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Abstract 

Background Metabolic biomarkers are reported to be associated with the risk of lung cancer (LC). However, the 
observed associations from epidemiological studies are either inconsistent or inconclusive.

Methods The genetic summary data of high-density lipoprotein cholesterol (HDL), low-density lipoprotein choles-
terol (LDL), total cholesterol (TC), triglyceride (TG), fasting plasma glucose (FPG), and glycated hemoglobin (HbA1c) 
and those of the LC and its histological subtypes were retrieved from previous GWASs. We performed two-sample 
Mendelian randomization (MR) and multivariable MR analyses to examine the associations between genetically pre-
dicted metabolic biomarkers and LC in East Asians and Europeans.

Results In East Asians, the inverse-variance weighted (IVW) method suggests that LDL (odds ratio [OR] = 0.799, 95% 
CI 0.712–0.897), TC (OR = 0.713, 95% CI 0.638–0.797), and TG (OR = 0.702, 95% CI 0.613–0.804) were significantly associ-
ated with LC after correction for multiple testing. For the remaining three biomarkers, we did not detect significant 
association with LC by any MR method. Multivariable MR (MVMR) analysis yielded an OR of 0.958 (95% CI 0.748–1.172) 
for HDL, 0.839 (95% CI 0.738–0.931) for LDL, 0.942 (95% CI 0.742–1.133) for TC, 1.161 (95% CI 1.070–1.252) for TG, 1.079 
(95% CI 0.851–1.219) for FPG, and 1.101 (95% CI 0.922–1.191) for HbA1c. In Europeans, the univariate MR analyses did 
not detect significant association between exposures and outcomes. However, in MVMR analysis integrating circulat-
ing lipids and lifestyle risk factors (smoking, alcohol drinking, and body mass index), we found that TG was positively 
associated with LC in Europeans (OR = 1.660, 95% CI 1.060–2.260). Subgroup and sensitivity analysis yielded similar 
results to the main analyses.

Conclusions Our study provides genetic evidence that circulating levels of LDL was negatively associated with LC in 
East Asians, whereas TG was positively associated with LC in both populations.
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Introduction
In 2020, lung cancer (LC) is the second most commonly 
diagnosed malignancy and the leading cause of cancer 
death worldwide, representing approximately 2.2  mil-
lion cancers diagnosed and 1.8  million deaths [1]. LC 
are categorized as small cell carcinoma (SCLC) and 
non-small cell carcinoma; the latter mainly represents 
by adenocarcinoma (LUAD) and squamous cell carci-
noma (LUSC). Worldwide, more than 60% of LC-related 
deaths are attributable to smoking; others are caused by 
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occupational workplace exposure, air pollution, and diet 
[2]. Of note is that metabolic factors, such as high plasma 
glucose level and type 2 diabetes, are also associated with 
both LC development and prognosis [2–6], indicating 
that metabolic factors should not be underestimated or 
even neglected in the prevention and management of 
LC. On the other hand, the prevalence of metabolic syn-
drome was rapidly increased over the last decades [7, 8], 
suggesting a persistent increase of metabolic-related LC 
burden in the future.

Previous epidemiological studies have examined the 
association between metabolic factors and the risk of LC. 
For example, individuals with impaired fasting glucose or 
diabetes mellitus, or dyslipidemia had an increased risk 
of LC [9–11]. However, studies reporting a null associa-
tion remained [12–15], indicating further investigations 
are warranted. The inconsistency may be attributed to 
the between-study heterogeneities and the inherent pit-
falls of observational studies, including under-adjustment 
for confounders, small sample size, and reverse causality.

