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Abstract 

Background Older adults with myeloid malignancies are susceptible to treatment‑related toxicities. Accelerated 
DNAm age, or the difference between DNA methylation (DNAm) age and chronological age, may be used as a bio‑
marker of biological age to predict individuals at risk. In addition, cancer treatment can also lead to accelerated DNAm 
age. Exercise is a promising intervention to reduce or prevent functional, psychological, and cognitive impairments 
in older patients with myeloid malignancies, yet there is little evidence of the effects of exercise on DNAm age. We 
explored (1) the associations of accelerated DNAm age with physical, psychological, and cognitive functions at base‑
line; (2) changes in DNAm age from baseline to post‑intervention; and (3) the associations of changes in accelerated 
DNAm age with changes in functions from baseline to post‑intervention.

Methods We enrolled older patients with myeloid malignancies to a single‑arm pilot study testing a mobile health 
(mHealth) exercise intervention that combines an exercise program  (EXCAP©®) with a mobile application over 2 cycles 
of chemotherapy (8–12 weeks). Patients completed measures of physical, psychological, and cognitive functions and 
provided blood samples for analyses of DNAm age at baseline and post‑intervention. Paired t‑tests or Wilcoxon signed 
rank tests assessed changes in DNAm ages, and Spearman’s correlation assessed the relationships between acceler‑
ated ages and functions.

Results We included 20 patients (mean age: 72 years, range 62–80). Accelerated GrimAge, accelerated Pheno‑
Age, and DunedinPACE were stable from baseline to post‑intervention. At baseline, DunedinPACE was correlated 
with worse grip strength (r = ‑0.41, p = 0.08). From baseline to post‑intervention, decreases in accelerated GrimAge 
(r = ‑0.50, p = 0.02), accelerated PhenoAge (r = − 0.39, p = 0.09), and DunedinPace (r = − 0.43, p = 0.06) were correlated 
with increases in distance walked on 6‑min walk test. Decreases in accelerated GrimAge (r = − 0.49, p = 0.03), acceler‑
ated PhenoAge (r = − 0.40, p = 0.08), and DunedinPace (r = − 0.41, p = 0.07) were correlated with increases in in grip 
strength.

Conclusions Among older adults with myeloid malignancies receiving chemotherapy, GrimAge and PhenoAge on 
average are stable after a mHealth exercise intervention. Decreases in accelerated GrimAge, accelerated PhenoAge, 
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and DunedinPACE over 8–12 weeks of exercise were correlated with increased physical performance. Future trials 
assessing the effects of exercise on treatment‑related toxicities should evaluate DNAm age.

Trial registration Clinicaltrials.gov identifier: NCT04981821.

Keywords DNA methylation, Epigenetic clock, Mobile health, Exercise intervention, Geriatric hematology, Myeloid 
malignancies

Background
Myeloid malignancies, such as acute myeloid leukemia 
(AML) and myelodysplastic syndrome (MDS), most 
commonly occur in adults aged ≥ 60  years [1–3]. Stud-
ies have demonstrated that up to 73% of older patients 
with myeloid malignancies receiving chemotherapy have 
physical, psychological, and cognitive impairments prior 
to and during chemotherapy [4–10]. These impairments 
can lead to reduced quality of life (QoL), treatment inter-
ruptions, and reduced survival [4, 7, 11–14]. Behavioral 
interventions such as an exercise program to prevent or 
reduce these impairments can improve outcomes in this 
vulnerable population.

Aging is a heterogeneous process, and chronologi-
cal age does not always accurately represent underlying 
physiologic age [15]. Individuals can age at different rates 
and experience faster (accelerated) or slower (deceler-
ated) aging, compared to their chronological age [16]. 
Several methods are available to measure physiologic age, 
which includes cognitive age, physical fitness, biological 
age, perceived age, and the frailty index [16]. DNA meth-
ylation (DNAm) age is a promising biomarker of bio-
logical age [17]. DNAm is a biological process whereby 
methyl groups are added to CpG sites (cytosine nucleo-
tide followed by a guanine) on DNA molecules [18, 
19]. DNAm age is estimated based on weighted aver-
age of methylation levels at specific CpG sites [20–24]. 
Although DNAm age is highly correlated with chrono-
logical age [15, 21, 25], it is a more physiologic reflection 
of biological age, accounting for interactions between 
the genome, environment and epigenome [15, 26]. The 
difference between DNAm age and chronological age is 
suggested to provide a measure of biologic aging. In the 
general population, both DNAm age (without adjusting 
for chronological age) and ‘accelerated DNAm age’ (after 
adjusting for chronological age) are associated with func-
tional decline, cognitive decline, frailty, morbidity, and 
mortality [20, 27, 28].

