondylitis [47]. In the present study, PROS1 
expression was up-regulated in the NS group. The role 
of PROS1 in the coagulation mechanism has been sys-
tematically studied; however, its role in NS has not been 
elucidated.

Methyltransferase 7B (METTL7B) belongs to the 
methyltransferase-like protein family, and is located on 
chromosome 12. To date, the function of METTL7B is 
unclear, although several studies have linked it to spe-
cific disease states, subcellular localization, and cellular 
processes [48, 49]. A recent study found that METTL7B 
has methylase activity, which can methylate intracellu-
lar alkanethiol molecules and reduce associated cellular 
toxicity [49, 50]. METTL7B expression is associated with 
immune cells, such as B cells, CD4 + T cells, CD8 + T 
cells, monocytes, neutrophils, macrophages, and acti-
vated mast cells. Clinical studies have shown that MET-
TL7B responds to inflammatory signals via Janus Kinase 
1 [51]. In the present study, METTL7B expression was 
up-regulated in the NS group, indicating that METTL7B 
may be involved in the occurrence and development of 
NS.

Tudor domain-containing protein 9 (TDRD9) is a 
DEXH-box RNA helicase, which is involved in PIWI-
interacting RNA formation [52]. TDRD9 is a DNA dam-
age and repair-associated gene and is mainly expressed 
in sperms [53]. It can be used to predict disease-free 
survival in cancers, such as clear cell renal cell carci-
noma and thyroid cancer [54, 55]. In addition to the male 
reproductive system, it is mainly expressed in the blood 
cells, including monocytes and dendritic cells, which play 
important roles in the innate immune response [56].
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The novelty of our study is as follows. First, we used 
bioinformatic analysis to investigate the molecular mech-
anisms of NS from the perspectives of immunity and 
inflammation. Second, we found that NSUN7, PROS1, 
TDRD9, RETN, LOC728401, and METTL7B may be 
potential diagnostic biomarkers for NS, particularly 
NSUN7. However, this study has some limitations. First, 
we could not determine whether a causal relationship 
exists between the differences in gene expression and 
pathophysiological mechanisms of NS or if it is simply a 
compensatory change. Second, the study was a retrospec-
tive data analysis; therefore, we lacked detailed clinical 
and prognostic data, which limited further exploration of 
the genes for their clinical characteristics and outcomes. 
Finally, our study was based on bioinformatic analysis of 
transcriptome data from public datasets, which may be 
inconsistent with the actual situation. Further clinical tri-
als are needed to validate our findings.

Conclusions
Through bioinformatic analysis of published tran-
scriptional data, NSUN7, PROS1, TDRD9, RETN, 
LOC728401, and METTL7B were identified as poten-
tial biomarkers of NS from the perspective of immune 
cell infiltration combined with logistic regression. More 
importantly, the developed diagnostic models provide a 
new perspective for future research on the pathogenesis 
of NS.

Methods
NS datasets and data process
RNA sequencing data that investigated gene expression 
in peripheral blood samples from patients with NS were 
downloaded from the Gene Expression Omnibus (GEO) 
database, which included GSE69686 (including 64 NS 
and 85 control samples), and GSE25504 (including 170 
samples, which were divided into four platforms, involv-
ing GPL570, GPL6947, GPL13667, and GPL15158). In 
consideration of sample size and sequencing platforms, 
GSE69686 was used as analysis dataset and GSE25504 
(GPL13667 and GPL6947 platform) was used as valida-
tion datasets. Next, the corresponding expression matrix 
and clinical information were download and matched. 
The expression matrix were pre-processed via quantile 
normalization with R package limma [57].

Identifying DEGs between NS and normal samples
In order to identify DEGs, the R package limma [1] 
which implements an empirical Bayesian approach to 
estimate gene-expression changes using moderated 
t-tests, was applied to determine DEGs among different 

groups; DEGs were screened by criteria (adjusted P 
value < 0.05) as implemented in limma. Volcano plots 
were generated to visualize the expression of DEGs. 
Hierarchal clustering was also conducted to measure 
the correlation of DEGs and identify potential gene 
modules by using R package pheatmap. In addition, to 
identify the potential function and involved pathways, 
we performed GSEA based on the differential expres-
sion profiles using the clusterProfiler R package [58].

Depicting immunological characteristics of immune cell 
microenvironment in neonatal samples
The immunological characteristics of immune cell 
microenvironment in neonatal samples were depicted 
with the GSE69686 dataset. The Single-Sample Gene-
Set Enrichment Analysis (ssGSEA) algorithm was used 
to quantify the relative abundance of tumour-infiltrat-
ing immune cells based on specific immune cell gene 
sets obtained from Charoentong et al. [59]. The differ-
ences between NS and normal samples were visualized 
with boxplots by using R package ggpubr, and the cor-
relations among immune cells were shown in correla-
tion heatmap.

Unsupervised clustering by immune cell composition
To explore differences related with immune cell micro-
environment between patients with NS and normal 
samples, we applied consensus clustering analysis to 
GSE69686 dataset based on the immune cell compo-
sition calculated by ssGSEA algorithm. This was per-
formed using the Consensus Cluster Plus R package 
[60], and two subgroups were identified.

Identifying IRGs between NS and normal samples
The R package limma was used to calculate IRGs 
between two clusters. Heatmap and volcano plots were 
generated to visualize the IRGs in two clusters. Fur-
thermore, GSEA was performed based on IRGs to esti-
mate related pathways.

Gene expression signature identification and diagnostic 
model construction
DEGs and IRGs were used to build diagnostic models. 
Firstly, the random forest algorithm was used to filter 
genes used in model construction. According to the 
cross-validation results, the top 20 DEGs and top 15 
IRGs sorted by mean decrease accuracy were selected 
(see Additional file  6: Fig.  S6). Then, the LASSO algo-
rithm was used to build classification models based on 
the actual diagnosis. At last, risk score of all samples 
was calculated according to the coefficients in the diag-
nostic models.
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Evaluating the effectiveness of diagnostic models
The effectiveness of the two diagnostic models was evalu-
ated in the training dataset GSE69686 and validation 
datasets GSE25504 (GPL13667 and GPL6947 platform). 
ROC curve was used to evaluate the accuracy of the sig-
natures in predicting the diagnostic results. In addition, 
bootstrap method was adopted to validate the reliability 
of ROC curve. The density plots showed the results of 
AUC calculated 1000 times for both datasets and models.

Statistical analysis
Data were analysed with R (version 4.1.0) and R Biocon-
ductor packages. Fisher’s exact test was used to analyse 
differences between high-risk and low-risk samples. 
P-values less than 0.05 were considered statistically 
significant.
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