The accumulation of genetic information from genome-
wide association study (GWAS) and the advent of genetic 
methods, such as Mendelian randomization (MR) analy-
sis, provide us the opportunity to further understand the 
correlation between exposure and outcome. The MR esti-
mates reveal the genetic association between exposure 
and outcome, which can be viewed as causation if all of 
the MR assumptions were met [16]. There were several 
MR analyses have been performed for LC [17–19]. How-
ever, the genetic associations between metabolic factors 
and LC have not been thoroughly studied in populations 
with different ethnicities. To fill this gap, we used GWAS 
summary data to examine the genetic associations of six 
metabolic biomarkers with LC and its histological sub-
types in East Asians and Europeans.

Methods
GWAS of exposures
In this study, we included six circulating metabolic bio-
markers, including high-density lipoprotein cholesterol 
(HDL), low-density lipoprotein cholesterol (LDL), total 
cholesterol (TC), triglyceride (TG), fasting plasma glu-
cose (FPG), and glycated hemoglobin (HbA1c), as the 
exposures. The GWAS summary data of the six biomark-
ers of East Asians were retrieved from Korea Biobank 
Array Project [20], in which 125,872 Koreans were 
involved and 8.3  million variants were genotyped and 
imputed (Table  1). For Europeans, the GWAS of blood 
lipid traits and glucose traits were retrieved from the 
Global Lipids Genetics Consortium (GLGC) [21] and 
the MAGIC (the Meta-Analyses of Glucose and Insulin-
related traits Consortium) [22, 23], respectively (Table 1). 
Of note is that the GWAS performed by the GLGC and 

the MAGIC was meta-analysis that aggregated GWAS 
results from individuals with different genetic ancestry 
groups. In this study, we only retrieved the GWAS sum-
mary data of European people. The details of quality 
control and statistical analysis of the exposure to GWAS 
have been shown in previous studies [20–23].

GWAS of outcomes
LC and its histological subtypes SCLC, LUAD, and 
LCSC were the outcomes. To avert the bias of the win-
ner’s curse, we selected outcomes from the populations 
that are independent with that of the exposures. For East 
Asians, we retrieved the GWAS data of LC from the 
BioBank Japan (BBJ) that involved 174,282 controls and 
4444 LC cases (Table 1) [24]. The LC cases were identi-
fied from the electronic medical records. However, the 
histological subtypes of LC were not available in the BBJ. 
For Europeans, we retrieved the GWAS data of LC and 
its subtypes from the McKay JD et al. study [25]. In the 
McKay study, 85,716 participants were included, among 
which 29,266 were LC cases (11,273 LUAD; 7426 LUSC; 
and 2664 SCLC; Table 1), and four independent GWASs 
were performed for LC and its three subtypes. This is 
the largest GWAS for lung cancer to date performed in 
Europeans.

Genetic instrumental variables
We performed a suite of quality control processes to 
select eligible genetic instrumental variables (IVs) from 
the GWAS of exposures. First, we extracted the SNPs 
that reached significance at the genome-wide level (i.e., 
P < 5 ×  10–8). Second, we clumped the SNPs to avert link-
age disequilibrium (LD) using a reference genome panel 
(R2 < 0.01, window size = 10,000  kb). In this process, we 
retained the SNPs that had a lower P value among those 
pairs of SNPs that had LD R2 above the specified thresh-
old (0.01). Third, we removed SNPs with a minor allele 
frequency (MAF) < 1%. Fourth, we matched and extracted 
the selected SNPs from the GWAS of outcomes. For 
SNPs that are absent in the outcome GWAS, we retrieved 
a proxy SNP that had an LD R2 > 0.8 with the requested 
SNP. Finally, ambiguous SNPs with unconcordant alleles 
and palindromic SNPs with an ambiguous strand were 
either directly excluded or corrected in MR analysis.

To test whether the selected instrumental SNPs are 
strongly associated with exposure (the first assumption of 
MR analysis [26]), we calculated the F-statistic using the 
following formula: F = R2(n − k − 1)/k(1 − R2), where R2, 
n, and k denote the proportion of variance of exposure 
explained by selected genetic tools, a sample size of expo-
sure GWAS, and a number of selected IVs, respectively 
[27]. R2 can be calculated by 2 × β2 × EAF × (1-EAF), 
where β is the estimated coefficient of the IV in exposure 
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GWAS and EAF is the effect allele frequency [28]. A 
mean F-statistic > 10 suggests suitable IVs [29].

