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Abstract 

Background Apolipoprotein F (APOF) has been less studied in cancers. Thus, we aimed to perform a pan-cancer 
analysis of the oncogenic and immunological effects of APOF on human cancer.

Methods A standardized TCGA pan-cancer dataset was downloaded. Differential expression, clinical prognosis, 
genetic mutations, immune infiltration, epigenetic modifications, tumor stemness and heterogeneity were analyzed. 
We conducted all analyses through software R (version 3.6.3) and its suitable packages.

Results Overall, we found that the common cancers differentially expressed between tumor and normal samples 
and prognostic-associated were BRCA, PRAD, KIRP, and LIHC in terms of overall survival (OS), disease-free survival (DFS) 
and progression-free survival (PFS). The pan-cancer Spearman analysis showed that the mRNA expression of APOF 
was negatively correlated with four tumor stemness indexes (DMPss, DNAss, ENHss, and EREG-METHss) with statistical 
significance for PRAD and was positively correlated for LIHC. In terms of BRCA and PRAD patients, we found negative 
correlation of APOF with TMB, MSI, neo, HRD and LOH. The mutation frequencies of BRCA and LIHC were 0.3%. APOF 
expression was negatively correlated with immune infiltration and positively correlated with tumor purity for PRAD 
patients. The mRNA expression of APOF was negatively associated with most TILs for LIHC, B cells, CD4+ T cells, neu-
trophils, macrophages and dendritic cells, but was positively associated with CD8+ T cells.

Conclusions Our pan-cancer study offered a relatively comprehensive understanding of the roles of APOF on BRCA, 
PRAD, KIRP, and LIHC.

Keywords Apolipoprotein F, Pan-cancer, Prognosis, Breast invasive carcinoma, Kidney chromophobe, Liver 
hepatocellular carcinoma, Prostate adenocarcinoma

Introduction
The apolipoprotein F (APOF) gene is located at 12q13.3, 
and its product was identified as a minor apolipopro-
tein in plasma first in 1978, which may be involved in 

cholesterol (CE) transport and/or esterification [1]. 
APOF was found to be expressed at a considerable higher 
level in normal liver than in other parts of human organs, 
mainly participating in lipoprotein metabolism [2, 3]. 
APOF inhibits cholesteryl ester transfer protein (CETP) 
activity, among which it preferentially inhibits transfer 
events involving low-density lipoprotein (LDL) [4]. In this 
way, APOF can reduce LDL levels and enhance reverse 
CE transport in mouse model [5]. Conversely, APOF 
knockdown enhances the transfer of cholesteryl esters 
to LDL [6]. Meanwhile, APOF overexpression reduces 
HDL-CE level in mice by increasing the clearance of 
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HDL-CE [7]. Clinical trials have also revealed that APOF 
concentrations are lower in patients with hypertriglyc-
eridemia than in healthy controls [8]. APOF is not only 
associated with lipid metabolism but also potentially with 
glucose metabolism and has recently been identified as a 
circulating biomarker associated with the risk of type 2 
diabetes [9]. Given the established association between 
lipid metabolism and disease risk for various types of 
cancer, for example, prostate cancer and bladder cancer 
[10, 11], this is not difficult to understand that the expres-
sion level of APOF has been found to be helpful in colo-
rectal cancer (CRC) and cholangiocarcinoma (CHOL) 
screening [12, 13], predicting prognosis in hepatocellular 
carcinoma (LIHC) [14], and HPV status in oropharyngeal 
squamous cell carcinoma in previous studies [15].

In this study, we drew the oncological data from the 
Cancer Genome Atlas (TCGA) to perform a pan-cancer 
analysis of APOF [16], primarily focusing on four types 
of cancer in which APOF is both differentially expressed 
between tumor and normal samples and prognostic-
associated, including breast invasive carcinoma (BRCA), 
kidney chromophobe (KIRP), liver hepatocellular carci-
noma (LIHC) and prostate adenocarcinoma (PRAD).

