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Abstract 

Artificial intelligence (AI), the technique of extracting information from complex database using sophisticated com-
puter algorithms, has incorporated itself in medical field. AI techniques have shown the potential to accelerate the 
progression of diagnosis and treatment of cardiovascular diseases (CVDs), including heart failure, atrial fibrillation, 
valvular heart disease, hypertrophic cardiomyopathy, congenital heart disease and so on. In clinical scenario, AI have 
been proved to apply well in CVD diagnosis, enhance effectiveness of auxiliary tools, disease stratification and typ-
ing, and outcome prediction. Deeply developed to capture subtle connections from massive amounts of healthcare 
data, recent AI algorithms are expected to handle even more complex tasks than traditional methods. The aim of this 
review is to introduce current applications of AI in CVDs, which may allow clinicians who have limited expertise of 
computer science to better understand the frontier of the subject and put AI algorithms into clinical practice.
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Introduction
As a branch of computer science, artificial intelligence 
(AI) is a new technical science, simulating and extend-
ing human intelligence to handle complex issues [1]. AI 
mimics the human brain to process data and places an 
essential role in medicine, which could identify, process, 
integrate, and analyze massive amounts of healthcare 
data (medical records, ultrasounds, medications, and 

experimental results) [2]. Specific algorithms on exist-
ing big data yield provide results that clinicians can use 
to improve diagnosis; for example, echocardiogram 
(ECG) processed by AI algorithms are currently used to 
diagnose heart failure [3–5], atrial fibrillation [6], anae-
mia [7], hypertrophic cardiomyopathy [8] and pulmonary 
hypertension [9]. Once validated and tested algorithms 
are put to work in the clinic, they could reduce clinicians’ 
cognitive burden by offering pre-diagnosis, correcting 
clinician errors and preventing the occurrence of misdi-
agnosis [10].

AI depends on machine learning, which could cap-
ture subtle connections from a series of data rather 
than manually encoding. Accordingly, these subtle 
findings might revolutionize the progression of human 
diseases in prediction, diagnosis, prognosis and recov-
ery [11]. The subdisciplines of AI include cognitive 
computing, deep learning, and machine learning (ML) 
[12]. Machine learning is a more popular subdiscipline 
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of AI, typically, and could be grouped into three cat-
egories: supervised learning, unsupervised learning 
and reinforcement learning based on the presence or 
absence of external supervision during training [13]. 
Supervised learning is the process of tuning the param-
eters of a classifier to achieve the required performance 
using a set of samples from a known class, also known 
as supervised training. In general, supervised learning 
includes artificial neural network (ANN), support vec-
tor machine (SVM), decision tree, random tree, naïve 
Bayes (NB), fuzzy logic, K-nearest neighbour (KNN) 
and regression [14]. Unsupervised learning is a data 
processing method that achieves the classification of 
samples by data analysis of a large number of samples 
of the object under study without category informa-
tion, including clustering algorithms and association 
rule-learning algorithms [15]. Reinforcement learning 
could be considered a combination of supervised and 
unsupervised learning, and it could facilitate errors and 
trials to magnify the accuracy of algorithms [16]. The 
above algorithms are not completely independent, e.g., 
ANN can be used in the DL algorithm.

Nowadays, the most currently applied algorithms for 
medical purposes are deep learning (DL), artificial neu-
ral network (ANN), and support vector machines (SVM) 
[17]. ANNs and SVMs could high preciously deal with 
large and complicated data, including nonlinear relations 
[18]. ANNs have better superiority in assessing electro-
cardiogram (ECG) data [19], while SVMs are in disease 
stratification [20]. However, ANNs and SVMs could not 
dispose all conditions equally because of over-fitting, 
underfitting, and misspecification [21]. Deep learning has 
relatively good performance in processing image data, 
and current deep learning algorithms in cardiovascular 
medicine include convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and deep neural net-
works (DNNs) [22]. Even though these algorithms have 
corresponding advantages and disadvantages, they per-
form well in the diagnosis, prediction, and stratification 
of cardiovascular diseases (CVDs). The flow chart of the 
application of AI in clinical practice is shown in Fig. 1.