Mendelian randomization analysis
The methodological details of two-sample MR analysis 
have been presented elsewhere [30]. In this study, we 
used the inverse-variance weighted (IVW) method to 
examine the genetic associations between exposures 
and outcomes. The IVW method uses a meta-analysis 
approach to combine Wald estimates for each SNP 
(i.e., the β coefficient of the SNP for exposure divides 
by the β coefficient of the SNP for outcome) to get the 
overall estimates of the effect [31]. We also applied the 
IVW method to test between-SNP heterogeneity. The 
p value of the Q-statistic > 0.05 means the absence of 
heterogeneity. We used the MR-Egger regression inter-
cept test to identify the horizontal pleiotropy. Since it 
is unlikely that all genetic variants would be valid IVs, 
several robust methods, including weighted-median, 
weighted-mode, and MR-Egger regression methods, 

were used as sensitivity analyses. To avoid the impact 
of outliers, we used the MRPRESSO method to correct 
the MR estimates by excluding potential outliers [32]. 
We also performed multivariable MR (MVMR) analy-
sis to adjust for potential pleiotropy. In this analysis, 
we included all of the six metabolic biomarkers in the 
MR analysis and the IVs were the combinations of the 
IV of each exposure. We also performed a MVMR 
analysis that further incorporated lifestyle risk fac-
tors for LC (i.e., smoking, body mass index [BMI], and 
alcohol drinking) if the GWAS summary data were 
available [33]. The GWAS summary data of smoking, 
BMI, and alcohol drinking were retrieved from respec-
tive GWAS (Table 1). Of note is that the MVMR analy-
sis including both serum lipids and lifestyle risk factors 
was only performed for Europeans because the GWAS 
summary data of smoking, alcohol drinking, and BMI 
were not available for East Asians. All statistical analy-
ses were performed using the R program (v4.0.3). We 
used false discovery rate (FDR) to adjust for multiple 

Table 1 GWAS sources for lung cancer and metabolic biomarkers in Europeans and East Asians

FPG fasting plasma glucose, HbA1c glycosylated hemoglobin, HDL high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol, TC total cholesterol, 
SCLC small cell lung carcinoma, LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, NA not available
a smoking status (ever vs. never smokers)
b Alcohol consumption (drinks per week)

Europeans East Asians

PMID Sample size Case number Web source PMID Sample size Case number Web source

Exposures

 HDL 34887591 1,320,016 – Global Lipids Genetics 
Consortium (http:// csg. 
sph. umich. edu/ willer/ 
public/ glgc- lipid s2021/)

36333282 125,872 – Korea Biobank
Array Project (https:// 
www. korea nchip. 
org/ kba13 0k)

 LDL

 TC

 Triglyceride

 FPG 33402679 151,188 – MAGIC (https:// magic inves 
tigat ors. org/ downl oads/) HbA1c 28898252 123,655

  Smokinga 30643258 518,633 – GWAS-Catalog: 
GCST007327

NA NA NA NA

 Alcohol  drinkingb 30643258 414,343 GWAS-Catalog: 
GCST007328

NA NA NA NA

 Body mass index 30124842 381,275 IEU OpenGWAS project: 
ieu-b-40 (https:// gwas. 
mrcieu. ac. uk/ datas ets/ 
ieu-b- 40/)

NA NA NA NA

Outcomes

 Lung cancer 28604730 85,716 29,266 GWAS-Catalog: 
GCST004748

34594039 178,726 4444 BioBank Japan 
PheWeb (https:// 
pheweb. jp/ pheno/ 
LuC)