Older adults with myeloid malignancies are suscepti-
ble to treatment-related toxicities. Accelerated DNAm 
age may be used as a biomarker to predict individuals 
at risk. In addition, cancer treatment can also lead to 
accelerated DNAm age through epigenetic alterations 
[21, 29–31]. In a previous study, patients with breast 
cancer who received radiation and chemotherapy 

experienced greater accelerated DNAm age from pre- 
to post-treatment (6.2–25.6  years) compared to non-
cancer controls (change of less than 1 year over a 2- to 
7-year period) [30]. Several algorithms are available to 
calculate DNAm age (e.g., GrimAge [20], PhenoAge 
[23], Horvath Age [21, 22], Hannum Age [24], and Dun-
edinPACE) [32]. First generation epigenetic clocks (e.g., 
Horvath Age, Hannum Age) correlate with chronologi-
cal age and second generation epigenetic clocks (e.g., 
GrimAge, PhenoAge) better reflect biological age [33]. 
Specifically, GrimAge and PhenoAge are strongly asso-
ciated with functional decline, frailty, morbidity, and 
mortality in the general population [20, 27]. Because 
these first and second generation epigenetic clocks 
measure aging-related change in DNAm accumulated 
across the life course, they may not be sensitive enough 
to detect the effects of intervention [34]. DunedinPACE 
is a rate measure rather than a clock therefore allow-
ing quantification of the changes in the pace of DNAm 
age in the context of an intervention [34]. A prior study 
also showed that a lifestyle intervention slowed Duned-
inPACE [34]. Therefore, we focused on DNAm Grim-
Age, DNAm PhenoAge, and DunedinPACE [21].

Exercise is a promising intervention to reduce or pre-
vent functional, psychological, and cognitive impair-
ments in older patients with myeloid malignancies 
[35–38]. In a cross-sectional study, exercise is inversely 
correlated with accelerated DNAm age [39]. Only one 
previous study has evaluated DNAm age in a prospec-
tive non-randomized, single-arm exercise trial of older 
adults with hematologic malignancies; it showed that 
DNAm age decreased in 3 of 10 patients from baseline 
to post-intervention [40]. We previously demonstrated 
that a mobile health (mHealth) exercise intervention is 
feasible, usable, and safe in older adults with myeloid 
malignancies receiving outpatient chemotherapy over 
two cycles in a single-arm pilot study [41]. Patients 
maintained their physical, psychological, and cogni-
tive functions from baseline to post-intervention. In the 
current study, we study the following aims: (1) the asso-
ciations of accelerated DNAm age (focusing on Grim 
Age, PhenoAge, and DunedinPACE) with physical, 
psychological, and cognitive functions at baseline; (2) 
changes in DNAm age from baseline to post-interven-
tion; and (3) the associations of changes in accelerated 
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DNAm age with changes in functions from baseline to 
post-intervention.

Methods
Study design, setting, and participants
We conducted a single-arm pilot study of older patients 
with myeloid malignancies recruited from an academic 
cancer center [University of Rochester Medical Center/
Wilmot Cancer Institute, Rochester, New York, USA)]. 
Details of the study have been previously reported [41]. 
Briefly, we included patients aged ≥ 60  years with a 
myeloid malignancy receiving outpatient-based chemo-
therapy who were able to walk four meters, had a phy-
sician-verified Eastern Cooperative Oncology Group 
(ECOG)  Performance Status between 0 and 2, had no 
medical contraindications to exercise per the treating 
oncologist, and were able to provide informed consent. 
We excluded patients with a platelet count of 10,000 per 
microliter or less in their most recent complete blood 
count if they did not receive platelet transfusion. The 
University of Rochester Research Subjects Review Board 
approved this study. All participants provided informed 
consent.

Study intervention
The Geriatric Oncology-Exercise for Cancer Patients 
(GO-EXCAP) intervention is an integrated mHealth 
exercise intervention that combines an exercise program 
[Exercise for Cancer Patients  (EXCAP©®)] with a mobile 
application (app).  EXCAP©® is an individually tailored, 
low to moderate intensity, home-based exercise program 
consisting of progressive walking and resistance band 
exercises, delivered by an American College of Sports 
Medicine (ACSM)-certified exercise physiologist [42]. 
The mobile app has a patient interface for data entry and 
an online dashboard assessed by study personnel and 
exercise physiologists to monitor data.

Study procedures
After obtaining informed consent, patients completed 
demographics and baseline measures. Clinical data 
were obtained by study staff from the electronic medi-
cal record. Participants also provided non-fasting blood 
samples. To obtain baseline step count, patients were 
provided with an activity tracker (Garmin  Forerunner® 
35) to wear for 4–7  days prior to start of the interven-
tion. Study participants then met with an ACSM-certi-
fied exercise physiologist to receive exercise intervention 
training, as well as instructions from the study team for 
mobile app use. They were provided with an  EXCAP©® 
exercise kit (three therapeutic bands and exercise 

instruction manual), Garmin activity tracker, and a tablet 
with the mobile app.

