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Abstract 

Background  An immune-related gene signature (IGS) was established for discriminating prognosis, predicting ben-
efit of immunotherapy, and exploring therapeutic options in hepatocellular carcinoma (HCC).

Methods  Based on Immune-related hub genes and The Cancer Genome Atlas (TCGA) LIHC dataset (n = 363), an 
immune-related gene signature (IGS) was established by least absolute shrinkage and selection operator (LASSO) 
analysis. The prognostic significance and clinical implications of IGS were verified in International Cancer Genome 
Consortium (ICGC) and Chinese HCC (CHCC) cohorts. The molecular and immune characteristics and the benefit of 
immune checkpoint inhibitor (ICI) therapy in IGS-defined subgroups were analyzed. In addition, by leveraging the 
Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing datasets, we determined the potential therapeu-
tic agents for high IGS-risk patients.

Results  The IGS was constructed based on 8 immune-related hub genes with individual coefficients. The IGS risk 
model could robustly predict the survival of HCC patients in TCGA, ICGC, and CHCC cohorts. Compared with 4 previ-
ous established immune genes-based signatures, IGS exhibited superior performance in survival prediction. Addition-
ally, for immunological characteristics and enriched pathways, a low-IGS score was correlated with IL-6/JAK/STAT3 
signaling, inflammatory response and interferon α/γ response pathways, low TP53 mutation rate, high infiltration 
level, and more benefit from ICI therapy. In contrast, high IGS score manifested an immunosuppressive microenviron-
ment and activated aggressive pathways. Finally, by in silico screening potential compounds, vindesine, ispinesib and 
dasatinib were identified as potential therapeutic agents for high-IGS risk patients.

Conclusions  This study developed a robust IGS model for survival prediction of HCC patients, providing new insights 
into integrating tailored risk stratification with precise immunotherapy and screening potentially targeted agents.
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Background
Liver cancer is one of the most common cancers and 
a leading cause of tumor-associated mortality world-
wide [1]. Hepatocellular carcinoma (HCC) comprises 
approximately 70% of primary liver cancers, which may 
be caused by hepatitis B virus (HBV) or hepatitis C virus 
(HCV) infection, alcohol abuse, non-alcoholic steatohep-
atitis (NASH) and metabolic disorders. Typical first-line 
treatment for early-stage patients is surgical resection 
[2, 3]. However, up to 70% of patients are diagnosed at 
internal or advanced stages, for whom liver transplanta-
tion, transcatheter arterial chemoembolization (TACE), 
radiotherapy, chemotherapy, and systematic therapy are 
optional strategies [4]. In recent years, some targeted 
agents (e.g., sorafenib, lenvatinib, and regorafenib), have 
shown benefits for treating metastatic or unresectable 
HCC. Despite the benefit from the progress in thera-
pies, the overall survival of advanced HCC patients is still 
unsatisfactory [5]. In this scenario, immunotherapy has 
emerged as a promising treatment for inhibiting tumor 
progression and even relapse [6].

Immune checkpoints have been implicated in tumor 
progression and correlated with clinical outcomes of 
tumor patients with immunotherapy. Currently, increas-
ing studies suggested that immune-checkpoint blockade 
(ICB) might be a promising option for inoperable HCC 
cases [7]. ICB therapeutics targeting programmed cell 
death 1/ligand 1 (PD-1/PD-L1) and cytotoxic T lympho-
cyte associated protein 4 (CTLA-4) have shown efficacy 
in a variety of T cell–inflamed cancers [8]. In addition, 
the combination of PD-1/PD-L1 and CTLA-4 inhibitors 
significantly improved objective response rates (ORRs) 
and patients’ survival [9]. However, the ORRs of ICB 
treatment are relatively low in less-T cells- inflamed 
HCC [10]. Based on the integrative genomic and tran-
scriptomic investigations, the immunosuppressive tumor 
microenvironment (TME) might contribute to the weak 
response of ICB in HCC patients [11].

As a number of studies have suggested the crucial roles 
of the immune-related genes in cancer progression and 
immune-therapeutic response, it is of great significance 
to identify novel immune biomarkers and potential tar-
gets that throw light on improving the prognosis of HCC 
patients [12]. Currently, the publicly available large-scale 
cancer omics datasets provide us multiple strategies to 
identify candidate tumor biomarkers and potential tar-
gets. In this study, we developed and validated a robust 
risk model for HCC, which could predict the prognosis 
of HCC patients and the response of immunotherapy. 
The immune-related hub genes with prognostic signifi-
cance were identified to construct an immune-related 
gene signature (IGS) based on The Cancer Genome Atlas 
(TCGA) training cohort, which was further validated 

in the internal TCGA testing cohort and external HCC 
cohorts. We then characterized the immune features of 
HCC patients at high- or low- IGS risk and evaluated the 
prognostic capacity of IGS in patients treated with immu-
notherapy. In addition, potential therapeutic agents were 
screened to potentially enhance the response of immuno-
therapy and to improve the survival of HCC patients with 
high IGS risk. The current study suggested that IGS was 
a promising biomarker for predicting survival and immu-
notherapy response of HCC patients.