Methods
Differential and prognostic analysis
Similar to our previous studies [17, 18], we downloaded a 
standardized TCGA pan-cancer dataset from the UCSC 
database [19] and extracted the expression data of APOF 
in each sample. We also screened the metastatic samples 
from primary blood derived cancer-peripheral blood 
(TCGA-LAML), primary tumor and TCGA-SKCM. In 
addition, we obtained a high-quality TCGA prognostic 
datasets from the previous TCGA prognostic study [20]. 
We filtered the samples with the expression level of 0 and 
the samples with the follow-up time shorter than 30 days, 
and further performed log2 (x + 0.001) transformation 
for each expression value. We eliminated the cancer spe-
cies with the number of samples less than 10, and finally 
obtained the expression data of 38 cancers and the data 
of overall survival (OS), cancer-specific survival (CSS), 
disease-free survival (DFS) and progression-free survival 
(PFS). Cox proportional hazards regression model was 
used to analyze the prognostic value of APOF on cancers, 
and log rank test was used to obtain prognostic signifi-
cance. In terms of differential expression between tumor 
and normal samples, we screened the samples from sloid 
tissue normal, primary blood derived cancer-peripheral 
blood, primary tumor and removed the samples with the 
expression level of 0. Log2 (x + 0.001) transformation for 
each expression value was performed as well, and cancers 
with the number of samples less than 3 were removed. 
Finally, we obtained the expression data of 18 cancers, 

and unpaired Wilcoxon rank sum and signed rank tests 
were used to perform differential significance analysis. 
The clinical correlations of APOF in the pan cancer were 
evaluated as well. In this study, the abbreviations of each 
cancer from the TCGA database were shown in the Addi-
tional file 1: Fig. S1A.

Tumor stemness, heterogeneity, and mutation landscape
Six tumor stemness indexes, namely differentially meth-
ylated probes-based (DMPss), DNA methylation based 
(DNAss), enhancer elements/DNA methylation-based 
(ENHss), epigenetically regulated RNA expression-based 
(EREG.EXPss), epigenetically regulated DNA methyl-
ation-based (EREG-METHss), RNA expression-based 
(RNAss) were used to analyze the correlation between 
stemness features and APOF expression through the 
Spearman analysis [21]. In addition, homologous recom-
bination deficiency (HRD) [22], loss of heterozygosity 
(LOH) [22], neoantigen (NEO) [22], tumor ploidy [22], 
tumor purity [22], mutant-allele tumor heterogeneity 
(MATH) and tumor mutation burden (TMB) obtained 
from the GDC (https:// portal. gdc. cancer. gov/) and pro-
ceeded by MuTect2 software and R package “maftools” 
[23], and microsatellite instability (MSI) [24] were used 
to assess the relationship between tumor heterogene-
ity and APOF expression. We integrated the mutation 
data and gene expression data, and we filtered the syn-
onymous mutation samples. In each investigated can-
cer, we assessed the difference in the frequency of gene 
mutations between high- and low-expression of APOF 
according to the median expression of APOF through the 
chi-square test.

RNA modifications and tumor immune microenvironment 
(TME)
We analyzed the correlations between APOF and 44 
marker genes of three types of RNA modification (10 of 
m1A, 13 of m5C, and 21 of m6A) through the Spearman 
analysis. The correlations of 24 inhibitory and 36 stimula-
tory checkpoints [22], and 150 immunoregulatory genes 
(chemokine, receptor, MHC, immunoinhibitory, immu-
nostimulatory [68]) with the mRNA expression of APOF 
were conducted as well. Timer [25] and ESTIMATE 
[26] algorithms were used to assess the TME using the 
R package “IOBR” [27]. In addition, we also analyzed 
the relationship between DNA methylation and mRNA 
expression of APOF, and the correlation of DNA meth-
ylation and mRNA expression of APOF with tumor infil-
trating lymphocytes (TILs) were performed through the 
TISIDB database [28].

https://portal.gdc.cancer.gov/
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Statistical analysis
We conducted all analyses through software R (version 
3.6.3) and its suitable packages. Unpaired Wilcoxon rank 
sum and signed rank tests were used to analyze pair-
wise differences, and Kruskal test was used to test mul-
tiple sets of samples. Statistical significance was set as 
two-sided p < 0.05. Significance was marked as follows: *, 
p < 0.05; **, p < 0.01; ***, p < 0.001.

Results
Differential and prognostic analysis
Compared to normal samples, we observed that the 
APOF mRNA expression was significantly upregulated 
in lung adenocarcinoma (LUAD), low-grade glioma 
(LGG), PRAD and BRCA while downregulated in kidney 
renal papillary cell carcinoma (KIRP), pan-kidney cohort 
(KIPAN), kidney renal clear cell carcinoma (KIRC), 
LIHC, thyroid carcinoma (THCA), KICH and cholangi-
ocarcinoma (CHOL) patients (Fig.  1A). In terms of OS, 
we found that high-expression APOF was significantly 