Participants performed the exercises at home and 
entered data on exercises (daily steps and resistance 
band) and symptoms into the mobile app over two cycles 
of chemotherapy (i.e., 8 to 12 weeks). The exercise physi-
ologists and study team communicated with the par-
ticipants through the remote portal and/or by phone 
and provided tailored feedback regarding intervention 
progress. At post-intervention, similar measures includ-
ing blood samples were collected. Post-intervention step 
counts were collected for 4–7 days during the final week 
of the intervention.

Measures
Clinical outcomes included physical function (self-
reported and objectively assessed), fatigue, depressive 
symptoms, cognition, and quality of life.

Physical function
Physical function was assessed with the Short Physical 
Performance Battery (SPPB), virtual SPPB (added during 
the COVID-19 pandemic), 6-minute walk test (6MWT), 
and handgrip strength. The SPPB is a valid [43] three-
component objective assessment used to evaluate physi-
cal function in older adults. It ranges from 0 to 12; higher 
scores indicate better physical function [44]. The virtual 
SPPB utilizes the same scoring system as the SPPB and 
assesses patient self-reported ability to perform the SPPP 
components [45]. The 6MWT is an assessment of aero-
bic capacity and functional endurance. The test meas-
ures distance walked in six minutes [46]. The handgrip 
dynamometer was used to assess upper extremity muscle 
strength. Assessments were performed in an alternating 
bilateral sequence, with three measurements taken per 
arm.

We also collected Katz Activities of Daily Living (ADL) 
and Lawton Instrumental ADL (IADL). The Katz ADL 
measures independence in six self-care activities (e.g., 
bathing, ambulating) with scores ranging from 0 to 6, 
with lower scores indicating greater dependency. The 
Lawton IADL assesses independence in seven self-care 
activities that are more complex (e.g., preparing meals, 
managing finances). Each question rated is on a three-
point Likert scale with total scores ranging from 0 to 14, 
with lower scores indicating greater dependence.

Fatigue
Fatigue was measured using the Brief Fatigue Inventory 
(BFI). The BFI consists of nine items with scores ranging 
from 0 to 11, with higher scores indicating greater fatigue 
[47].
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Depressive symptoms
Depressive symptoms were measured using the Center 
for Epidemiological Studies Depression Scale (CES-D). 
It consists of 10 items with scores ranging from 0 to 60, 
with higher scores indicating more severe depressive 
symptoms [48].

Health‑related quality of life
Health-related quality of life (HRQoL) was measured 
using the functional assessment of cancer therapy-leu-
kemia (FACT -Leu). FACT-Leu is a valid measure for 
patients with acute or chronic leukemia and consists 
of five subsections: physical well-being, social/family 
well-being, emotional well-being, and leukemia-specific 
symptoms. Each question is rated on a five-point Likert 
scale, and higher scores indicate better HRQoL [49].

Cognition
Cognition was measured using the Montreal Cogni-
tive Assessment (MOCA) or MOCA-Blind (if in-person 
assessment was not possible due to COVID-19 pan-
demic), with scores ranging from 0–30 to 0–22, respec-
tively [50–52]. Higher scores indicate better cognition.

DNA methylation
For DNAm analysis, 1000 ng of DNA was isolated from 
whole blood and bisulfite converted (converts cytosine to 
uracil but leaves 5-methylcytosine residues unaffected). 
DNA methylation microarray assay was performed using 
the Illumina  Infinium® Methylation EPIC Array plat-
form, an oligonucleotide array that interrogates > 850,000 
CpG dinucleotides per sample. Assays were performed by 
Roswell Park Genomics Shared Resource laboratory per 
manufacturer’s protocol. The raw data were processed by 
the R package “minfi” [53] and converted to methylation 
ß-values ranging from 0 (unmethylated) to 1 (fully meth-
ylated) to represent the methylation level of each CpG 
site. Potential residue batch effects were inferred from 
the data using a Surrogate Variable Analysis [54], and 
the ComBat algorithm was used for correction [54]. The 
final data were supplied to the online DNAm age calcula-
tors (https:// dnama ge. genet ics. ucla. edu/). GrimAge [20], 
PhenoAge [23], Horvath Age [21, 22], Hannum Age [24], 
and DunedinPACE. We focused on DNAm GrimAge, 
DNAm PhenoAge, and DunedinPACE [21].