Materials and methods
Datasets information and data processing
To identify and verify the prognostic significance of 
IGS risk model, we included three HCC publicly avail-
able cohorts (Additional file  1: Table  S1). RNA-seq 
profiles for 363 HCC samples and 50 normal liver sam-
ples were obtained from TCGA-LIHC dataset (https://​
portal.​gdc.​cancer.​gov/​repos​itory), which were sub-
sequently converted into the Transcripts Per Million 
(TPM) values. Survival data were achieved from TCGA 
Pan-Cancer Clinical Data Resource (TCGA-CDR). TPM 
normalized expression profiles of 226 normal liver tis-
sues were downloaded from GTEx database. Liver can-
cer-RIKEN, JP project (LIRI-JP) included Gene profiles, 
somatic mutation data and clinical information of 229 
HCC samples were downloaded from the International 
Cancer Genome Consortium (ICGC) portal (https://​
dcc.​icgc.​org/​proje​cts/​LIRI-​JP). Normalized gene profiles 
and survival data of Chinese HCC (CHCC) cohort with 
159 HCC tissues and adjacent tissues patients of Zhong-
shan Hospital (Shanghai, China) were downloaded from 
NODE (https://​www.​biosi​no.​org/​node) [13]. Somatic 
mutations were analyzed using R package ‘maftools’. 
Baseline patient characteristics of the three cohorts 
above were summarized in Additional file 1: Tables S2, S3 
and S4. Two immunotherapeutic cohorts were included 
in this study to test the efficacy of IGS score in predict-
ing immunotherapeutic response. The gene expression 
and clinical information of patients with locally advanced 
or metastatic urothelial carcinoma administrated with 
anti-PD-L1 antibody atezolizumab were obtained from 
IMvigor210 cohort (http://​resea​rch-​pub.​Gene.​com/​imvig​
or210​coreb​iolog​ies) [14]. The raw gene expression data of 
IMvigor210 were normalized and transformed into TPM 
values using R packages “arrayQualityMetrics”, “voom”, 
and “limma”, respectively. The gene profiles and detailed 
clinical information of metastatic melanoma patients 
treated with an anti-PD-1 antibody pembrolizumab 
were achieved from GSE78220 cohort. The background 
adjustment, normalization, and logarithmic processing 
were performed using R package “affy” [15]. The list of 

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://dcc.icgc.org/projects/LIRI-JP
https://dcc.icgc.org/projects/LIRI-JP
https://www.biosino.org/node
http://research-pub.Gene.com/imvigor210corebiologies
http://research-pub.Gene.com/imvigor210corebiologies
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immune-related genes was achieved from ImmPort data-
base (https://​immpo​rt.​org/​shared/​home).

Establishment and validation of the immune signature
The differentially expressed genes (DEGs) between 363 
HCC tissues (TCGA-LIHC database) and normal liver 
tissues (50 samples from TCGA-LIHC database and 226 
samples from GTEx database) were identified using the 
R package “DESeq2” with a threshold of P < 0.05 and 
Fold change > 2. The entire TCGA HCC cases (n = 363) 
were randomly divided into a training cohort (n = 255) 
and testing cohort (n = 108) in a ratio of 3:1. Following 
overlapping the DEGs with immune-related genes from 
ImmPort database, the immune-related hub genes were 
further screened using univariate Cox regression analy-
sis with a threshold of P < 0.05. Subsequently, the LASSO 
algorithm and 200-fold cross-validation were performed 
to construct the immune genes-based signature (IGS) 
model using R package “LASSO” and “cv.glmnet” in the 
training cohort. The IGS score of each sample was calcu-
lated as IGS score = ∑i=1,2,…n (coefficients(genei) × genei 
expression). Based on the median value of IGS score, 
the patients in each cohort were stratified into high-risk 
and low-risk groups. The efficacy and predictive capac-
ity of IGS was evaluated by the time-dependent receiver 
operating characteristic (ROC) curve and Kaplan–Meier 
(KM) curve by performing R package “survivalROC” 
and R package “survival”, respectively. Univariate and 
multivariate Cox regression analyses were performed 
to evaluated the IGS score as an independent prognos-
tic factor for HCC OS. In additional to TCGA internal 
validation cohort and entire validation cohort, the IGS 
model was also validated in ICGC cohort and exter-
nal CHCC cohort. A prognostic nomogram model was 
then established with calibration curve based on the IGS 
score and clinical parameters by performing “rms” and 
“nomogramEx” R packages. Four previously published 
immune-related signatures were referred to compare 
the predictive efficacy and accuracy in CHCC cohort 
[16–19].

Immune cell infiltration and enrichment analyses
The infiltration of immune cells was quantified by per-
forming CIBERSORT algorithm [20]. The infiltration 
scores of different groups were calculated by ImmuCel-
lAI algorithm [21]. The correlation of IGS score with 
immune-related pathways was evaluated using single 
sample gene set enrichment analysis (ssGSEA). Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) were performed to conduct enrich-
ment analysis.  GSEA was performed to detect the dif-
ference in DEGs between the high-risk and low-risk 
group in the enrichment of the MSigDB Collection 

(h.all.v7.2.symbols.gmt). Adjusted P-value less than 0.05 
was considered statistically significant. Somatic variant 
analysis was used to investigate differentially mutated 
genes associated with the ICI response by performing 
“maftools” R package [22].

