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Abstract 

Spinal cord injury is an intricate process involving a series of multi‑temporal and multi‑component pathological 
events, among which inflammatory response is the core. Thus, it is crucial to find a way to prevent the damaging 
effects of the inflammatory response. The research has found that Treg cells can suppress the activation, proliferation, 
and effector functions of many parenchymal cells by multiple mechanisms. This review discusses how Treg cells 
regulate the inflammatory cells to promote spinal cord recovery. These parenchymal cells include macrophages/
microglia, oligodendrocytes, astrocytes, and others. In addition, we discuss the adverse role of Treg cells, the status 
of treatment, and the prospects of cell‑based therapies after spinal cord injury. In conclusion, this review provides an 
overview of the regulatory role of Treg cells in spinal cord injury. We hope to offer new insights into the treatment of 
spinal cord injury.
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Background
Spinal cord injury (SCI) is a devastating neurological 
state that may result in motor, sensory, and autonomic 
dysfunction [1]. Its prevalence has risen from 236 to 
1298 cases per million people globally over the past 
30  years. According to estimates, there are between 
250,000 and 500,000 SCI cases yearly [2]. However, due 
to the disease’s complex pathophysiological mechanisms 
and technical limitations, treatment options are 
limited [3, 4]. Therefore, developing a multifaceted and 
multidisciplinary SCI treatment is a critical unmet need.

SCI is divided into primary and secondary injury, 
according to its pathological process. The primary 
injury has no predictable or effective treatment. At 
present, research at home and abroad has focused on the 
secondary injury. The secondary injury is divided into 
three stages according to the time after injury in humans 

[5, 6]: the acute stage (2 days after injury), the subacute 
phase (2–14  days after injury), and the chronic phase 
(14  days to 6  months). SCI is a dynamic process, and 
multiple factors determine its progression and prognosis. 
Microenvironment imbalance and the infiltration of 
parenchymal cells are key to secondary spinal cord injury 
[7]. For example, innate parenchymal cells in the central 
nervous system respond rapidly after SCI, including 
microglia, astrocytes, and oligodendrocyte progenitor 
cells. Those cells express pro-inflammatory factors, and 
recruit and activate the peripheral immune cell. This 
inflammatory response may persist for days or weeks, 
leading to myelin degeneration, neuronal apoptosis, and 
scarring, thereby worsening neurological dysfunction 
[8, 9]. Thus, it is crucial to find a way to prevent the 
damaging effects of the inflammatory response.

Regulatory T cells (Treg cells) are a small subset of 
CD4 + T cells that are identified by the expression of 
several hallmark proteins, including CD25, Foxp3, and 
Helios. They are essential for maintaining immunological 
homeostasis and dominant self-tolerance, and their 
dysfunction (for instance, owing to Foxp3 gene 
mutation) results in a fatal autoimmune disease and 
immunopathology [10]. Treg cells can inhibit the 
activation, proliferation, and effector functions of other 
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immune cells [11]. Multiple mechanisms are involved 
in Treg-mediated suppression, including cell contact-
dependent and humoral factor-mediated ones, such as 
cell surface molecules (CTLA-4, CD25, TIGIT, CD39, 
and CD73), cytokines (IL-2, IL-10, TGF-β, and IL-35), 
and secreted or intracellular molecules (granzyme, cyclic 
AMP, and IDO) [12, 13]. As excessive neuroinflammation 
can amplify SCI pathologies, the immunosuppressive 
properties of Treg cells are expected to mitigate the 
impact of SCI [14]. This article summarizes the latest 
research on Treg cells in SCI (Fig. 1).

Treg cells repair the spinal cord by regulating 
macrophages/microglia
As the primary innate immune cells, the roles of 
microglia and peripherally derived macrophages after 
SCI have attracted much attention in recent years. 
Immediately after SCI, microglia are activated, and 
the cytokines and chemokines they secrete lead to the 
recruitment of neutrophils and macrophages. The first 
wave of macrophages starts approximately 3  days after 
injury, peaks at 7 days, and endures for a long time [15]. 
Although macrophages may develop a microglia-like 
morphology, they recruited in the brain parenchyma are 
not match the host microglia’s transcriptional signature 
[16, 17]. Due to the phenotypic and antigenic similarities 
between microglia and macrophages after SCI, it is 
difficult to differentiate them, so we collectively refer to 

them as macrophages/microglia. It is now abundantly 
clear that macrophages/microglia play a central role after 
SCI [14]. Many studies have shown that Treg cells have a 
regulatory effect on macrophages/microglia.