 LUAD 66,756 11,273 GWAS-Catalog: 
GCST004744

NA NA NA NA

 LUSC 63,053 7426 GWAS-Catalog: 
GCST004750

NA NA NA NA

 SCLC 24,108 2664 GWAS-Catalog: 
GCST004746

NA NA NA NA

http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
https://www.koreanchip.org/kba130k
https://www.koreanchip.org/kba130k
https://www.koreanchip.org/kba130k
https://magicinvestigators.org/downloads/
https://magicinvestigators.org/downloads/
https://gwas.mrcieu.ac.uk/datasets/ieu-b-40/
https://gwas.mrcieu.ac.uk/datasets/ieu-b-40/
https://gwas.mrcieu.ac.uk/datasets/ieu-b-40/
https://pheweb.jp/pheno/LuC
https://pheweb.jp/pheno/LuC
https://pheweb.jp/pheno/LuC
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testing and an FDR < 0.05 was deemed statistically 
significant.

Results
Association between metabolic biomarkers and lung 
cancer in East Asians
In this analysis, there were 72 to 161 SNPs that were used 
as IVs for exposures (Additional file 1: Tables S1–S6). The 
mean F-statistics for every instrument-exposure associa-
tion were > 10 in our study (from 37.5 to 149.8), suggest-
ing a small possibility of weak instrumental variable bias. 
The MR estimates from different methods of assessing 
the genetic association of six metabolic factors with LC in 
East Asians are presented in Fig. 1 and Additional file 1: 
Table S7. The IVW method suggests that LDL (odds ratio 
[OR] = 0.799, 95% CI 0.712–0.897), TC (OR = 0.713, 
95% CI 0.638–0.797), and TG (OR = 0.702, 95% CI 
0.613–0.804) were significantly associated with LC after 
correction for multiple testing (Fig. 1). The estimates of 
other three MR methods were similar to that of the IVW 
method, although most of them were statistically non-
significant. For the remaining three biomarkers, HDL, 
FPG, and HbA1c, we did not detect a significant asso-
ciation with LC by any MR method. The scatter plots 
showing SNP effects on both exposure and outcome are 
shown in Fig. 2. In these analyses, we detected significant 
between-SNP heterogeneity for all biomarkers except for 
HbA1c. However, no horizontal pleiotropy was found for 
any biomarker.

Association between metabolic biomarkers and lung 
cancer in Europeans
There were 38 to 1017 SNPs that were used as IVs for 
exposures in this analysis (Additional file  1: Tables 
S8–S13). The mean F-statistics for every instrument-
exposure association were much greater than 10 (from 
109.5 to 578.9) in this analysis. The IVW method found 
between-SNP heterogeneity for most exposures, whereas 
the horizontal pleiotropy was only detected for TG 
(Fig.  3). The IVW method suggests no significant asso-
ciation between metabolic biomarkers and LC; the OR 
was 0.964 (95% CI 0.912–1.020) for HDL, 1.003 (95% 
CI 0.942–1.067) for LDL, 0.988 (95% CI 0.930–1.049) 
for TC, 1.044 (95% CI 0.982–1.111) for TG, 0.896 (95% 
CI 0.808–0.995, FDR = 0.478), and 1.080 (95% CI 0.803–
1.454) for HbA1c (Fig. 3; Additional file 1: Table S14). No 
conflicting result was found by other MR methods. The 
scatter plots showing SNP effects on both exposure and 
outcome are shown in Fig. 4.

We also examined the associations between metabolic 
biomarkers and LUAD, LUSC, and SCLC. The results are 
shown in Additional file  2: Figs. S1–S6 and Additional 
file 1: Table S14. We did not detect any significant asso-
ciation in these analyses. Different MR methods gave 
similar estimates. MRPRESSO method also yielded simi-
lar results to the main analysis when excluding outliers 
(Additional file 2: Fig. S7).