Drug sensitivity analyses
Gene profiles of cancer cell lines were downloaded 
from the Broad Institute-Cancer Cell Line Encyclope-
dia (CCLE) project (https://​porta​ls.​broad​insti​tute.​org/​
ccle/). Drug sensitivity data of CCLs were obtained from 
the Cancer Therapeutics Response Portal (CTRP v.2.0, 
https://​porta​ls.​broad​insti​tute.​org/​ctrp, 481 compounds) 
and PRISM Repurposing dataset (19Q4, https://​depmap.​
org/​portal/​prism, 1448 compounds). Missing area under 
the dose–response curve were imputed using Knearest 
neighbor (k-NN). Before imputation, compounds with 
more than 20% of missing data were excluded. Molecular 
profiles achieved from CCLE dataset were used for fur-
ther CTRP and PRISM analyses.

Statistical analysis
The statistical tests analyses in this study were performed 
in R v3.6.1 software (Vienna, Austria). Student’s t-test, 
one-way analysis of variance, Wilcoxon rank-sum test or 
Kruskal–Wallis test were performed to compare the dif-
ferences of continuous variables. The chi-square test was 
used for comparison of categorical variables. Correlation 
analysis was computed by performing Pearson algorithm. 
P-value < 0.05 was considered of statistical significance.

Results
Construction and validation of an immune‑related 
prognostic signature for overall survival in HCC patients
By comparing 363 HCC cases with 50 normal liver tissues 
in TCGA data portal and 226 normal tissues in GTEx 
database, 2371 significantly up-regulated genes and 544 
down-regulated genes were identified with a threshold 
of P < 0.05 and Fold change > 2 (Additional file 1: Fig S1A, 
B). Following intersection to 1811 immune-related genes 
derived from the ImmPort database, 251 immune-related 
hub genes were extracted from the DEGs (Additional 
file 1: Fig S1C). Enrichment analysis indicated that these 
genes were implicated in immune and TME-related path-
ways including cell chemotaxis, antigen processing and 
presentation, receptor ligand activity, signaling recep-
tor activator activity, cytokine activity, MHC protein 
complex, cytokine-cytokine receptor interaction, and 
chemokine signaling pathway (Additional file 1: Fig S1D, 
E).

Subsequently, HCC cases of TCGA dataset (363) were 
randomly divided into a training cohort (255) and test-
ing cohort (108) in a 7:3 ratio. Of these immune-related 

https://immport.org/shared/home
https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism
https://depmap.org/portal/prism
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hub genes, 19 candidate genes were further defined as 
significantly relevant with OS of HCC patients by per-
forming Univariate Cox regression analysis (threshold: 
P < 0.05, HR > 1.25 or < 0.75; Fig. 1A) in the TCGA train-
ing cohort. The LASSO Cox algorithm was then con-
ducted to identify the most robust prognostic genes 
among the immune-related DEGs in the TCGA training 
cohort. Following 200-fold cross-validation for variable 
selection, an optimal λ value of 8 was selected (Fig.  1B, 
C). Then, 8 Immune-related genes with individual coef-
ficients were assembled to establish an Immune-related 
gene signature (Additional file  1: Fig S2A, B). Based on 
the IGS, an immune-related prognostic risk score nor-
malized to Z-score was calculated for each patient in the 
TCGA training cohort and testing cohort (Fig. 1D, E).

The IGS presented excellent performance in predicting 
the overall survival of HCC patients
Then, we evaluated the prognostic performance in dif-
ferent HCC cohorts. Based on the median value of the 
IGS score, each HCC cohort was stratified into a high-
risk group and a low-risk group. As illustrated in Fig. 2A, 
HCC patients in high-IGS-risk group exhibited worse OS 
than that of low-IGS-risk group, which was coherently 
determined in TCGA training cohort (HR = 3.35, 95% 
CI = 2.19–5.13, P < 0.0001), TCGA internal testing cohort 
(HR = 2.25, 95% CI = 1.19–4.23, P = 0.01), and ICGC 
cohort (HR = 2.97, 95% CI = 2.09–4.22, P < 0.0001). Con-
sistently, the time-dependent ROC curves indicated that 
the IGS risk model also displayed excellent AUC in the 
three cohorts at the time point of 1 year (training cohort, 
0.701; testing cohort, 0.73; ICGC cohort, 0.727), 3 years 
(training cohort, 0.756; testing cohort, 0.727; ICGC 
cohort, 0.672), and 5 years (training cohort, 0.701; testing 
cohort, 0.658; ICGC cohort, 0.681), suggesting a favora-
ble predictive capacity of the IGS risk model in short- 
and long-term follow-up of HCC patients (Fig. 2B).