First, Treg cells can repair the spinal cord by affecting 
the polarization of macrophages/microglia. It has 
been reported that microglia/macrophages are highly 
plastic, and their phenotypes depend on different 
microenvironmental conditions [18]. M1-type or 
neurotoxic microglia secreting many pro-inflammatory 
factors (TNF-α, IL-1β, and IL-6) are not unfavourable 
to tissue repair. M2-type or neuroprotective microglia 
secreting inflammatory factors (IL-4 and IL-10) 
promote the recovery of nerve function [19, 20]. Single-
cell and high-plex-omics techniques accurately more 
characterize phenotypes [21], but the concept of an 
activation spectrum based on pro- vs. anti-inflammatory 
characteristics remains a helpful framework. Paolicelli 
et al. brought together a team of multidisciplinary experts 
to address these problems. Unfortunately, the profession 
has not yet agreed on some nomenclature issues [22].

Liu et al. found that inflammation-related genes, such 
as ApoD, and downstream cytokines IL-6 and TNF- were 
elevated in microglia in Treg-depleted animals after SCI. 
TNF- and IL-6 participate in canonical STAT3 activation 
signalling, inhibiting function recovery in various 
neuroinflammatory disorders. Eventually, Treg depletion 
caused microglia to develop a pro-inflammatory 
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phenotype [23]. Treg cells can also express programmed 
cell death protein 1 (PD-1) to influence the polarization 
of macrophages/microglia. The major of research 
indicates that the PD-1/PD-L1 signalling pathway 
sustains or promotes Treg cell expansion, Foxp3 
expression, and immunosuppressive function [24–26]. 
PD-1 inhibits the polarization of macrophages/microglia 
towards the pro-inflammatory type post-SCI [27]. He 
et al. [28] observed PD-1 upregulation in infiltrating Treg 
cells and PD-L1 upregulation on post-SCI macrophages/
microglia through flow cytometry. The results of the 
co-culture study showed that PD-1 maintained the 
expression of Foxp3, IL-10, and TGF-β after Treg cells 
contact with pro-inflammatory macrophage/microglia. 
The above experiment suggested that PD-1 secreted 
by Treg cells is essential for Treg cells to maintain their 
identity and anti-inflammatory activity. In addition, 
Yang et al. [29] found that Treg cells inhibited microglia 
activation and restricted TNF-α, IL-1β, and MMP-2(Pro-
inflammatory factors) expression of microglia through 
the JNK/ERK pathway and NF-κB. Shi et  al. [32] found 
that the osteopontin (OPN)–integrin receptor axis 
plays a part in the communication between Treg cells 
and microglia. OPN has significant roles in immune 
modulation and is expressed by peripheral Foxp3 + Treg 
cells, according to earlier studies [33]. They found 
that OPN, a protein produced by Treg cells, functions 
mechanistically by increasing microglial reparative 
activity and oligodendrogenesis by binding to integrin 
receptors on microglia. Subsequently, increasing the 
number of Treg cells by administering IL-2:IL-2 antibody 
complexes enhanced the integrity of the white matter and 
restored neurological functions over time.

Previous studies have shown that M1-like are mixed 
with M2-like types within 7  days after SCI; however, 
the proportion of M2-types gradually decreases to 
disappears, while M1-types gradually increase and 
dominate for a long time [15]. It should be noted that 
M2-type secrete cytokines, such as transforming growth 
factor-β (TGF-β), platelet-derived growth factor (PDGF), 
can promote the formation of fibrous scarring and are 
not favourable to SCI recovery [30]. Therefore, the pro-
inflammatory/pro-reparative balance is essential for 
immune homeostasis after SCI.