The Receiver Operating Characteristic (ROC) curve 
and area under the curve (AUC) are essential when quan-
tifying a specified algorithm [23]; in general, it is accepted 
that an AUC greater than 0.70 has better predictive per-
formance [24]. In cardiovascular medicine, many deci-
sions rely on digitized, patient-specific information, such 
as ECGs, echocardiograms, and so on, where AI tech-
niques have shown great advantage to benefit patients of 
different types of CVDs in multiple situations (shown in 
Figs. 2, 3). This review aims to summarize the application 
of AI in CVDs through the clinician’s perspective to pro-
vide clinicians with a better understanding and use of AI.

AI‑aided CVD diagnosis
Early detection, diagnosis, and treatment are significant 
for CVDs in slowing the progression to advanced dis-
eases and improving overall outcomes. ECG and cardiac 
magnetic resonance (CMR) are often the gold standards 
for diagnosing some CVDs, such as ventricular dys-
function, aortic stenosis, and dilated cardiomyopathy 
[25–28]. However, these additional tools are conducted 
for patients suspected of having related symptoms rather 
than for asymptomatic patients [27]. The application of 
these additional tools is limited by high cost, a require-
ment for technical expertise that may not be suitable as 
screening tools for the general population, which brings 
difficulties for the early diagnosis of CVDs [26, 29]. 
Therefore, many patients frequently remain undiag-
nosed until the late stage, with worse outcomes seen in 
advanced diseases [30].

ECG is a simple, widely available, and low-cost auxil-
iary test often used even in areas with limited resources 
[31]. For a long time, ECG has provided valuable diagnos-
tic clues for CVDs. However, the clinician’s interpreta-
tion of the ECG depends on the levels of their experience 
and expertise [31]. Furthermore, the raw ECG waveform 
contains tens of thousands of data points difficult for cli-
nicians to analyze them, which causes the limitation to 
exploit its advantage into full use [30]. However, because 
of its strong computing power, graphic analysis ability, 
and learning ability, AI can detect subtle and meaning-
ful information from ECG waveforms that clinicians can-
not observe, which means the relationship between ECG 
characteristics and specific CVDs [31, 32]. Here, we will 
review the latest advances in applying AI technology to 
routine 12-lead ECG for detecting CVDs in detail.

Valvular heart disease
Many valvular heart diseases involve long asympto-
matic periods [33]. However, once symptoms appear, 
mortality increases dramatically [34]. Follow-up in 
asymptomatic patients and valve replacement in symp-
tomatic patients often result in good outcomes [33]. 
Nevertheless, how to identify these asymptomatic 
patients remains a challenge. Echocardiography is the 
gold standard for confirming the diagnosis of valvu-
lar heart disease, but it is not suitable for screening 
tests [35]. Therefore, whether AI-enhanced Electro-
cardiogram (AI-ECG) can be used as an available tool 
for screening asymptomatic patients has gained wide-
spread. Kwon et  al. [35] developed a DL-based algo-
rithm combining a multilayer perceptron (MLP) and 
CNN, which aims to detect moderate or severe aortic 
stenosis (AS) using ECGs. During internal and exter-
nal validation, the AUC for identifying significant AS 
were 0.88 and 0.86. Sensitivity analysis showed that the 
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algorithm focused on the T wave of the precordial lead 
to determine the presence of AS. Interestingly, at the 
highly sensitive operation point, the negative predic-
tive value was > 99%, suggesting that this algorithm can 

be used as a screening tool to exclude AS. This work 
has been confirmed by others. Shelly et  al. [36] devel-
oped a CNN model for screening moderate or severe 
AS using ECG and echocardiogram from 129,788 adult 

Fig. 1  Flow chart of AI application in clinical practice
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patients. AI-ECG performed well in the testing group, 
including 102,926 participants with an AUC of 0.85 and 
an accuracy of 74%, and the negative predictive value 
was 98.9%. When sex and age were added to the model, 
the AUC was improved to 0.90. Furthermore, elias et al. 
[30] developed the Valve Net DL model, the AUC for 
using ECG to detect moderate or severe AS, aortic 
regurgitation (AR), and mitral regurgitation (MR) was 
0.88, 0.77 and 0.83, respectively. The AUC of the com-
posite of any of them was 0.84. Subset analyses showed 
that the performance of the algorithm was equal in sex, 
ethnicity, and race. These studies indicate the AI-ECG 

is a potential measure to screen for valvular heart 
disease.