associated with poor prognosis in glioma (GBMLGG), 
and low-expression APOF was significantly associated 
with poor prognosis in LIHC and pancreatic adenocar-
cinoma (PAAD) (Fig.  1B). For CSS, we observed that 
overexpression of APOF was significantly related to 
GBMLGG and downregulation of APOF was signifi-
cantly related to PAAD (Additional file 1: Fig. S1B). For 
DFS, high-expression APOF was significantly associ-
ated with poor prognosis in KIRP, and low-expression 
APOF was significantly associated with poor prognosis 
in BRCA and PAAD (Fig.  1C). In terms of PFS, high-
expression APOF was significantly associated with poor 
prognosis in GBMLGG, and low-expression APOF was 
significantly associated with poor prognosis for PRAD 
and LIHC (Fig. 1D). In contrast, APOF expression levels 
were found to correlate with age  and gender for LIHC 
(Additional file 1: Fig. S1C, D). Differential expression of 
APOF was significant among clinical grade and stage of 
LIHC (Additional file 1: Fig. S1E, F) as well as T stage for 
LIHC, N stage for PRAD (Additional file 1: Fig. S1G–I). 

Fig. 1 Differential expression and prognosis analysis of APOF. A Pan-cancer analysis of APOF for differential expression between tumor and normal 
tissues; B pan-cancer analysis of APOF for OS; C pan-cancer analysis of APOF for DFS; D pan-cancer analysis of APOF for PFS. OS: overall survival; DFS: 
disease-free survival; PFS: progression-free survival
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Overall, we found that the common cancers differentially 
expressed between tumor and normal samples and prog-
nostic-associated were BRCA, PRAD, KIRP, and LIHC 
in terms of DFS and PFS. Moreover, we also found that 
APOF was differentially expressed at different ages, with 
positive correlations for BRCA and LIHC, and negative 
correlations for PRAD.

Tumor stemness, heterogeneity, mutation landscape, RNA 
modifications and immune regulatory genes and immune 
checkpoint
The pan-cancer Spearman analysis showed that the 
mRNA expression of APOF was positively  correlated 
with all six tumor stemness indexes (DNAss, EREG-
METHss, DMPss, ENHss, RNAss and EREG.EXPss) with 
statistical significance for LUAD and with four tumor 
stemness indexes (DNAss, EREG-METHss, DMPss 
and ENHss) for LIHC (Fig.  2A–F). While APOF was 
negatively correlated with two tumor stemness indexes 
(RNAss and EREG.EXPss) for BRCA (Fig.  2A–F). In 
terms of tumor heterogeneity, for BRCA, the mRNA 
expression of APOF was negatively associated with 
TMB (R = − 0.09), MSI (R = − 0.07), NEO (R = − 0.07), 
HRD (R = − 0.18) and LOH (R = − 0.18) (Fig. 3A–H). For 
PRAD, the mRNA expression of APOF was negatively 
associated with TMB (R = − 0.09), MSI (R = − 0.10), NEO 
((R = − 0.10), tumor ploidy (R = − 0.18), HRD (R = − 0.23) 
and LOH (R = − 0.12) (Fig. 3A–H). For KIRP, the mRNA 
expression of APOF was positively associated with HRD 
(R = 0.28) (Fig. 3A–H). For LIHC, the mRNA expression 
of APOF was  positively associated with TMB (R = 0.12) 
while negatively associated with MATH (R = − 0.12), 
MSI (R = − 0.13), NEO (R = − 0.13), HRD (R = − 0.21) and 
LOH (R = − 0.27) (Fig. 3A–H).

The mutation frequencies of BRCA and LIHC were 
0.3% (Fig.  4A). We divided tumor patients into two 
groups according to the median expression of APOF. The 
mutations of PIK3CA, TP53, KMT2C, MUC17, SRCAP, 
OBSCN, CENPE, UBR5, GPS2 were significant between 
high- and low-expression group for BRCA (Fig.  4B). 
TP53, SPOP, FOXA1, TP53BP1, LRRTM1 and ERF muta-
tions were significant for PRAD (Fig.  4C). In terms of 
KIRP, the genetic mutations were significant between 
high- and low-expression group, including TP53, SPOP, 
FOXA1, TP53BP1, LRRTM1 and ERF (Fig.  4C), and 
BAP1, RB1, SPEG, IRS4, COL15A1, STK32B, RP1L1, 
EPG5, TLR8 and CHSY3 mutations were significant for 
LIHC (Fig. 4E).