Second, research uncovered that Treg cells could 
repair the spinal cord by enhancing efferocytosis by 
macrophage/microglia. Treg cells are poised to play an 
essential role in inflammatory resolution by suppressing 
the inflammatory activity of innate and adaptive immune 
cells and secreting substances that promote tissue repair 
[31]. Proto et  al. [32] established an acute zymosan-
induced peritonitis inflammation model to test the 
theory that Treg cells promote efferocytosis during 

inflammation resolution. They found that Treg cells 
promote the efferocytosis of macrophages, a critical 
effector arm of inflammation resolution. They further 
found that IL-13 produced by Treg cells promotes 
macrophages/microglia to release IL-10, which acts in 
an autocrine-paracrine manner to stimulate apoptotic 
cell engulfment through a Vav1–Rac1–STAT3-mediated 
mechanism. These data indicated that Treg cells are 
crucial for the clearance of apoptotic cells during the 
resolution phase. The above experimental conjecture has 
not been confirmed in the spinal cord, but it provides 
new insights and ideas for our study of Treg cells on SCI.

Finally, Treg cells can repair the spinal cord by affecting 
the pyroptosis of macrophages/microglia. Pyroptosis is a 
pro-inflammatory form of programmed cell death that is 
an uncontrollable inflammatory damage brought on by 
the organism’s overzealous response to external stimuli. 
It is closely correlated with the degree of oxidative 
stress, immune response, and another intracellular 
environmental homeostasis [32, 33]. Inflammasomes 
are activated by intracellular danger signals after injury, 
resulting in cell swelling, rupture, and the release of 
inflammatory mediators [34]. An inflammatory cascade 
is caused by the released inflammatory mediators, which 
attract in more immune cells [35]. Hence, avoiding 
pyroptosis following SCI can decrease the severity of the 
secondary inflammatory injury and enhance the patient’s 
prognosis [36]. Xiong et  al. discovered that exosomes 
produced by Treg cells improve functional recovery. 
Their  studies confirmed that Treg cells used exosomal 
miR-709 to target the NKAP to decrease microglia 
pyroptosis and promote motor function recovery 
following SCI [16].

Treg cells repair the spinal cord by regulating 
oligodendrocytes
In addition to microglia and astrocytes, oligodendrocytes 
are one of the main glial cell types in the spinal cord. 
Oligodendrocytes originate from oligodendrocyte 
progenitor cells (OPC) and constitute approximately 
5% to 10% of the glial cells [37]. The primary function 
of oligodendrocytes is to generate myelin, an extended 
membrane from the cell that wraps tightly around axons. 
It is critical for the rapid and efficient conduction of 
electrical impulses along the axon and for maintaining 
its integrity [38]. Research has found that Treg cells are 
strongly involved in oligodendrocyte differentiation 
and myelination, thus positively affecting the recovery 
process for SCI [36].

To verify whether Treg cells were functionally 
important in oligodendrocyte differentiation. 
Dombrowski et al. [39] found that Treg-depleted animals 
exhibited significantly less-differentiated  CC1+Olig2+ 
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oligodendrocytes (mature oligodendrocytes). 
Subsequently, they discovered that  Olig2+Ki67+ 
proliferating OPC presents no significant differences 
at 5  days post-lesion or 10  days post-lesion, excluding 
inadequate recruitment of OPC in the demyelinated 
region. This research indicates that the decreased 
generation of oligodendrocytes was probably due to an 
impairment in OPC differentiation. The administration 
of Treg cells significantly increased the number of 
differentiated oligodendrocytes in Treg-deficient 
animals, indicating the capacity of Treg cells to rescue 
impaired oligodendrocyte differentiation. They further 
explored the signalling pathways: Treg cells can produce 
CCN3 and promote oligodendrocyte differentiation 
and myelination. CCN3 is a growth regulatory protein, 
biologically active in the extracellular and nuclear 
compartments, and involved in tissue regeneration 
[40]. The production of CCN3 by Treg cells was verified 
by a double ELISA and a Western blot. To determine 
whether CCN3 mediates oligodendrocyte differentiation, 
Dombrowski et  al. [39] showed that the anti-CCN3 
antibody eliminated Treg cells-induced oligodendrocyte 
differentiation, and suppressed the pro-myelinating effect 
of Treg cells in the slice cultures. Furthermore, treatment 
with the infusion of CCN3 significantly promoted 
myelination in slices. These studies demonstrated that 
CCN3, a novel protein secreted by Treg cells, mediated 
Tregs-driven oligodendrocyte differentiation and 
myelination.