Analyses
We used descriptive statistics to summarize our study 
sample, clinical measures, and accelerated DNAm age 
[Horvath Age, Hannum Age, GrimAge, PhenoAge, and 
DunedinPACE, as well as intrinsic (IEAA) and extrinsic 
(EEAA) epigenetic age acceleration; EEAA adjusts for 
blood cell proportions whereas IEAA is independent of 

blood cell proportions). Accelerated Horvath Age, Han-
num Age, GrimAge, and PhenoAge were calculated from 
the difference between DNAm age and chronologic age, 
with positive values suggesting faster aging and negative 
values reflecting slower aging. DunedinPACE was cal-
culated using “DunedinPACE” R package [32]. To assess 
whether changes in DNAm ages from baseline to post-
intervention were significantly different from zero, we 
used paired t-tests or Wilcoxon signed rank tests when 
differences were not normally distributed. For rela-
tionships between accelerated ages and measures, we 
focused specifically on the second generation epigenetic 
clocks (GrimAge and PhenoAge) and DunedinPACE. 
To assess the relationships between accelerated DNAm 
ages and measures, we used Spearman’s rank correlation 
coefficient.

Given our small sample size and the exploratory nature 
of our study, we pre-specified α = 0.10 (2-tailed) for 
hypothesis testing to indicate a significance threshold of 
interest for future studies. For the same reasons, we did 
not do multiple testing. We used the R to calculate Dun-
edinPACE and SAS v.9.4 (SAS Institute Inc., Cary, NC) to 
perform the remaining analyses.

Results
Demographics
We previously published the demographics and clini-
cal characteristics of the 25 participants [41]. Twenty 
patients had complete DNAm data at baseline and post-
intervention and were included in the analysis (Table 1). 
Mean age of the 20 participants was 71.2 (SD 4.8, range 
62–80), 65% were males, 90% were white, 75% had Kar-
nofsky Performance Status 70–100, and 55% had acute 
myeloid leukemia. Table  2 shows the disease status and 
blood counts at baseline and post-intervention.

At baseline, patients walked on average 3289.4 (SD 
2056.0, n = 18) steps per day. At post-intervention, 
patients walked 3649.1 (SD 2651.8, n = 18) daily steps. 
Patients reported performing resistance band exercises 
for a mean duration of 26.4 (SD 10.21, n = 19) minutes/
day, 3.0 (SD 2.3, n = 19) days/week, and they rated their 
perceived exertion at 3.4 (SD 1.2, n = 18) on a 1–10 Likert 
scale, indicating low intensity.

DNAm ages at baseline and post‑intervention
DNAm ages are shown in Table 3 and Additional file 1: 
Fig. S1. At baseline, mean GrimAge was 73.2  years [SD 
6.8; accelerated GrimAge = 1.5 years (SD 5.4)] and mean 
PhenoAge was 58.2  years [SD 9.7; accelerated Pheno-
Age = −  13.4  years (SD 9.0)]. Mean DunedinPACE was 
1.2  years (SD 0.3). GrimAge and PhenoAge were stable 
from baseline to post-intervention [median change for 
GrimAge = −  1.4  years (interquartile range (IQR) 4.5), 

https://dnamage.genetics.ucla.edu/
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p = 0.17 and median change for Pheno Age = − 1.4 years 
(IQR 12.4), p = 0.35] (Table  2). Additional file  2: Fig. S2 
shows the individual-level changes and by treatment 
types (HMA combination treatment, HMA only, and 
others). No consistent pattern of changes in DNA meth-
ylation ages are noted with treatment types. GrimAge 
decreased in 14 of 20 patients, and PhenoAge decreased 
in 13 of 20. Median DunedinPACE remained stable 
[median change = −  0.1 (IQR 0.2), p = 0.47]; Dunedin-
PACE decreased in 14 of 20 patients.

Associations of accelerated DNAm ages with physical, 
psychological, and cognitive functions
Table  4 shows the outcomes at baseline and post-inter-
vention among those who completed these measures at 
both time points (n = 20). The SPPB, BFI, CES-D, and 
FACT-Leu data have been previously reported [41]. 

Overall, physical, psychological, and cognitive functions 
were stable from baseline to post-intervention. When 
clinically meaningful cut-off scores were utilized, lower 
percentages of participants had physical [except for ADL 
and IADL (IADL), psychological, and cognitive impair-
ments at post-intervention than at baseline.

At baseline, DunedinPACE was inversely correlated 
with grip strength (r = − 0.41, p = 0.08) (Fig. 1).

Associations of change in DNAm age with changes 
in physical, psychological, and cognitive functions 
from baseline to post‑intervention
From baseline to post-intervention, the change in acceler-
ated DNAm ages, as determined using GrimAge, Pheno-
Age, and DunedinPace were correlated with the change 
in distance walked on 6-minute walk test (6MWT) 
and grip strength. Decreases in accelerated GrimAge 

Table 1 Demographics and clinical characteristics

AML, acute myeloid leukemia; HMA, hypomethylating agent; MDS, myelodysplastic syndrome
* 1 received gilteritinib and 1 received low dose cytarabine and venetoclax

Variables N = 20

Age in years, mean (SD, range) 71.2 (4.8, 62–80)

Gender, n (%) Male 13 (65.0)

Female 7 (35.0)

Race, n (%) White 18 (90.0)