Atrial fibrillation
Atrial fibrillation (AF), especially paroxysmal AF, is often 
asymptomatic and elusive [37]. Patients with AF often 
perform a normal sinus rhythm during ECG recording, 
which may lead to underdiagnosis [38]. However, the 
structure of the heart starts to change once AF is formed.

Therefore, the normal sinus-rhythm ECGs might 
undergo subtle changes that a deeply trained neural net-
work can identify to predict AF [6]. Attia et al. [6] have 
implemented a CNN to identify patients with AF dur-
ing normal sinus rhythm using standard 10  s, 12-lead 
ECG. The model was trained using nearly 500,000 ECGs. 
Applying the model in a testing set yielded an AUC of 
0.87 for detecting AF from sinus-rhythm ECGs, with an 
overall accuracy of 79.4%. When testing the model on 
all of the ECGs from the patients’ window of interest 
(from 31 days before the first recorded AF ECG to that 
day), the AUC improved to 0.90 with improved overall 
accuracy of 88.3%. The results show that this algorithm 
can detect patients with AF from normal sinus-rhythm 
ECG. Afterward, Khurshid et  al. [39] compared the 
accuracy and correlation of AI-ECG and CHARGE-
AF (Cohorts for Heart and Aging Research in Genomic 
Epidemiology-Atrial Fibrillation) scores in predicting 
future AF risk in three test sets (Massachusetts Gen-
eral Hospital [MGB], Brigham and Women’s Hospital 
[BWH] and UK Biobank). Over a 5 year follow-up period, 
AI-ECG provided predictive usefulness to CHARGE-
AF in predicting AF. (AUC of MGB, BWH, and UK 
Biobank were 0.823 vs. 0.802, 0.747 vs. 0.752, and 0.705 
vs. 0.732). When the model combined both AI-ECG and 
CHARGE-AF, it showed better performance on multiple 

Fig. 2  Situation of AI application in CVD

Fig. 3  Types of diseases of AI application in CVD
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prognosticative model metrics than CHARGE-AF, sug-
gesting that AI-ECG can be used as a useful way to assess 
the risk of future AF. Besides, AI can also detect future 
AF by assessing risk factor stratification. In a prospec-
tive cohort study, Noseworthy et al. [40] recruited 1003 
patients with stroke risk factors but normal sinus-rhythm 
ECG and divided patients into high-risk or low-risk 
groups by applying AI algorithm to their ECGs. All par-
ticipants were then given an ambulatory heart rhythm 
monitor to detect AF for 30  days. They found that the 
high-risk group had a higher rate of AF than the low-
risk group (7.6% vs. 1.6%). During a median follow-up 
of 9.9 months, the detection rate of AF was significantly 
higher in the AI-guided screening group than in the usual 
care group, suggesting that AI-ECG may be able to iden-
tify patients with a high risk of suffering AF in the future. 
Effective screening of these patients may lead to more 
effective results.

Coronary artery disease
Betancur et al. [41] tried to train a DL model to predict 
future coronary artery disease (CAD) from SPECT myo-
cardial perfusion imaging (MPI). 1638 patients without 
CAD performed stress SPECT MPI and invasive coro-
nary angiography within 6  months of MPI. The model 
was evaluated in a stratified tenfold cross-validation pro-
cedure. The AUC of CAD prediction was 0.80 per patient 
and 0.76 per vessel, demonstrating that DL can help the 
analysis of MPI and predict future CAD. Facial features 
may be associated with an increased risk of some diseases 
[42]. DL even enables to screen of diseases by these facial 
features [43, 44]. Lin et al. [43] trained and validated a DL 
algorithm to detect CAD using face photos from 5796 
patients. In the testing set composed of 1013 patients, the 
DL algorithm had the AUC of 0.73 and the accuracy of 
68% for detecting CAD.

Heart failure
Left ventricular ejection fraction (LVEF), a key measure 
of left ventricular systolic function, is often measured by 
echocardiography [26]. At the early stage of heart failure 
(HF), patients may present asymptomatic left ventricular 
dysfunction (ALVD) for a long time because of the slight 
decrease of LVEF [3, 5]. If patients with HF can get effec-
tive treatment, it is very significant to improve their left 
ventricular systolic functions, avoid the further decline of 
LVEF and permanent myocardial damage, and improve 
survival rate and quality of life [45]. However, echo-
cardiography is impractical for asymptomatic patients 
because of cost and availability [5, 26]. Recently, various 
studies showed that AI-ECG could be used for screen-
ing ALVD. Attia et al. [3] created a large neural network 
using ECG and echocardiogram of 44,959 patients to 