Treg cells repair the spinal cord by regulating astrocytes
Astrocytes (also known as glia) are the most abundant 
resident glial cells in CNS, along with oligodendrocytes 
and microglia [41]. Under normal physiological 
conditions, astrocytes typically provide trophic support 
to neurons and promote synapse formation [42]. When 
the local immune microenvironment changes after 
SCI, danger signals induce astrocytes to produce glial 
fibrillary acidic protein (GFAP). Astrocytes upregulate 
GFAP in response to most types of CNS injury and are 
widely used as a marker of astrocyte reactivity [43]. 
Neuroinflammation and ischemia induced two different 
subtypes of reactive astrocytes. It might be argued 
that new names are required to describe the variety of 
reactive astrocytes adequately; however, the existing 
information does not yet provide objective categorization 
of reactive astrocytes. Also, it is advisable to avoid 
using ambiguous and binary phrases when defining 
astrocyte phenotypes, since they are too simplistic to 
be meaningful unless they are supported by precise 
molecular mechanisms and direct causative experimental 
data [44]. A1 cells (A1s) induced by activated microglia 
[42], lose most normal astrocyte functions but acquire a 

novel neurotoxic activity that rapidly kills neurons and 
matures differentiated oligodendrocytes. In contrast, 
A2 cells (A2s) up-regulated many neurotrophic factors, 
so we postulated that A2s are protective. However, local 
astrocyte progenitors near the injured tissue develop 
the glial scar as the inflammatory response progresses. 
Although the glial scar is thought to be the main barrier 
to the restoration of neuronal connectivity and axonal 
regeneration, it initially serves as a barrier by isolating the 
injured area, avoiding the proliferation of inflammatory 
cells, establishing an environment that is favorable for 
surviving neurons surviving neurons, and maintaining 
the blood–brain barrier (BBB) [45].

Recently, many studies have found that Treg cells can 
secret amphiregulin (AREG) to promote the recovery 
of the spinal cord [46]. ARGE, a low-affinity epidermal 
growth factor receptor (EGFR) ligand, is involved in 
wound healing and tissue repair [46]. Ito et  al. [47] 
found that Treg cells expressed high levels of AREG 
after 14  days. The reinfusion of AREG lessened the 
neurological dysfunction by reducing the expression of 
neurotoxic astrocyte genes, the number of astroglioses, 
and the number of apoptotic neurons in Treg-cell-
depleted mice. Furthermore, wild-type Treg cells could 
inhibit excessive astrogliosis, neurological impairments, 
and the production of neurotoxic genes. These results 
indicate that AREG from Treg cells regulates astrogliosis 
and promotes neurological recovery. They found that 
the IL-6–STAT3 pathway is highly activated by Treg cell 
depletion. To illustrate the relationship between AREG 
and the IL-6–STAT3 pathway, they discovered that IL-6 
greatly increased the expression of GFAP and STAT3 in 
primary astrocytes. According to these findings, IL-6–
STAT3 pathway modulation by AREG in astrocytes is a 
crucial step in the neuroprotective role of Treg cells.

It has been mentioned above that astrocytes can be 
neurotoxic and neuroprotective. However, increasing 
research demonstrates that several astrocyte-derived 
factors also exhibit dual characteristics [48, 49]. These 
findings may involve many molecular mechanisms and 
microenvironments related to the various subtypes, 
damage zones, and phases of neurotrauma. Therefore, 
either inhibiting or promoting reactive astrogliosis has 
no therapeutic value. A promising astrocyte-targeting 
therapeutic approach is to selectively stimulate the 
beneficial astrocyte-derived molecules while attenuating 
the deleterious ones based on the spatiotemporal 
environment.

Treg cells repair the spinal cord by regulating other cells
Mesenchymal stem cells (MSCs) are adult stem cells 
derived from the mesoderm in early embryonic 
development with self-renewal, multi-directional 
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differentiation potential. They can maintain their 
biological characteristics after large-scale expansion 
in  vitro. The therapeutic effects of MSCs are currently 
considered to have two aspects: one is the directional 
differentiation and replacement repair of damaged tissue 
by MSCs; the other is the paracrine effect of MSCs. Bone 
marrow mesenchymal stem cells (BMSCs) is a well-
characterized cell population, consisting of adherent 
monocytes extracted from bone marrow. Harvested and 
isolated BMSC populations may contain more mature 
cell types that protect against harmful inflammation. 
Research has confirmed that Foxp3, a critical 
transcription factor responsible for Treg maturation [50], 
is expressed in mesenchymal stem cells [51]. Neal et  al. 
[52] found a distinct subset of  CD4+/CD25+/Foxp3+ Treg 
cells in BMSCs. Treg cells minimized the production of 
IL-6 (a pro-inflammatory cytokine) and inhibited BMSC 
secretion of FGF-b (a cytokine associated with BMSC 
proliferation and differentiation) [53]. In addition, the 
proportion of Treg cells naturally found in BMSCs is 
optimal to provide the most significant neuroprotective 
benefit of stem cell therapy. Several clinical trials are 
ongoing up to this point, and MSC-based treatment 
maybe becomes a common treatment in future [54, 55].