Black or African American 1 (5.0)

Prefer not to say 1 (5.0)

Ethnicity, n (%) Not Hispanic or Latino 19 (95.0)

Prefer not to say 1 (5.0)

Marital status, n (%) Married 13 (65.0)

Divorced or widowed 2 (10.0)

Single 5 (25.0)

Education, n (%) High school or below 2 (10.0)

At least some college 6 (30.0)

College graduate 5 (25.0)

Postgraduate level 6 (30.0)

Prefer not to say 1 (5.0)

Karnofsky performance status, n (%) 90–100 3 (15.0)

70–80 12 (60.0)

50–60 5 (25.0)

Diagnosis, n (%) AML 11 (55.0)

MDS 8 (40.0)

MDS/myeloproliferative neoplasm overlap syndromes 1 (5.0)

Treatment, n (%) HMA combination treatment (e.g., venetoclax) 11 (55.0)

HMA only 7 (35.0)

Other* 2 (10.0)

Chemotherapy cycle at initiation of intervention, n (%)* 1 3 (15.0)

2 9 (45.0)

3 4 (20.0)

 ≥ 4 4 (20.0)
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(r = −  0.47, p = 0.04), accelerated PhenoAge (r = −  0.38, 
p = 0.09), and DunedinPace (r = −  0.43, p = 0.06) were 
correlated with increases in distance walked on 6MWT 
(Fig.  2). Similarly, decreases in accelerated GrimAge 

(r = − 0.49, p = 0.03), PhenoAge (r = − 0.42, p = 0.07), and 
DunedinPace (r = −  0.41, p = 0.07) were correlated with 
increases in in grip strength.

Table 2 Disease status and blood counts at baseline and post‑intervention

AML, acute myeloid leukemia; HMA, hypomethylating agent; MDS, myelodysplastic syndrome

^P value from Bowker exact symmetry test
* P value from Wilcoxon signed rank test

Disease status Baseline Post‑intervention Change P

Disease status, n (%) 0.81^

Active MDS 7 (35.0) 7 (35.0)

Active AML 4 (20.0) 4 (20.0)

Remission 7 (35.0) 8 (40.0)

Unable to be determined 2 (10.0) 1 (5.0)

Blood counts

 White blood cell, thousand/uL Mean (SD) 2.91 (2.70) 3.05 (2.23) 0.14 (2.41)

Median (IQR) 1.95 (3.80) 2.25 (4.30) 0.35 (1.95) 0.45*

 Absolute neutrophil count, thousand/uL Mean (SD) 1.59 (1.98) 1.45 (1.63) − 0.14 (1.50)

Median (IQR) 0.65 (2.55) 0.85 (2.65) − 0.00 (1.20) 0.91*

 Absolute monocyte count Mean (SD) 0.28 (0.35) 0.21 (0.28) − 0.07 (0.28)

Median (IQR) 0.10 (0.50) 0.10 (0.35) − 0.02 (1.30) 0.29*

 Absolute lymphocyte count Mean (SD) 0.90 (0.44) 1.00 (0.44) 0.09 (0.39)

Median (IQR) 0.95 (0.75) 1.00 (0.65) 0.10 (0.40) 0.17*

 Hemoglobin, g/dL Mean (SD) 9.31 (2.32) 9.05 (2.97) − 0.26 (1.61)

Median (IQR) 8.45 (2.15) 8.95 (3.05) − 0.30 (1.20) 0.30*

 Platelets, thousand/uL Mean (SD) 148.98 (110.82) 116.97 (93.63) − 32.02 (112.05)

Median (IQR) 143.50 (121.00) 92.50 (130.00) − 13.00 (66.50) 0.22*^

Table 3 DNA methylation ages at baseline and post‑intervention

EEAA, extrinsic epigenetic age acceleration; IEAA, intrinsic epigenetic age acceleration
* P value from Wilcoxon signed rank test

Baseline ages (N = 20) Statistics Baseline Post‑intervention Change P*

Chronological age Mean (SD) 71.7 (4.9) 71.9 (4.8)

Median (IQR) 72.4 (6.5) 72.6 (6.5)

Horvath age Mean (SD) 70.8 (9.3) 70.3 (9.7) − 0.5 (5.6)

Median (IQR) 69.6 (13.4) 68.7 (15.1) − 0.8 (7.4) 0.73

Hannum age Mean (SD) 58.4 (9.1) 58.7 (8.6) 0.3 (10.2)

Median (IQR) 59.1 (7.5) 57.6 (11.4) − 0.7 (10.8) 0.57

IEAA Mean (SD) − 1.0 (7.9) − 1.6 (7.8) − 0.7 (4.1)

Median (IQR) − 3.0 (10.3) − 1.8 (11.4) − 1.0 (5.3) 0.43

EEAA Mean (SD) − 1.2 (10.8) − 1.0 (11.2) 0.2 (12.5)