identify patients with ventricular dysfunction (ejection 
fraction [EF] ≤ 35%) by ECG. When tested the network 
on a set of 52,870 patients, it received the AUC of 0.93, 
with an accuracy of 85.7%. With a median follow-up of 
3.4 years, compared to those who were identified as hav-
ing a normal EF by both network and echocardiography 
(i.e., true negative), patients with positive AI-ECG but 
negative echocardiography (i.e., false positive) had four 
times more common in developing left ventricular dys-
function (HR = 4.1), suggesting that the network can not 
only detect patients with left ventricular dysfunction but 
also identify abnormal ECG before the manifestation of 
left ventricular dysfunction. Similarly, Yao et al. [5] devel-
oped an AI algorithm for identifying patients with low EF 
(defined as EF ≤ 50%) based on their ECG. 22,641 par-
ticipants without HF and 120 primary care teams from 
45 hospitals were randomly assigned to the intervention 
or control groups. The intervention group was access 
to AI-ECG results. This study found that using AI-ECG 
improved the diagnosis of low EF by 32%, compared to 
the control group, within 90 days after the ECG test. Fur-
thermore, The AI-ECG improved the diagnosis of low EF 
more when AI-ECG was applied in the outpatient setting 
(OR = 1.71), demonstrating that AI-ECG may enable the 
early diagnosis of patients with low EF in the primary 
care settings and resource-scarce settings. In contrast, 
right heart failure is often underreported in the clinical 
setting, which may be due to the lack of effective screen-
ing modalities to evaluate right ventricular function. 
However, right ventricular dysfunction is closely related 
to the left and total heart failure. It is urgently needed 
for an available tool to screen and predict the right hear 
function. Vaid et  al. [26] constructed a DL model that 
can be used to predict left and right ventricular function 
from ECG. In the internal and external database, AI-ECG 
performed well at detecting right ventricular systolic 
dysfunction (RVSD) with an AUC of 0.84 and detecting 
patients with LVEF ≤ 40% with an AUC of 0.94, suggest-
ing that the DL model can extract biventricular function 
information from ECG. AI-ECG can improve the useful-
ness of screening for left or right ventricular dysfunction.

Cardiomyopathy
Dilated cardiomyopathy (DC) is a common cause of HF 
with reduced LVEF. First-degree relatives of patients with 
DC have an increased risk of DC and are more prob-
ably present as sudden death. As a result, these relatives 
require regular echocardiographic tests [28]. Neverthe-
less, it is impractical to use echocardiographic to screen 
asymptomatic populations [29]. Shrivastava et  al. [29] 
built a CNN model to achieve the early diagnosis of DC 
using ECG. Within a cohort of 421 patients who suffered 
from DC and 16,025 participants with normal LVEF, the 
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AUC of using AI-ECG to detect LVEF ≤ 45% was 0.955, 
with a negative predictive value of more than 99%, indi-
cating that AI-ECG may serve as a screening tool for 
DC and determine the need for subsequent echocar-
diographic diagnosis among patients. CMR is the gold 
standard for diagnosing left ventricular hypertrophy 
(LVH) [25], but limited by its cost and accessibility, it can-
not be used as a screening tool for LVH. Khurshid et al. 
[46] trained a CNN model using ECGs within 32,239 
individuals, aiming to predict CMR-tested left ventricu-
lar mass based on 12-lead ECG (LVM-AI). When testing 
in the two independent test sets, LVM-AI predicted LVH 
with AUC of 0.653 and 0.621, showing that LVM-AI may 
have a moderate ability to discriminate LVH.

Hypertrophic cardiomyopathy (HCM) is one of the 
leading causes of sudden cardiac death in young adults 
[47]. Sudden cardiac death due to HCM is preventable 
if HCM can be detected early. HCM can be diagnosed 
with echocardiography, which is widely difficult to use in 
otherwise asymptomatic individuals [31]. Although more 
than 90% of patients with HCM have electrocardiogram 
abnormalities; these are non-specific and indistinguish-
able from other diseases [48]. AI-ECG may be an effec-
tive method to diagnose HCM. Ko et al. [8] trained and 
validated an AI-ECG with 2448 patients with HCM and 
51,153 age- and sex-matched subjects without HCM. 
When applying this model to diagnose HCM based on 
ECG in the testing set including 612 patients with HCM 
and 12,788 control subjects, the AUC was up to 0.96 with 
the sensitivity of 87% and specificity of 90%. Surprisingly, 
this model performed particularly well in young individ-
uals (age < 40), suggesting AI-ECG may be practical for 
screening HCM.