In addition, the CHCC cohort, as an external inde-
pendent HCC cohort, was used to further validate 
the prognostic value of the IGS risk model (Fig.  2C, 
D). HCC patients with high IGS risk score had poorer 
RFS (HR = 1.88, 95% CI = 1.15–3.06, P = 0.01) and OS 
(HR = 3.79, 95% CI = 2.23–6.44, P < 0.0001) than patients 
with low IGS risk score. It is worth noting that the time-
dependent ROC curve also indicated that the IGS risk 
model had satisfactory performance in predicting OS in 
CHCC cohort patients at different time periods (2 year, 
0.725; 3  year, 0.73; 4  year, 0.749). Subsequently, Uni-
variate and Multivariate Cox regression analyses were 
conducted in the pooled TCGA cohort including IGS 
risk score and 5 clinical variables (Age, Gender, Grade, 
TNM stage, and TP53 status). The results revealed that 
TNM stage (P < 0.001) and IGS risk score (P < 0.001) 

were independent risk factors for OS of HCC patients 
(Fig.  2E). For the CHCC cohort, Age, Gender, tumor 
size, TP53 status, IGS risk score, and BCLC stage were 
enrolled into the COX regression analyses. It arrived at 
a similar conclusion that the TNM stage (P = 0.039) and 
IGS risk score (P = 0.015) were independent risk factors 
for HCC prognosis (Fig. 2F).

Subsequently, we conducted stratification analyses to 
evaluate the prognostic significance of the IGS risk model 
for HCC patients. The pooled TCGA or CHCC cohort 
was stratified into sub-groups based on clinical features 
such as Age (> = 60 or < 60), Gender, Stage (I/II or III/
IV), and TP53 status (wide-type or mutated). In both of 
the two independent cohorts, the IGS risk model could 
profoundly predict the OS of HCC patients in all sub-
groups (Additional file  1: Fig S3A, B). It suggested that 
IGS retained its prognostic value in differentiating high 
risk cases in different subgroups.

IGS‑based nomogram and comparison with other 
immune‑related signatures
Based on the prognostic performance of the IGS risk 
model, we established a nomogram including IGS risk 
score and clinicopathological features such as age, 
tumor size, BCLC stage and gender in the CHCC cohort 
(Fig.  3A). As demonstrated in the calibration plot, the 
prediction lines of the nomogram for 1-, 2-, and 3-year 
survival probability were extremely close to the 45-degree 
reference line, suggesting the profoundly predictive 
accuracy for HCC patients (Fig. 3B). In addition, in con-
trast to the BCLC stage, the nomogram exhibited supe-
rior performance in predicting the OS of HCC patients 
(Fig. 3C). Furthermore, we compared the performance of 
the IGS risk model with 4 previous immune-related sig-
natures in the CHCC cohort. At the time point of 3 year, 
the AUC of IGS (0.736) was obviously higher than that 
of Liu’s 7-gene signature (0.609), Wang’s 9-gene signa-
ture (0.535), Dai’s 11-gene signature (0.647), and Wang’s 
13-gene signature (0.707), respectively. Moreover, the 
net reclassification improvement (NRI) was conducted 
to quantify the improvement in predictive performance, 
which showed a 10.1% improvement to Wang’s 13-gene 
signature by performing the IGS risk model (Fig.  3D). 
Consistently, with an NRI of 17.7%, the IGS risk model 
also had better performance in 4 year’s follow-up (0.749 
vs. 0.556, 0.534, 0.638, and 0.658) compared with Wang’s 
13-gene signature (Fig. 3E).

The genomic alterations and mutational features 
in different IGS groups
With a threshold of |log2(Fold Change)|≥ 1 and P < 0.01, 
187 DEGs were identified in high- IGS risk samples and 
low- IGS risk samples of the TCGA cohort, respectively 
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Fig. 1  Establishment of the immune-related gene signature for HCC patients. A, the Forest plot demonstrating the results of Univariable Cox 
analysis with statistical significance of the immune related-DEGs in TCGA training cohort. B, C, the LASSO Cox regression algorithm was performed 
to identify the most robust prognostic genes in the 19 immune related-DEGs. D, The distribution of the risk score, survival status, and the 8 IGS 
genes for patients in low- and high-risk groups in TCGA training cohort. E, the distribution of the risk score, survival status, and expression of the 8 
IGS genes for patients in TCGA testing cohort
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Fig. 2  IGS risk model accurately predicted survival of HCC patients. A, the prognostic value of IGS was validated in the TCGA training cohort, TCGA 
internal testing cohort, and external ICGC cohort by Kaplan–Meier analysis. B, time-dependent ROC curves of IGS in the three cohorts above. C, the 
DFS of the high or low IGS risk group in the CHCC cohort. D, the OS curve and time-dependent ROC curves with high or low IGS risk group in CHCC 
cohort. E, The Univariate and Multivariate Cox regression analyses were performed on 6 variables, including IGS risk score, Age, Gender, Grade, TNM 
stage, and TP53 status in the pooled TCGA cohort. F, the Univariate and Multivariate Cox regression analyses with IGS risk score, Age, Gender, tumor 
size, BCLC stage and TP53 status were performed in the CHCC cohort
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(Additional file  1: Fig S4A). Subsequently, these DEGs 
were subjected to GO enrichment analysis to predict 
their potential roles in biological processes. The result 
showed that they were implicated in pathways including 
response to stimulus, immune system process, metabolic 
process, cellular process, and multi-organismal process 
(Additional file  1: Fig S4B). In addition, GSEA was also 
conducted to investigate the IGS genes-related path-
ways in TCGA pooled cohort. The gene sets of the IGS-
high samples were mainly enriched in DNA repair, E2F 
target, G2M checkpoint, and MYC targets (Additional 
file 1: Fig S4C), while the IGS-low group was correlated 
with IL-6/JAK/STAT3 signaling, inflammatory response 
and interferon α/γ response (Additional file 1: Fig S4D). 