MVMR
Figure 5 displays the estimates of MVMR in East Asians 
and Europeans. In East Asians, 478 SNPs were used as 
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Fig. 1 The associations between metabolic biomarkers and lung cancer in East Asians according to Mendelian randomization analysis. (HbA1c 
glycated hemoglobin, FDR false discovery rate, IVW inverse-variance weighted; Numbers in bold denote statistically significant.)
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Fig. 2 The scatter plots showing SNP effects on both exposures and outcomes in East Asians. (A, high-density lipoprotein cholesterol; B, 
low-density lipoprotein cholesterol; C, total cholesterol; D, triglyceride; E, fasting plasma glucose; F, glycated hemoglobin.)
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the IVs and the MVMR yielded an OR of 0.958 (95% CI 
0.748–1.172) for HDL, 0.839 (95% CI 0.738–0.931) for 
LDL, 0.942 (95% CI 0.742–1.133) for TC, 1.161 (95% 
CI 1.070–1.252) for TG, 1.079 (95% CI 0.851–1.219) 
for FPG, and 1.101 (95% CI 0.922–1.191) for HbA1c. In 
Europeans, 2649 SNPs were used as the IVs and we found 
that metabolic biomarkers were not significantly associ-
ated with LC in this population. For LC subtypes LUAD, 
LUSC, and SCLC, we did not detect a significant asso-
ciation between exposure and outcome according to the 
MVMR method either (Additional file 2: Fig. S8). When 
further adjusted for the effect of smoking, alcohol drink-
ing, and BMI, we found that TG was positively associated 
with LC in Europeans (OR = 1.660, 95% CI 1.060–2.260) 
(Fig. 6; Additional file 1: Table S15).

Discussion
In this study, we used GWAS summary data of metabolic 
biomarkers and lung cancer to examine the genetic asso-
ciation between these two traits. In East Asians, the IVW 
method suggests that LDL, TC, and TG were inversely 
associated with LC. MVMR analysis reports a nega-
tive association of LDL and a positive association of TG, 
respectively, with LC. However, the negative association 
between LDL and LC was not replicated by either univar-
iate or multivariable MR analysis in Europeans. Subgroup 
and sensitivity analyses gave similar results to the main 
analysis.

Blood lipids have long been reported to involve in LC 
development. However, evidence from epidemiological 
studies was scattered and inconclusive [34, 35]. A meta-
analysis showed a significant inverse association between 
HDL, TC, and the risk of LC, whereas reported a signifi-
cantly positive association between serum TG levels and 
the LC risk [35]. Chandler et al. using data from Women’s 
Health Study reported that HDL was negatively associ-
ated with LC risk, but a significant association was not 
detected for either TC or TG [36]. In a Chinese popula-
tion, Lyu et al. found that low levels of LDL were signifi-
cantly associated with an increased risk of LC, whereas in 
subjects having high levels of serum LDL, the risk of LC 
was comparable with that of the reference group [37]. No 
significant association was detected between HDL, TG, 
and LC in this study [37]. Compared to these epidemio-
logical studies, in our study, we reported similar findings 
by examining the association between genetically pre-
dicted blood lipids and LC. To our best knowledge, this is 
the first MR analysis to investigate the genetic association 
between common metabolic biomarkers and LC. Our 
findings not only provide complements to the previous 
results but also shed new light on the pathogenesis of LC.