Besides ECG, AI also presents unique advantages 
in computed tomography (CT) [49], ultrasound [50], 
SPECT MPI [41], and so on. AI-based DL can even iden-
tify some diseases from facial features alone, allowing it 
to screen many people in a short period [43, 44].

Congenital heart disease
Congenital heart disease (CHD) is the most common 
congenital disability, resulting in substantial mortality 
after birth [51]. In clinical practice, due to a lack of spe-
cialized sonographers or missing critical image frames 
to help the diagnosis of CHD, the detection of CHD dur-
ing pregnancy is often very low [52]. As AI-ECG, trained 
AI models can detect abnormal image frames that are 
difficult for the clinician to discern, improving the diag-
nosis of CHD [50]. Recently, Arnaout et  al. [50] trained 
a neural network to distinguish normal hearts and CHD 
using nearly 100,000 images from echocardiographic and 
screening ultrasound from 18 to 24 weeks. In the internal 
test set, the model distinguished normal from abnormal 

hearts with an AUC of 0.99 and achieved a negative pre-
dictive value of 100%. Importantly, the model performed 
robustly on outside-hospital and lower-quality images, 
suggesting that DL-based screening ultrasound improves 
the fetal detection of CHD.

AI-based models can be helpful for clinicians to make 
better decisions [5, 29, 49]. With the popularization of 
AI technology, AI-based models can help screen diseases 
and improve the early diagnosis and treatment of dis-
eases in settings with limited equipment [6, 29, 31].

AI enhances the effectiveness of auxiliary tools
AI techniques could prompt the efficiency of auxiliary 
tools, such as CT, echocardiography, and magnetic res-
onance imaging (MRI). LVEF is an essential criterion 
for the prognosis of HF, resynchronization therapy, and 
defibrillator. Two-dimensional echocardiography as an 
accurate tool for assessing EF is widely used in clinical 
scenarios. In general, quantitative EF requires sophisti-
cated skills to track end-diastolic and end-systolic frames 
manually, which is a time-consuming process. However, 
auto EF is the AI-learned pattern that can effectively 
calculate EF. Asch et  al. [53] proposed a ML algorithm 
that can automate and accurately quantify LVEF, and the 
ML had similar accuracy to that of clinicians in extract-
ing LVEF. This well-trained advanced algorithm enabled 
nurses to dynamically observe patients’ LVEF without 
the professional sonographer, improving clinical safety. 
Furthermore, the advent of AI created the possibility of 
monitoring regional wall motion abnormality by screen-
ing echocardiograms. Kusunose et  al. [54] developed a 
matching data set of patients with and without a myocar-
dial infraction and trained a deep convolutional neural 
network (DCNN) to predict the presence of wall motion 
abnormalities, achieving an AUC of 0.99 similar to cardi-
ologist and sonographer readers (AUC = 0.98) and higher 
than resident readers (AUC = 0.90).

Coronary computed tomography angiography (CCTA), 
an extremely effective non-invasive tool, is a first-line 
inspection method to assess coronary artery stenosis. It 
is time-consuming, costly, and requires semi-automated 
manual evaluation. Choi et  al. [55] used an AI-based 
algorithm to enhance CCTA performance by allowing for 
accurate and rapid assessment of stenosis, atherosclero-
sis, and vessel morphology compared with the consensus 
of expert readers at level 3. Lin et  al. [56] trained a DL 
pattern to quantify plaque and stenosis using coronary 
CT angiography. Besides, this DL algorithm might have 
diagnostic significance in predicting prognosis of myo-
cardial infarction. In addition, Knott et  al. [57] used AI 
algorithms to quantify myocardial blood flow (MBP) and 
myocardial perfusion reserve (MPR) by CMR and evalu-
ate the algorithms in a cohort study of 1049 patients with 
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605 median follow-up days. The results enrolled in a Cox 
proportional hazard model and deduced that reduced 
MBF and MPR used AI-based quantified CMR provided 
an independent predictor of cardiac prognosis.