RNA modifications and TME
In terms of RNA modifications, for PRAD, the mRNA 
expression of APOF was positively associated with 
NSUN6 and FMR1, while for BRCA, the mRNA 

expression of APOF was positively associated with 
TRMT61B, TRMT6, ALKBH1, ALKBH3, TRDMT1, 
NSUN6, METTL3, ALKBH5, FTO and YTHDC2 
(Fig. 4F). For KIRP, multiple m1A, m5C and M6A modi-
fications were found to be positively associated with 
APOF expression, while DNMT3B and KIAA1429 were 
negatively associated (Fig.  4F). NSUN3, ALKBH5, FTO 
and FMR1 were positively associated with the mRNA 
expression of APOF (Fig.  4F). Multiple immunoregula-
tory genes (Fig. 5A) as well as immune checkpoint genes 
(Fig. 5B) were found to be associated with APOF expres-
sion levels in all four cancer types.

We found that for BRCA, APOF mRNA expression 
was negatively correlated with immune score (R = − 0.08) 
(Fig.  6B), while for LIHC, APOF mRNA expression 
was positively correlated with stromal score (R = 0.1) 
(Fig. 6C). For PRAD, APOF mRNA expression was neg-
atively correlated with ESTIMATE score (R = − 0.19), 
immune score (R = − 0.19), and stromal score (R = − 0.15) 
(Fig.  6A–C). Meanwhile, we observed that the APOF 
mRNA expression was negatively associated with 
CD4+ T cells while positively associated with CD8+ T 
cells for BRCA patients (Fig. 6D). For LIHC, various TILs 
were negatively associated with APOF mRNA expression 
[29], including B cells, CD4+ T cells, neutrophils, mac-
rophages and dendritic cells, while CD8+ T cells were 
positively associated (Fig. 6D).

Discussion
Approximately 75% of circulating apolipoproteins are 
associated with high-density lipoproteins (HDL), with 
the remaining 25% present in LDL [30]. Apolipoprotein 
(APO) has been well studied in relation to cardiovascular 
illness, and its relationship with cancer has been gradu-
ally revealed [31, 32]. Other members of the APO fam-
ily have been found to be involved in autophagy [33, 34], 
oxidative stress [35, 36], apoptosis [37], and cancer drug 
resistance [38, 39]. ApoF, a 162 amino acid C-terminal 
fragment of pro-APOF, is cleaved by PCSK7 to become 
mature with an apparent molecular weight of about 
30 kDa [40]. ApoF is mainly synthesized and secreted by 
the liver and was found to be associated with HDL and 
to a lesser extent with LDL particles in circulation [1, 7, 
29, 41]. APOF mainly functions by regulating CETP. Up 
to 70% of HDL cholesteryl ester clearance to the liver 
occurs through a CETP-dependent mechanism [42, 43]. 
Abnormal APOF expression may lead to abnormal lipid 
metabolism [30, 44]. Reprogramming of lipid metabo-
lism is a known hallmark of cancer [45]. In tumor cells, 
the rate of lipogenesis is significantly accelerated. The 
higher rate of lipogenesis in cancer cells is intended to 
provide substances required for cell proliferation as well 
as energy generation through β-oxidation of fatty acids 
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Fig. 2 The pan-cancer Spearman analysis of tumor stemness and APOF expression. A The correlation between tumor stemness and APOF level 
using DMPss; B the correlation between tumor stemness and APOF level using DNAss; C the correlation between tumor stemness and APOF level 
using ENHss; D the correlation between tumor stemness and APOF level using EREG.EXPss; E the correlation between tumor stemness and APOF 
level using EREG-METHss; F the correlation between tumor stemness and APOF level using RNAss

Fig. 3 The pan-cancer Spearman analysis of tumor heterogeneity and APOF expression. A the correlation between HRD and APOF level; B the 
correlation between LOH and APOF level; C the correlation between MATH and APOF level; D the correlation between MSI and APOF level; E the 
correlation between NEO and APOF level; F the correlation between tumor ploidy and APOF level; G the correlation between tumor purity and 
APOF level; H the correlation between TMB and APOF level. HRD: homologous recombination deficiency; LOH: loss of heterozygosity; MATH: 
mutant-allele tumor heterogeneity; MSI: microsatellite instability; NEO: neoantigen; TMB: tumor mutation burden

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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[46]. This metabolic reprogramming triggers a series of 
cascading events in tumor cell physiology and often pro-
duces harmful by-products such as ROS. APOF has also 
been implicated in immune and inflammatory responses 
in animal studies [47]. For example, transcription of 
interferon alpha (IFNα)-responsive genes was shown 
to be impaired in APOF knockout mice [32]. Our study 
found for the first time a correlation between APOF and 
the occurrence and prognosis of various cancers, particu-
larly in the four types of cancer: BRCA, PRAD, KIRP, and 
LIHC. This relationship may be explained from the per-
spective of tumor metabolism and tumor stemness, het-
erogeneity, and immune infiltration.