Median (IQR) − 0.6 (14.1) − 0.1 (15.8) − 0.7 (13.7) 0.81

GrimAge Mean (SD) 73.2 (6.8) 72.5 (5.7) − 0.7 (4.7)

Median (IQR) 73.5 (8.1) 72.3 (6.9) − 1.4 (4.5) 0.17

PhenoAge Mean (SD) 58.2 (9.7) 57.4 (8.5) − 0.8 (12.1)

Median (IQR) 57.2 (14.9) 57.0 (6.9) − 1.4 (12.4) 0.35

DunedinPACE Mean (SD) 1.2 (0.3) 1.2 (0.2) 0.02 (0.34)

Median (IQR) 1.1 (0.4) 1.2 (0.3) − 0.1 (0.2) 0.47
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DNAm ages and exercise levels
To explore changes in exercise levels and changes in 
DNAm age, we stratified the group by the degree to 
which their steps and resistance minutes increased from 
baseline to post-intervention (> median vs ≤ median; 
Table  5). Compared to those who had an increase in 
steps ≤ median from baseline to post-intervention, 
patients who had an increase in steps > median showed 
a greater decrease in DNAm age. For example, among 
those who had increased steps > median, change in 
median GrimAge from baseline to post-intervention was 
-2.66 (IQR 4.06). Among those who had an increased in 
steps ≤ median, change in median GrimAge from base-
line to post-intervention was + 0.79 (IQR 2.85). However, 

no consistent association between changes in DNA 
age and minutes of resistance exercise was observed 
(Table 4). Additional file 3: Fig. S3 shows the changes in 
DNAm age by steps at an individual level.

Discussion
In this single-arm pilot study, we demonstrated that it 
was feasible to evaluate DNAm ages using blood samples 
collected as part of a mHealth exercise trial among older 
adults with myeloid malignancies. We evaluated the rela-
tionship between accelerated DNAm age and physical, 
psychological, and cognitive functions in older adults 
with myeloid malignancies. Examination of correlations 
between accelerated DNAm ages and clinical measures at 

Table 4 Outcomes at baseline and post‑intervention for patients with complete DNA methylation data

a Higher is better
b Lower is better
c 12 patients
d 17 patients
e P value from McNemar’s test for categorical (impairment) and paired t test or Wilcoxon signed rank test for continuous variables

N = 20 Statistic Baseline Post‑intervention Change from baseline 
to post‑intervention

Pe

Short Physical Performance Battery (SPPB)a Mean (SD) 9.00 (1.78) 9.25 (2.53) 0.25 (1.62) 0.66

Median (IQR) 9.00 (2.50) 10.00 (3.00) 1.00 (2.00)

SPPB < 10 is considered impaired N (%) 11 (55.0%) 9 (45.0%) 0.69

Virtual  SPPBa, c Mean (SD) 8.07 (2.94) 8.38 (2.93) 0.08 (2.35) 0.73

Median (IQR) 9.00 (5.00) 9.00 (6.00) 0.50 (1.50)

Virtual SPPB < 10 is considered impaired N (%) 9 (75.0%) 8 (66.7%) 1

6‑minute walk test, in  metersa Mean (SD) 360.20 (135.93) 334.49 (187.98) − 25.71 (151.50) 0.46

Median (IQR) 377.04 (172.21) 392.89 (268.99) 7.16 (114.76)

Grip strength, in  kilogramsa Mean (SD) 25.37 (9.74) 25.86 (9.04) 0.49 (3.18) 0.50

Median (IQR) 25.50 (13.63) 25.46 (13.88) 0.58 (4.52)

 < 25.8 is considered impaired in men and < 17.4 is 
considered impaired in women

N (%) 10 (50.0%) 8 (40.0%) 0.63

Activities of Daily Living (ADL)a Mean (SD) 5.85 (0.49) 5.85 (0.49) 0.00 (0.32) 1

Median (IQR) 6.00 (0.00) 6.00 (0.00) 0.00 (0.00)

 < 6 is considered impaired N (%) 2 (10.0%) 2 (10.0%) 1

Instrumental  IADLa Mean (SD) 12.50 (1.88) 12.30 (2.00) − 0.20 (1.15) 0.56

Median (IQR) 13.00 (2.00) 13.00 (4.00) 0.00 (0.00)

 < 14 is considered impaired N (%) 2 (10.0%) 2 (10.0%) 1

Brief Fatigue  Inventoryb Mean (SD) 28.45 (20.25) 23.85 (19.60) − 4.60 (16.86) 0.24

Median (IQR) 25.00 (27.00) 15.50 (39.00) − 2.00 (23.50)

Center for Epidemiologic Studies  Depressionb Mean (SD) 12.10 (7.71) 11.50 (8.14) − 0.60 (6.34) 0.68

Median (IQR) 11.50 (13.50) 10.50 (9.50) 0.00 (6.50)