Although, invasive fractional flow reserve (FFR) is a 
gold criterion for diagnosing coronary stenosis, over 
70% clinical treatment decisions still rely on angiogra-
phy. However, angiography has lacking accuracy for the 
prediction stenosis for the prediction of FFR < 0.80. Hae 
et  al. [58] have found that machine learning facilitates 
bridging the visual- functional mismatch between FFR 
and angiography. Not only that, Cho et al. [59] performed 
a ML-based model trained by extreme gradient boost-
ing (XGBoost) could accurately predict samples with 
FFR ≤ 0.80, achieving an AUC of 0.84.

AI‑aided CVD stratification and typing
Novel approaches based on AI are able to provide more 
accurate stratification and typing for CVD patients, 
which might be a way to overcome some of the limi-
tations of traditional approaches and optimize per-
sonalized medicine. One area where more accurate 
phenogrouping could improve the selection of patients is 
cardiac resynchronization therapy (CRT), since the tra-
ditional strategy did not work out well and a substantial 
proportion of patients do not respond to this therapy. 
Cikes et  al. [60] trained an unsupervised ML algorithm 
to categorize subjects by similarities in clinical param-
eters, left ventricular volume, and deformation traces at 
baseline into four exclusive groups. Finally, four pheno-
groups were identified and two phenogroups were asso-
ciated with a substantially better treatment effect of CRT 
with a defibrillator vs. implantable cardioverter defibrilla-
tor than observed. Similarly, measures remained limited 
in patients with HF and reduced LVEF despite advances 
in therapeutics. Karwath et  al. [61] applied neural net-
work-based variational autoencoders and hierarchical 
clustering to pooled individual patient data from nine 
double-blind, randomised, placebo-controlled trials of β 
blockers. The AI-based clustering approach was able to 
distinguish prognostic response from β-blockers both in 
sinus rhythm patients as well as patients with concomi-
tant AF.

AF is a cardiovascular condition which has a multifac-
torial origin. Epidemiological data clearly demonstrates 
that the concomitant presence of multiple risk factors 
increases the risk of developing AF [62]. Proietti et  al. 
[63] performed a hierarchical cluster analysis derived 
from EORP-AF (the European Society of Cardiology-
European Heart Rhythm Association EURObservational 
Research Programme in AF) General LongTerm Reg-
istry and identified three clusters. Over a mean follow-
up of 22.5  months, Cluster 3 had the highest rate of 

cardiovascular events, all-cause death, and the compos-
ite outcome (combining the previous two) compared to 
Cluster 1 and Cluster 2, suggesting that cluster analy-
sis might be a choice for providing information of AF 
patients’ clinical phenotypes and prognostic events.

Damping of aortic pressure during coronary angiog-
raphy can help avoid serious complications and make 
accurate coronary physiology measurements. To accu-
rately identify damped arterial waveform traces in real-
time during invasive coronary angiography, Howard et al. 
[64] trained a 1-dimensional CNN on two pre-existing 
data sets from patients undergoing invasive coronary 
angiography at 4 European cardiac centers. The model 
can classify beats as either normal, showing damping, or 
artifactual with 99.4% accuracy when judged against the 
opinions of the internal core laboratory and 98.7% accu-
racy when judged against the opinions of an external core 
laboratory not involved in neural network training.

The phenotypic features of hypertensive patients are 
highly heterogeneous in cardiovascular outcomes and 
comorbidities, as well as responses to antihypertensive 
pharmacotherapy. Therefore, it is of critical importance 
to classify hypertensive patients with clinically meaning-
ful labels, optimize management strategies and forecast 
prognostic trajectory. Yang et al. [65] performed an unsu-
pervised, data-driven cluster analysis on all baseline vari-
ables related to cardiovascular outcomes and treatment 
responses in subjects from the Systolic Blood Pressure 
Intervention T trial (SPRINT) and identified four repli-
cable clusters. Cluster 4 had the highest risk of develop-
ing primary CVD outcome. Intensive antihypertensive 
treatment was shown to be beneficial only in cluster 4 
and cluster 1 and was associated with an increased risk 
of severe adverse effects in cluster 2. Except for primary 
hypertension (PHT), endocrine hypertension (EHT) is 
frequently overlooked or misdiagnosed as PHT in cur-
rent clinical scenarios. Reel et al. [66] used a supervised 
ML algorithm to distinguish different EHT subtypes from 
PHT by multi-omics (MOmics) feature, including plasma 
miRNAs, plasma catechol O-methylated metabolites, 
plasma steroids, urinary steroid metabolites, and small 
plasma metabolites. Among six ML models, the random 
forest model performed the best distinguishing primary 
aldosteronism (PA), pheochromocytoma/catecholamine-
producing paraganglioma (PPGL), and Cushing’s syn-
drome (CS) and PHT (AUC = 0.95) with 57 MOmics 
features. For discrimination of EHT (PA + PPGL + CS) 
vs. PHT, the simple logistic classifier achieved 0.96 AUC 
with 37 MOmics features.