Next, we identified the top 10 most frequently mutated 
genes in the IGS risk score-stratified subgroups. In both 
subgroups, the mutation rates of TP53, TTN, CTNNB1 
and MUC16 were higher than 15%. The mutations of the 
ABCA13, OBSCN and SPTA1 genes were more frequent 
in the IGS-high subgroup. In contrast, the mutations of 
LRP1B, MUC4 and RYR1 were more commonly observed 
in the IGS-low subgroup (Fig. 4A). Accordingly, the IGS 
score of patients with OBSCN, TP53, DNAH8, SPTA1, 
or TTN mutation was significantly higher than that of 
wild-type patients (Fig.  4B). Interestingly, as shown in 
Fig.  4C, TP53 ranked the highest mutation frequency 
in both of the IGS-high and -low sub-group. More spe-
cifically, distinct mutation spots of TP53 were detected 

Fig. 3  Construction of nomogram and the comparison with previous immune-related signatures in CHCC cohort. A, Nomograms for predicting 
patients with OS after surgery in CHCC cohort. B, Calibration plot of agreement between predicted by nomogram and observed 2 year, 3 year, and 
4 year outcomes. C, Time-dependent DCA curves. D, ROC of IGS and 4 previous immune-related signatures in CHCC cohort in 3-year follow-up. 
The comparison of NRI (Net Reclassification Index) between IGS and Wang’s 13-gene signature in 3-year follow-up. E, ROC of IGS and 4 previous 
signatures in CHCC cohort in 4-year follow-up. The comparison of NRI between IGS and Wang’s 13-gene signature in 4-year follow-up
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Fig. 4  The mutational features of the IGS-high and IGS-low groups. A, the mutational landscapes of the high IGS risk subgroup and low IGS 
risk subgroup. B, the risk score of HCC patients with wide-type and mutation status of 5 genes with most common mutations. C, representative 
mutated genes in the samples of IGS-high and IGS-low subgroups. D, E, a lollipop plot illustrated the different mutation position of TP53 between 
the IGS-high and-low subgroup. F, the TMB in the IGS-high or -low sub-group in the pooled TCGA cohort. G, The OS of HCC patients with high IGS 
risk/high TMB, low IGS risk/low TMB, and high IGS risk/low TMB. H, Kaplan–Meier analysis of high IGS risk and low IGS risk in HCC patients with high 
TMB
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in the two sub-groups according to the lollipop analysis 
(Fig. 4D, E). Furthermore, the tumor mutational burden 
(TMB) was significantly elevated in patients with higher 
IGS risk score (P = 0.027; Fig.  4F). Moreover, the IGS 
score was negatively correlated with PDL1 expression in 
TCGA data portal (Additional file  1: Fig S5A). Interest-
ingly, the protein expressions of MLH1 and MSH6, two 
typical MSI genes, were significantly elevated in high IGS 
risk group in CHCC cohort, suggesting the potentially 
promoting roles in TMB (Additional file 1: Fig S5B). As 
illustrated in Fig. 4G, patients with high IGS risk score/
high TMB had shorter OS than patients with low IGS 
risk score/low TMB and high IGS risk score/low TMB 
(P < 0.001), respectively. In addition, for patients with 
high TMB, higher IGS score also suggested a poorer 
prognosis (P = 0.038; Fig. 4H).

Immune characteristics of HCC patients with high‑ or low‑ 
IGS score
Given the robust performance of IGS risk model in 
prognosis for HCC, we further investigated the under-
lying immune-related characteristics regarding IGS 
genes. Based on the CIBERSORT analysis in 363 TCGA 
HCC patients, the differences in immune infiltration of 
28 immune cell types in high- and low- IGS risk groups 
are illustrated in Fig.  5A. Activated B cells, Memory 
B cells, immature B cells, Natural killer T cells, Natu-
ral killer cells, Activated CD8 + T cells, effector CD8 T 
cells, Natural killer cells were abundant in the low-risk 
group and negatively correlated with the IGS risk score 
(Fig.  5B). Furthermore, we calculated the abundance of 
immune cells in the TME between the high- and low- 
IGS risk subgroups by performing ImmuCellAI analysis. 
As shown in Fig. 5C, patients in the high-risk group had 
a lower proportion of B cells, dendritic cells (DCs), cen-
tral memory T (Tcm) cells, T follicular helper (Tfh) cells, 
CD4/CD8 T cells, CD56 natural killer (NK) cells, Eosino-
phil cells, neutrophils, natural regulatory T cells (nTreg), 
effector memory T (Tem) cells, and T regulatory type 
1/2/17 (Tr1/2/17) cells, suggesting an immunosuppres-
sive microenvironment in HCC patients with high-IGS 
risk.