 > 15 is considered impaired N (%) 6 (30.0%) 4 (20.0%) 0.63

Functional Assessment of Cancer Therapy‑Leukemiaa Mean (SD) 125.20 (21.67) 127.20 (24.02) 2.00 (13.28) 0.51

Median (IQR) 126.92 (25.83) 133.50 (28.17) 1.83 (20.25)

Montreal Cognitive Assessment (MOCA)a,d Mean (SD) 25.29 (3.48) 25.76 (3.05) 0.47 (3.00) 0.53

Median (IQR) 26.00 (5.00) 27.00 (3.00) 0.00 (3.00)

 < 26 is considered impaired N (%) 7 (41.2%) 6 (35.3%) 1.00
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baseline revealed that DunedinPACE was inversely corre-
lated with grip strength. We showed that after a mhealth 
exercise intervention (over two cycles of treatment or 
approximately 8–12  weeks), DNAm age measured via 
GrimAge and PhenoAge were stable from baseline to 
post-intervention. Nevertheless, from baseline to post-
intervention, decreases in accelerated GrimAge, accel-
erated PhenoAge, DunedinPACE, were correlated with 
increase in both distance walked on 6MWT and in grip 
strength.

Older adults with myeloid malignancies are vulner-
able to treatment-related toxicities which can lead to 
declines in physical, psychological, and cognitive func-
tions, thereby increasing morbidity and mortality. Iden-
tifying those at risk using a biomarker such as accelerated 
DNAm age allows healthcare professionals to warn of 
declines in functions. Accelerated DNAm age is asso-
ciated with functional decline in the general popula-
tion.20–21 For example, in a previous cross-sectional 
study, older adults (aged > 60  years) with accelerated 
aging (PhenoAge) were found to have decreased physical 

performance (measured using the 6MWT) [55]. In a 
longitudinal study of middle-aged urban adults, acceler-
ated DNAm age was associated with diminished perfor-
mance on visual memory/visuoconstructive ability tests 
and attention/processing speed [28]. In a cross-sectional 
analysis of older adults (> 70  years old), accelerated 
DNAm age (Horvath Age) was associated with poorer 
lung function, cognitive function, and grip strength [56]. 
In the cancer population, a longitudinal study of patients 
with head and neck cancer undergoing radiation ther-
apy demonstrated that those who experienced severe 
fatigue had higher accelerated DNAm age (PhenoAge) by 
3.1 years compared to those who did not [57]. Our study 
supports these studies by demonstrating that Dunedin-
PACE is inversely correlated with grip strength among 
older adults with myeloid malignancies.

Behavioral interventions, such as the mHealth exercise 
intervention evaluated here, may ameliorate treatment-
related toxicities and slow the rate of accelerated aging. 
After an 8-week exercise intervention in older patients 
with myeloid malignancies, we found that DNAm age 

Fig. 1 Correlation between baseline accelerated DNA methylation age and baseline physical, psychological, and cognitive functions. 6MWT, 
6‑minute walk test; ADL, Activities of Daily Living; BFI, Brief Fatigue Inventory; CES‑D, Center for Epidemiological Studies Depression; FACT‑Leu, 
Functional Assessment of Cancer Therapy‑Leukemia; IADL, Instrumental Activities of Daily Living; SPPB—Short Physical Performance Battery; 
vSPPB—Virtual Short Physical Performance Battery



Page 9 of 12Loh et al. European Journal of Medical Research          (2023) 28:180  

was generally unchanged. While we do not have a con-
trol arm for comparison, a previous study demonstrated 
among patients with breast cancer, radiation and chem-
otherapy lead to accelerated DNAm age from pre- to 
post-treatment by 6.2–25.6 years [30]. In a mouse study, 

DNAm age measured from skeletal muscle was younger 
in mice who were subjected to endurance exercise train-
ing compared to their sedentary counterparts [58]. Prior 
population-based studies have also evaluated the rela-
tionship between DNAm age and physical activity [39, 

Fig. 2 Correlation between changes in accelerated DNA methylation age and changes in physical, psychological, and cognitive functions. Δ; 
changes from baseline to post‑intervention; 6MWT, 6‑minute walk test; ADL, Activities of Daily Living; BFI, Brief Fatigue Inventory; CES‑D, Center for 
Epidemiological Studies Depression; FACT‑Leu, Functional Assessment of Cancer Therapy‑Leukemia; IADL, Instrumental Activities of Daily Living; 
SPPB—Short Physical Performance Battery; vSPPB—Virtual Short Physical Performance Battery

Table 5 Subgroup analysis evaluating change in accelerated DNA methylation age from baseline to post‑intervention compared by 
change in daily steps or minutes of resistance exercise

* P value from Wilcoxon two-sample test comparing median change in accelerated DNA age for those who increased by ≥ median steps or resistance minutes to those 
who increased by < median steps or resistance minutes