In up to 60% of HCM patients, more than 1400 muta-
tions in genes encoding sarcomere proteins have been 
detected [67]. The selection of patients with a high prob-
ability of positive HCM genotypes can maximize the 
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cost-effectiveness of genetic testing. Zhou et  al. [68] 
trained a nonenhanced cine CMR image–based DL 
model to explore the potential value of CMR in reflecting 
HCM genotype status. Model performance was assessed 
using a tenfold cross-validation on the internal data set 
with an AUC of 0.80 and an accuracy of 78.43%. In addi-
tion, the combination of the DL model and the Toronto 
score (with an AUC of 0.84 and an accuracy of 84.31%) 
yielded significantly higher diagnostic performance than 
a single score.

AI‑aided CVD outcome prediction
AI-based prognostic models are widely developed in car-
diovascular medicine. Recent advances in the applica-
tion of AI for standard 12-lead ECG enable prediction of 
long-term outcomes for CVD patients. To develop and 
validate a DNN model to predict 1  year all-cause mor-
tality from ECG voltage-time traces, Raghunath et  al. 
[69] used 1,169,662 12-lead resting ECGs obtained from 
253,397 patients over a 34 year period in a large regional 
health system. Even within the large subset of patients 
(n = 45,285) with ECGs interpreted as ‘normal’ by a phy-
sician, the performance of the model in predicting 1 year 
mortality remained high (AUC = 0.85), indicating that 
AI can add substantial prognostic information to the 
interpretation of ECG. Besides, ECG-derived age by AI 
might serve as a way to predict cardiovascular events. 
Toya et  al. [70] revealed that there was a difference 
between AI-estimated age from ECG and chronological 
age, which was defined as Δ age. By accessing peripheral 
microvascular endothelial function (PMEF), an indica-
tor of vascular aging, the authors found that Δ age was 
higher in patients with abnormal PMEF than in patients 
with normal PMEF. Furthermore, patients with abnormal 
PMEF and higher Δ age have a marked increase in risk 
for major adverse cardiovascular events (MACE).

Substantial prospective epidemiological data have 
demonstrated that changes in retinal-vessel caliber are 
associated with classic CVD risk factors. However, most 
software for estimation is semi-automated, requiring 
human intervention to adequately measure retinal-vessel 
caliber on the basis of prespecified protocols. Cheung 
et  al. [71] trained a CNN model to automatedly access 
retinal-vessel caliber in retinal photographs based on 
diverse multiethnic multicountry data sets that comprise 
more than 70,000 images. In conclusion, the CNN model 
was able to accurately access CVD risk factors compara-
bly to or better than expert graders, providing the possi-
bility of clinical application of end-to-end DL systems for 
the prediction of CVD events on the basis of the features 
of retinal vessels in retinal photographs.

AI-based models have been proven to perform well 
in prognostic assessment in CAD patients. Silva et  al. 

[72] used the survival tree (ST) algorithm to predict the 
morality of CAD patients referred to a cardiac rehabili-
tation program in a retrospective cohort linking clinical, 
administrative, and vital status databases from 1995 to 
2016. Age and peak metabolic equivalents (METs) were 
chosen as the features with the greatest importance for 
mortality prediction, using which ST split patients into 
8 clusters with different survival probabilities (P < 0.001). 
Backhaus et al. [73] compared AI automated with man-
ual assessments for left ventricular function assessment, 
included global longitudinal, circumferential, and radial 
strains (GLS/GCS/GRS) from prospectively recruited 
acute myocardial infarction (AMI) populations. GLS 
showed the best and excellent agreement with an intra-
class correlation coefficient (ICC) of 0.81 and was an 
independent predictor of MACE in multivariate analyses 
(HR 1.10, 95% CI 1.04–1.15, P < 0.001).