The prognostic value of signature in patients 
with anti‑PD‑L1 therapy
Then, we evaluated the prognostic value of IGS risk model 
in 13 independent TCGA cancer cohorts. As presented 
in Fig.  6A, in addition to LIHC (HR, 1.90; P < 0.001), 
IGS risk model displayed an excellent predictive capac-
ity for cancer types such as ACC (HR, 1.53; P = 0.019), 
KIRC (HR, 1.59; P < 0.001), LIHC (HR, 1.90; P < 0.001), 
and THYM (HR, 2.88; P = 0.016). Interestingly, the IGS 
risk model also presented a robust prognostic value for 

pooled pan-cancer patients (HR, 1.90; P < 0.001). To fur-
ther validate the potential capacity of IGS risk model, we 
chose a cohort administrated with anti–PD-L1 immuno-
therapy (GSE78220). High-IGS risk score was detected 
in non-responders rather than responders (Fig.  6B). In 
parallel, the low-IGS risk subgroup had a higher propor-
tion of responders to anti–PD-L1 immunotherapy, sug-
gesting a role of IGS risk score in predicting the response 
of PD-L1 treatment (Fig.  6C). Then we investigated the 
efficacy of IGS risk model in IMvigor210 urothelial can-
cer cohort with immunotherapy information. The IGS 
risk score was positively correlated with regulatory T 
cells, while it was negatively associated with effector 
memory/activated CD8 T cells and immature/activated B 
cells (Fig.  6D). As shown in Fig. 6E, patients with high-
IGS risk score suffered from a significantly shorter OS 
than those with low-IGS risk score in IMvigor210 urothe-
lial cancer cohort (P = 0.0017). In contrast to IGS-low 
subgroup, high IGS risk score led to a lower microsatel-
lite instability (MSI) score and a higher T cell exclusion 
score, while there was no significant difference for T cell 
dysfunction (Fig.  6F). TIDE was further performed to 
evaluate the potential clinical efficacy of immunotherapy 
in different IGS subgroups. Patients with high-IGS risk 
score had a higher TIDE prediction score, which implied 
a higher possibility of immune evasion and less efficacy 
of ICB therapy (Fig. 6G). The ratio of clinical response to 
anti-PD-L1 immunotherapy was subsequently evaluated 
in high- or low-IGS risk subgroups in the IMvigor210 
cohort. Compared with high-risk subgroup, Low-IGS 
risk resulted in a higher proportion of complete response 
[CR]/partial response [PR] and lower stable disease [SD]/
progressive disease [PD] (Fig. 6H). Consistently, patients 
with status of SD/PD had a higher IGS risk score than 
patients with CR/PR (P = 0.048, Fig. 6I). In addition, ROC 
curves demonstrated that the AUC of the IGS risk score 
(0.64) was higher than that of the TIDE score (0.57) and 
TIS (0.585) at 20 months in the IMvigor210 cohort, indi-
cating a better performance in predicting the efficacy of 
anti-PD-L1 immunotherapy (Fig. 6J).

Screening potential therapeutic agents for high IGS risk 
HCC patients
The analyses above indicated that patients with high IGS 
risk score might have poor prognosis and a relatively sup-
pressive immune status. Then we tried to screen poten-
tial agents with higher drug sensitivity for high-IGS risk 
patients based on the CTRP and PRISM datasets. After 
pre-exclusion, 1929 compounds (CTRP, 481; PRISM, 
1448) were included for subsequent analyses (Fig.  7A). 
The candidate therapeutic agents screening was con-
ducted with a two-step strategy (Fig.  7B). First, we per-
formed differential drug response analysis between high 
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IGS risk score sub-group and low IGS risk score sub-
group to identify candidate compounds with lower esti-
mated AUC values in high IGS risk score patients. Next, 
Spearman rank correlation analysis between AUC and 
IGS risk score was conducted to select potential com-
pounds with negative correlation coefficient (r <  − 0.30/
CTRP or r <  − 0.30/PRISM). Based on the analyses 

above, we obtained the candidate agents clofarabine 
and dasatinib from CTRP (Fig. 7C), while 6 compounds 
(epothiloneb, LY2606368, irinotecan, ispinesib, vinblas-
tine and vindesine) from PRISM (Fig. 7D). The analyses 
above suggested that the 8 compounds might be candi-
dates with higher drug sensitivity in high IGS risk score 
patients. Furthermore, multiple perspective analyses 

Fig. 5  The landscape of the TME in HCC and the characteristics of high- or low IGS risk subgroups. A, the proportions of TME cells for 363 patients in 
TCGA cohort was calculated by performing CIBERSORT algorithm. Age, Gender, Grade, Stage, TP53, MUC4, TMB, OS time, and OS status were shown 
as patient annotations. B, the correlation of risk score with immune cells in TME. C, the proportions of TME cells in different subgroups calculated 
by performing ImmuCellAI. Significant statistical differences between the two subgroups were assessed using the Wilcoxon test. ns not significant, 
*P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001
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were conducted by comprehensive evaluation of clinical 
status, experimental evidence, differential mRNA/protein 
levels of candidates’ drug targets, and CMap score. Ulti-
mately, vindesine, ispinesib and dasatinib were identified 
as therapeutic agents for HCC patients with high IGS risk 
score (Fig. 7E).