ΔDNAm accelerated 
age

Statistic Increase in steps 
from baseline to 
post‑intervention 
(≥ median) n = 9

Increase in steps 
from baseline to 
post‑intervention 
(< median) n = 9

P* Increase in minutes 
from baseline to 
post‑intervention 
(≥ median) n = 9

Increase in minutes 
from baseline to 
post‑intervention 
(< median) n = 10

P*

ΔPhenoAge Mean (SD) − 2.83 (8.89) − 0.82 (10.56) 2.86 (15.02) − 3.15 (9.27)

Median (IQR) − 5.58 (11.63) − 0.05 (7.90) 0.79 − 1.55 (12.56) − 3.08 (17.52) 0.71

ΔGrimAge Mean (SD) − 1.98 (3.22) 1.83 (5.68) − 0.10 (5.42) − 0.04 (4.37)

Median (IQR) − 2.66 (4.06) 0.79 (2.85) 0.08 − 0.32 (2.65) − 0.30 (4.93) 0.90

ΔDunedinPACE Mean (SD) − 0.13 (0.28) 0.08 (0.29) 0.10 (0.40) − 0.05 (0.31)

Median (IQR) − 0.18 (0.27) − 0.03 (0.13) 0.13 − 0.05 (0.15) − 0.07 (0.22) 0.49
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60]. For example, Sillanpaa and colleagues explored the 
association of various levels of physical activity with 
DNAm age in a cross-sectional study of adults aged 
23–69 years. They demonstrated that compared to adults 
with low activity levels, measured using accelerometers, 
those with medium activity levels had lower acceler-
ated GrimAge (−  3.20; p = 0.04).[60] In a randomized 
controlled trial, 43 healthy adult men aged 50–72 were 
assigned to an 8-week behavioral intervention (diet, 
sleep, exercise, and relaxation guidance, and supplemen-
tal probiotics and phytonutrients) versus controls. Par-
ticipants in the intervention arm had decreased DNAm 
age (Horvath Age) compared to controls (3.23  years, 
p = 0.018).[61] Finally, in a single-arm pilot study of older 
adults with hematologic malignancies, Rosko and col-
leagues demonstrated that PhenoAge decreased in 3 of 
10 patients after a 6-month exercise intervention [40].

We demonstrated decreases in accelerated aging were 
correlated with increases in both distance walked on 
6MWT and grip strength. However, the mechanisms 
by which epigenetic clocks are changed in response to 
behavioral interventions such as exercise are unclear. 
DNAm ages are generated from a set of CpG sites, and 
the methylation levels are a reflection of biological age. 
These CpG sites reside across the genome, but depending 
on the platform used to measure methylation, are biased 
towards promoter regions and may therefore influence 
expression of certain genes. Previous studies have dem-
onstrated that exercise can lead to hypomethylation 
and hypermethylation of specific CpG sites, as well as 
global hypomethylation and hypermethylation [62–67]. 
Of note, Brown and colleagues showed that exercise-
induced DNA methylation modification was stronger 
among older versus younger individuals, which suggests 
that exercise may be more effective in slowing accelerated 
DNAm age in older individuals [68].

Our study has strengths. First, we included older adults 
with myeloid malignancies, a population not typically 
studied in clinical trials. Second, we were able to meas-
ure DNAm ages prospectively in a clinical trial. Several 
limitations also should be noted. For example, our sam-
ple includes patients with various myeloid malignancies 
and at different stages and types of treatment (e.g., hypo-
methylating agents alone or in combination). Therefore, 
it is difficult to differentiate the effects of the cancer, 
treatment, and exercise on DNAm ages. Given the small 
sample size, we were unable to perform subgroup analy-
ses and it may have also limited our ability to detect other 
associations. Given the evolving treatment landscape 
for myeloid malignancies and the increasing difficulty in 
recruiting a homogeneous population, future larger mul-
ticenter trials are needed to recruit this population in 

order to understand the influence of aging, cancer, treat-
ment, and exercise on DNAm ages.

In conclusion, DunedinPACE is inversely correlated 
with grip strength at baseline. We demonstrated that 
GrimAge and PhenoAge on average are stable after a 
mHealth exercise intervention in older adults with mye-
loid malignancies receiving chemotherapy. Decreases in 
accelerated PhenoAge and GrimAge as well as decreases 
in DunedinPACE over 8–12  weeks of exercise are cor-
related with increased physical performance. Our find-
ings will inform an ongoing pilot randomized controlled 
trial (clinicaltrials.gov identifier: NCT04981821) testing 
the effect of the mHealth exercise intervention in older 
adults with myeloid malignancies, in which we will evalu-
ate the change in DNAm age, comparing the intervention 
and control arms. Our study supports the use of Grim-
Age, PhenoAge, and DunedinPACE when measuring 
accelerated aging as part of an exercise clinical trial.
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