Research has found that Treg cells also affect the 
blood–spinal cord barrier (BSCB) to promote spinal 
cord recovery through neutrophils. The destruction of 
the BSCB is a prerequisite for immune cells to enter the 
injury site and hinders the prognosis of the secondary 
injury. Treg cells attenuated barrier disruption following 
ischemia/reperfusion and subsequent infiltration of 
peripheral inflammatory cells. Jin et  al. [56] describe 
a neuroprotective mechanism by which Treg cells 
inhibit neutrophil-derived matrix metalloproteinase 9 
(MMP9). MMP9 is a metalloproteinase that can damage 
the barrier, especially the intercellular matrix. Several 
related experiments have proven that knocking out the 
MMP9 gene or applying MMP9 inhibitors can reduce the 
damage to the barrier after injury.

The adverse role of Treg cells
While there is plenty of evidence to support its positive 
effects, there is some evidence for the adverse role of 
Treg cells after SCI. Walsh et al. [57] found that a small 
amount of Treg cells was necessary to promote the 
recovery of neuronal injury. In contrast, a large amount 
of Treg cells aggravated the injury process. In addition, 
in  vitro-induced Treg cells were infused back into 
mice to suppress the response of effector T cells. They 
obtained the same result, namely reducing the number of 
neurons. Their findings are consistent with the idea that 
a spontaneous immune response following CNS damage 

is advantageous and is closely controlled by Treg cells. 
Removal of Treg causes an excessive immune response 
that harms injured tissue. However, injecting excessive 
Treg cells or potentiating their suppressive function 
hinders a healthy immunological response to injury and 
impairs neurons’ survival.

The status of treatment and the prospects of cell‑based 
therapies
Neurological pathophysiology is a complex and 
dynamic set of cellular and molecular events after SCI 
[58]. Nowadays, the main treatment for SCI includes 
physical therapy, drug treatment, and surgery [59]. 
However, the outcome for patients with SCI remains 
unsatisfactory. For the treatment of SCI, we also must 
develop new and effective therapeutics. In recent 
years, cell therapies for SCI have gradually become 
a new research hotspot [60]. Using Treg cells as a 
cell-based treatment method was initially proven in 
mouse models, where Treg cells were found to have 
a beneficial role in pathogenesis. Transplantation of 
Treg cells could alleviate autoimmune disease [61, 62]. 
Numerous phase I and phase II clinical trials utilizing 
ex  vivo expanded Treg cells to treat autoimmune 
illnesses [63, 64]. Cell therapy trials in this area still face 
significant obstacles, such as meeting strict regulatory 
requirements, assuring adequately powered efficacy 
trials, and securing sustainable long-term funding 
[65]. Within preclinical research, spinal cord repair 
techniques are moving away from simple cell-only 
injections and exploring therapeutic approaches where 
cells are delivered with biomaterials [66]. Biomaterials 
may help cells survive and provide essential structural 
support for both transplanted cells and regenerating 
host tissue. This gives us a new approach for effectively 
delivering regulatory T cells. To improve cell delivery, 
enhance cell survival, scale up tissue engineering 
technology, and facilitate improved functional recovery, 
future trials may seek to utilize realistic and scalable 
tissue engineering technologies [65].

Conclusion
This review provides an overview of the regulatory role 
of Treg cells in spinal cord injury. Several mechanisms 
contribute to the prognosis of spinal cord injury. 
Future research is anticipated to expand on these first 
technological achievements and utilize combinations 
of biomaterials to enhance the Tregs’ capability for 
survival to repair the spinal cord.
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