Coronary artery calcium is an accurate predictor of 
cardiovascular events. While it is visible on all CT scans 
of the chest, this information is not routinely quantified 
as it requires expertise, time, and specialized equipment. 
Zeleznik et al. [74] suggested a DCNN model trained on 
a data set from 20,084 individuals from distinct asymp-
tomatic (Framingham Heart Study, NLST) and stable 
and acute chest pain (PROMISE, ROMICAT-II) cohorts. 
The study showed that the automated score is a strong 
predictor of cardiovascular events, independent of risk 
factors (multivariable-adjusted HR = 4.3), and shows a 
high correlation with manual quantification and robust 
test-retest reliability. Epicardial adipose tissue (EAT) 
volume and attenuation (Hounsfield units) may predict 
MACE. Eisenberg et  al. [75] used a fully automated DL 
algorithm to qualify EAT volume and attenuation from 
non-contrast cardiac computed tomography of 2068 
asymptomatic subjects without known CAD enrolled in 
the EISNER trial. The participants completed long-term 
(over 14 years) prognostic follow-ups. The study revealed 
that DL-based EAT was associated with increased risk 
of MACE, and EAT attenuation was inversely associated 
with MACE.

Intravascular ultrasound (IVUS) is a useful tool for 
planning percutaneous coronary intervention (PCI) by 
providing information on lesion characteristics, vessel 
size, and suboptimal stent deployment. Min et  al. [76] 
used a pre-procedural IVUS-based CNN and XGBoost 
model to predict the occurrence of the stent under 
expansion. A total of 618 coronary lesions were rand-
omized into training and test sets in a 5:1 ratio, and the 
model performed well with an accuracy of maximal accu-
racy of 94% (AUC = 0.94).

Most clinical risk stratification models are based on 
measurement at a single time-point, which always pro-
vides limited information [77]. However, AI enables the 
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use of multi-dimensional data, such as changes of vari-
ables over time, and serves as a more accurate prediction. 
Vitamin K antagonists (VKAs) are prescribed to prevent 
stroke in AF patients. Clinicians adjust the dose of VKA 
based on an individual patient’s prothrombin time inter-
national normalized ratio (PT-INR) at each visit [78]. 
Goto et  al. [79] suggested an RNN trained with multi-
dimensional patient-level PT-INR values obtained within 
the first 30 days after starting treatment. Patients experi-
enced a follow-up over 31–365 days after enrolment. The 
model performed better than time in therapeutic range 
(TTR) at predicting clinical outcomes occurring up to 
12 months thereafter.

AI is also a new technological approach to improve 
the accuracy of risk prediction before and after cardiac 
surgery. Kilic et al. [80] suggested an XGBoost ML algo-
rithm from 243,142 adult patients undergoing isolated 
surgical aortic valve replacement (SAVR) in the Society 
of Thoracic Surgeons (STS) National Database between 
2007 and 2017, which were randomly split 4:1 into train-
ing and validation sets. In conclusion, the model demon-
strated excellent calibration and modest improvements 
compared with existing STS models in predicting out-
comes of SAVR. Hospital readmission has the interest 
of researchers due to its adverse impacts on healthcare 
budgets and patient loads. To predict 30  day hospital 
readmission after cardiac surgery, Sherman et  al. [81] 
chose predictors including demographics, preoperative 
comorbidities, proxies for intraoperative risk, indicators 
of postoperative complications, and time series-derived 
variables to training several machine learning models and 
evaluated each on a held-out test set. A random forest 
model performed best, which worked out to have a mean 
AUC of 0.76.

Limitations
However, several issues need to be solved before AI tech-
nology can be used in auxiliary diagnosis: (1) Due to 
humans cannot comprehend the intermediate layers of 
AI network, most studies have not clarified what gives 
a model its ability to detect diseases, the explanation of 
which needs to be further studied to enhance user trust 
of AI tools [6, 29, 32, 35]; (2) Existing conclusions are 
based on only several research sites and their patients, 
continued studies would be required to confirm the relia-
bility of these models on a larger scale and more patients 
[26, 29, 35]. (3) Further studies are needed to determine 
the cost-effectiveness of AI technology in auxiliary diag-
nosis and estimate their impact on clinical practice [5, 
32].
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