Discussion
Currently, immune-related genes-based signatures have 
been developed for prognosis prediction in multiple can-
cer types including lung cancer, gastrointestinal cancers, 
and breast cancer [23, 24]. These signatures were evalu-
ated in bioinformatic datasets and multi-central cohorts, 
discriminating high-risk patients with poor survival, sug-
gesting it as a promising strategy for survival prediction 
[25]. Nevertheless, the contribution of the immune signa-
ture to discovering oncogenic pathways, genomic altera-
tions and immune-therapeutic response remains obscure 
in HCC. In the current study, we identified and validated 
a robust IGS through multi-step processes using multi-
ple databases (Fig. 8). Initially, the immune-related DEGs 
were obtained by intersecting TCGA LIHC database and 
ImmPort database, and they were implicated in tumor 
immune and tumor microenvironment-related processes 
and pathways. Then, we established an immune genes-
based signature to predict survival of HCC patients based 
on the 251 immune-related DEGs, in which 19 candi-
date genes were correlated with HCC prognosis. Upon 
these, we established an Immune-related gene signature 
for survival of HCC patients using LASSO Cox regres-
sion model. Subsequently, we included TCGA, ICGC, 
and CHCC datasets to evaluate the prognostic value of 
IGS for HCC patients. As expected, HCC patients with 
high-IGS-risk score had worse OS than patients with 
low-IGS-risk score in entire cohort and stratified sub-
groups. In addition, IGS presented an excellent predic-
tive performance for HCC patients in different time 
period follow-up survival. In consistence, the IGS score 
was also identified as an independent predictive factor 
for OS of HCC patients by Univariate and Multivariate 
Cox regression analyses. A nomogram including IGS 
risk score and clinicopathological features was generated 
to quantify risk assessment and survival probability for 

HCC patients. Compared to other factors, the nomogram 
exhibited profound accuracy and discrimination in sur-
vival prediction. These suggested that the IGS might be 
a promising factor in predicting the prognosis of HCC 
patients. To further validate the superiority of the IGS, 
we compared the predictive performance of it with pre-
viously established immune genes-based signatures in 
CHCC cohort. The current IGS had obviously higher 
AUC than any of the 4 previous signatures with improve-
ment of NRI, indicating the better predictive accuracy 
for the survival of HCC patients. Besides, the pan-cancer 
analysis indicated that the IGS model could also predict 
survival for other cancer types, such as ACC, KIRC, and 
THYM.

It was speculated that the genomic difference might 
contribute to the IGS-discriminated survival of HCC 
patients. Thus, the genomic alterations and mutations 
were also analyzed and compared in different IGS groups. 
DEGs between high and low IGS groups were implicated 
in immune and metabolism-related pathways. Interest-
ingly, the ssGSEA indicated that low-risk group was 
characterized by immune-activated phenotype, including 
IL-6/JAK/STAT3 signaling, inflammatory response and 
Interferon α/γ response. High-risk group was enriched 
in aggressive molecular changes such as DNA repair, 
E2F target, G2M checkpoint, and MYC targets, which 
might drive rapid proliferative rate and promote tumor 
progression. As is known, mutations of key genes facili-
tate the progression of HCC by inducing alterations of 
multiple phenotypes and pathways [26]. In addition to 
the genomic alterations, we also investigated the muta-
tional status in IGS subgroups. TP53, TTN, CTNNB1 
and MUC16 occupied the top mutation rates in both of 
IGS-high and low- groups. Of them, apart from the com-
monly known of TP53 and CTNNB1 in HCC, mutation 
of TTN and MUC16 were also observed in the progres-
sion of HCC [27, 28]. Remarkedly, ABCA13, OBSCN and 
SPTA1, were frequently mutated in the IGS-high group, 
as opposed to IGS-low group. For them, however, rare 
studies have elucidated the correlation of ABCA13 with 
HCC occurrence and development [27, 29].

Subsequently, the immune characteristics of HCC 
patients were evaluated with distinct IGS risk. Focusing 

(See figure on next page.)
Fig. 6  The prognostic value of signature in patients with anti-PD-L1 therapy. A, The prognostic value of IGS risk model in pan-cancers from TCGA 
datasets. B, Risk scores in groups with different anti–PD-1 clinical response status (non-responder: n = 12; responder: n = 15). The differences 
between groups were compared with the Wilcoxon test (P = 0.037). C, Rate of clinical response to anti–PD-1 immunotherapy in high- or low- IGS 
risk groups in the GSE78220 cohort. Responder: complete response [CR]/partial response [PR], Non-responder: stable disease [SD]/progressive 
disease [PD]. D, The correlation of IGS risk score with immune cells of TME in IMvigor210 cohort. E, Kaplan–Meier survival analysis of the subgroups 
in IMvigor210 urothelial cancer cohort. F, G, Dysfunction, MSI, T cell exclusion and TIDE score in different subgroups. H, Rate of clinical response 
to anti-PD-L1 immunotherapy in high- or low- IGS risk patients from IMvigor210 cohort (two-sided Fisher exact test, P < 0.05). I, Rate of clinical 
response to anti-PD-1 immunotherapy in high- or low- IGS risk groups in the IMvigor210 cohort. Responder: CR/PR, Non-responder: SD/PD. J, 
ROC curves measuring the predictive value of the IGS risk score, TIDE, and TIS at 20 months in the IMvigor210 cohort (N = 298). ns not significant, 
*P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001
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on the immune cells in TME, high IGS risk led to a lower 
levels of B cells, DCs, Tcm/Tfh/Tem cells, CD4/CD8 
T cells, NK cells, nTreg, and Tr1/2/17 cells, implying 
an immunosuppressive status in the subgroup of HCC 