To date, a few studies have reported a negative associa-
tion between LDL and cancers. For instance, Alsheikh-
Ali et  al. reported an inverse association between 
on-treatment LDL levels and incident cancer in statin-
treated patients enrolled in large randomized controlled 
trials [38]. A prospective cohort study also revealed that 
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circulating levels of LDL may be negatively associated 
with the risk of cancers (hazard ratio < 1), albeit the asso-
ciation estimates were statistically non-significant [39]. A 
prospective cohort involved 68,759 Chinese male adults 
reported that circulating LDL levels was negatively asso-
ciated with cancer risk (hazard ratio = 0.8) [40]. However, 
the association between blood LDL levels and LC risk has 
not been thoroughly investigated in population-based 
studies. In the current study, we found an inverse asso-
ciation between LDL and LC using MR approaches. The 
mechanisms underlying the negative association between 
LDL and LC are not yet well understood, although the 
biological roles of LDL in carcinogenesis have been pro-
posed [41]. For example, low LDL has been proposed to 
be associated with suppressed immunity, upregulated 
activity or responsiveness of the mevalonate pathway, 
and increased activity of nuclear transcription factor 
NF-κB [42], thus promoting the initiation and progres-
sion of cancer. Metabolites of cholesterol, such as bile 
acid, have also been implicated in cancer progression 
[43]. However, the specific roles of LDL in lung tumo-
rigenesis still need further investigations because LDL 
showed a distinct effect on the risk of different cancer 
sites, which may be driven by different mechanisms [43]. 
The observed genetic association between LDL and LC 
may also attribute to confounders that cause both a low 
plasma LDL cholesterol level and an increased risk of LC. 
One potential confounder is smoking, which could lead 
to low levels of LDL and increase the LC risk [44]. In the 
scenario of MR analysis, we could not completely tease 
out the confounding effect. Thus, concluding that LDL 
had a causal effect on LC should be cautious.

We also noted a significant association between geneti-
cally predicted TG and LC. In the univariate MR analysis, 
we found an inverse association between TG and LC. On 
the contrary, the MVMR analysis showed that genetically 
predicted TG was positively associated with LC. This 
finding is consistent between East Asians and Europe-
ans and is in line with that of previous epidemiological 
studies [45, 46] and suggests that estimates of univariate 
MR analysis may be biased by other lipids. One possible 
mechanism relating TG to LC is that hypertriglyceri-
demia is associated with the development of oxidative 
stress and reactive oxygen species (ROS) [47]. On one 
hand, smoking is associated with elevated levels of TG 
[48], which may confound the association between TG 
and LC. However, Ulmer et al. found that the association 
remained when the data set was limited to non-smokers, 
suggesting that factors other than smoking status may 
contribute to the observed association [45].

We did not find a significant association between 
genetically predicted FPG and HbA1c and LC in both 
East Asians and Europeans, although the two diabetic 

factors have been shown to positively associate with LC 
risk in epidemiological studies [4, 49]. Our findings are 
consistent with previous MR studies. Yuan et al. reported 
a null association between genetically predicted diabetes 
and LC [50]. Torres et al. found that genetically predicted 
FPG was not significantly associated with LC, although 
there were only 24 SNPs that were used as the IVs [51]. 
These MR findings suggest that FPG and HbA1c may not 
be independent predictors for LC, rather than reflecting a 
risk status predisposing to LC.

A major strength of this study is the MR study design, 
which diminishes confounding and reverse causality 
potentially biasing the results in observational studies. 
We conducted our analyses on East Asians and Euro-
peans. Thus, the results are easy to be extrapolated and 
compared between populations. Our study also has limi-
tations. First, although there was no horizontal pleiotropy 
detected by MR-Egger regression, we could not conclude 
that LDL and TG were causally related to LC risk because 
we still cannot exclude that there is any direct causal 
pathway from the exposure-related genetic variants to 
cancer. Second, our MR estimates are not strictly consist-
ent in East Asians and Europeans, suggesting that ethnic 
background may play a role in the examined association 
that deserves further investigation.

In conclusion, our MR study provides genetic evidence 
that blood LDL and TG are associated with LC in differ-
ent directions among East Asians. However, these associ-
ations are not observed in Europeans. We did not detect 
a significant association between genetically predicted 
HDL, TC, FPG, and HbA1c and LC and its subtypes. The 
associations that reported in epidemiological studies may 
be driven by confounders or reverse causality.
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