patients. To date, limited reliable biomarkers have been 
developed to predict immunotherapeutic response [30]. 
Given that there was no immunotherapy cohort for HCC, 
the efficacy of IGS was further validated in different 

Fig. 6  (See legend on previous page.)
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cohorts administrated with anti–PD-L1 immunotherapy 
to further verify its predictive capacity for immunother-
apy response. Non-responders tended to have a high IGS 
risk, suggesting its roles in predicting the response of 
PD-L1 treatment. In addition, the IGS risk score was pos-
itively correlated with regulatory T cells, and negatively 
associated with effector memory/activated CD8 T cells 
and immature/activated B cells. In patients treated with 
ICB, IGS retained its prognostic capacity to discriminate 
the high-risk subset, which might benefit from immuno-
therapy. Moreover, high-IGS risk score led to a lower MSI 
score and a higher T cell exclusion score/TIDE score, 
suggesting a higher possibility of immune evasion and 

less efficacy of ICB therapy. Consistent with the immune 
score and prognosis, the ratio of clinical response to 
anti-PD-L1 immunotherapy was subsequently evaluated 
in high- or low- IGS risk subgroups in the IMvigor210 
cohort. Higher proportion of CR/PR was observed in 
low-IGS risk patients with anti-PD-L1 immunotherapy. 
However, SD/PD status was positively associated with 
high IGS risk score. In addition, the IGS risk score had 
higher AUROC than either of TIDE score or TIS, indicat-
ing that IGS might act as a possible classifier screening 
the patients suited for anti-PD-L1 immunotherapy.

Nowadays, molecular targeted therapy is an attractive 
strategy for HCC treatment. Although numerous efforts 

Fig. 7  Identification of potential therapeutic agents for high IGS score sub-group. A, A Venn diagram for summarizing included compounds from 
CTRP and PRISM datasets. B, Schematic outlining the strategy to identify agents with higher drug sensitivity for patients with high-IGS risk score. 
C, Spearman’s correlation analysis and differential drug response analysis of 2 CTRP-derived compounds. D, Spearman’s correlation analysis and 
differential drug response analysis of 6 PRISM-derived compounds. E, Identification of most promising therapeutic agents for patients with high 
IGS-risk score according to the evidence from multiple sources
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Fig. 8  The flowchart of this study
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have been made to enhance the efficacy of immunother-
apy, the acknowledge of precise molecular mechanisms 
and available approach remain limited [31]. On the basis 
of aforementioned findings that high IGS risk might been 
correlated with poor prognosis and suppressive immune 
status, CTRP and PRISM datasets were used to screen 
potential agents with higher drug sensitivity for high-IGS 
risk patients. Through pre-screening and multiple per-
spective analyses, vindesine, ispinesib and dasatinib were 
identified as therapeutic agents for HCC patients with 
high IGS risk score. Therefore, combinational adminis-
tration of vindesine, ispinesib or dasatinib may reinforce 
the efficacy of ICB for HCC patients with high-IGS risk. 
Dasatinib, a novel Src/Abl inhibitor, could suppress the 
growth of HCC cells and enhance the anti-HCC efficacy 
of irinotecan by downregulation of PLK1 synthesis [32, 
33]. However, the microtubule-targeting agent vindes-
ine has been approved in the treatment of hematological 
and lymphatic neoplasms. It was reported to interfere the 
continuous mitotic division to block the proliferation of 
cancer cells [34]. Though combination of vindesine and 
ispinesib exhibited certain anti-cancer activity [35], the 
effects of their alliance on HCC have not been evaluated 
in existed studies. It may make sense to further validate 
the effects of the three agents combining on enhancing 
immunotherapy for HCC in vitro and in vivo.

Despite of the attractive results, we have to acknowl-
edge the fact that there were still certain limitations. As is 
shown above, multiple datasets and analysis approaches 
were included to identify and validate the efficacy of IGS. 
However, the sampling bias caused by heterogeneity and 
cross-platform integration remain in the current iden-
tification and validation. Meanwhile, further studies are 
needed to validate the efficacy of IGS in large size HCC 
cohorts and elucidate the biological functions and mech-
anisms underlying the gene signature in HCC.

Conclusions
This comprehensive study provided a robust signature 
risk model based on the immune genes, which had pro-
found performance in predicting the prognosis for HCC 
patients. In addition, patients with high IGS risk may 
have less response of immune therapy, while vindes-
ine, ispinesib and dasatinib were candidate agents that 
improve the ICB for the high IGS risk HCC patients.
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