It is known that cancer is closely related to age [48–51]. 
PRAD is one of the most common urinary tumors and 
its prevalence will be deteriorated as the population ages 
worldwide [48, 52–67]. BRCA and PRAD are two of the 
most important hormone-related tumors known. For 
tumorigenesis, since high CE was found to be positively 
associated with breast cancer, this is consistent with our 
findings that elevated APOF expression in tumors com-
pared to normal tissue causes high cholesterol [68]. We 
proposed that APOF increases circulating cholesterol 
uptake by regulating cholesterol transport and esteri-
fication to meet the increased cholesterol demand of 
proliferating breast cancer cells. In contrast, for progno-
sis, the low APOF group had larger tumors, higher dif-
ferentiation and proliferation rates, and more frequently 
occurring HER2-like phenotypes due to elevated LDL-
CE, which further suggesting an important role for APOF 
in BRCA, by regulating lipid levels [69, 70]. In addi-
tion, the effect of hypercholesterolemia on mammary 
tumor growth and metastasis was also studied in APOE 
knockout mice [71]. Overall, targeting APOF, i.e., target-
ing cholesterol transport and esterification, may be one 
of the targets for BRCA, but might not be as effective as 
directly targeting downstream cholesterol uptake and its 
conversion with high specificity. The role of APOF in the 
carcinogenesis of BRCA patients is controversial, never-
theless. Lower levels of estrogen 2 (E2) can boost ETS-1 
production and rapidly induced capillary angiogenesis in 
BRCA patients [72]. Meanwhile, ETS-1 can activate the 
APOF promoter [73].

Similar to BRCA, elevated APOF is observed during 
tumorigenesis, which leads to high cholesterol level and 
has been found to be positively associated with PRAD 
and the risk of developing aggressive PRAD [68, 70]. The 
white adipose tissue around the prostate is a source of 
lipids used by adjacent prostate cancer cells and a local 
factor that stimulates the progression of PRAD, where 
lipids can remodel extracellular matrix and support neo-
vascularization [74]. In addition, hypercholesterolemia 
is associated with elevated androgen levels as well as the 
androgen receptor (AR) [75–78]. Whereas AR signal-
ing may instead affect cholesterol synthesis. For exam-
ple, androgen-responsive elements can upregulate the 
enzyme 3β-hydroxysterol Δ24-reductase (DHCR24) in 
AR-positive prostate cancer cells, thereby promoting 
cholesterol accumulation [78, 79]. In addition, our study 
suggested that APOF expression level  was correlated 
with all prognostic indicators including OS, CSS, DFS 
and PFS in PAAD patients, although no differences were 
found between PAAD and normal tissues. Interestingly, 
we found that PRAD was the only cancer type in which 
APOF expression levels were negatively correlated with 
age, combined with our finding that APOF expression 
levels were much higher in PRAD tumor tissues than in 
normal tissues, due to the fact that PRAD is the only can-
cer type in which aging has been identified as a direct risk 
factor among all cancer types [80]. In addition, PAAD 
is also a hormone-related cancer and aggressive PAAD 
was found to be strongly upregulated on LDL-receptors 
in conjunction with increased cholesterol uptake [81]. 
Therefore, a prospective combined metabolic therapeutic 
strategy, in association with  other therapies, is a promis-
ing combined metabolic treatment option for PAAD [82].

The liver plays a key role in the metabolism of plasma 
apolipoproteins, and plasma lipid profiles may be altered 
in LIHC because plasma levels of apolipoproteins may be 
a sensitive marker of liver injury [83, 84]. Northern blot 
analysis showed that APOF mRNA was only found in 
liver tissue [4, 85]. Our research supported prior research 
on liver cancer cell lines that APOF expression is down-
regulated in LIHC and is associated with low recurrence-
free survival [14]. Our study additionally found that 
APOF was also associated with clinical stage and OS of 
LIHC patients. Since APOF expression inhibited the 

(See figure on next page.)
Fig. 4 Mutation landscape of APOF and RNA modification. A Mutation landscapes of APOF for BRCA and LIHC; B the top 15 mutation genes 
between high and low-expression group for BRCA patients, including PIK3CA, TP53, KMT2C, MUC17, SRCAP, OBSCN, CENPE, UBR5, GPS2; C the top 
15 mutation genes between high and low-expression group for PRAD patients, including TP53, SPOP, FOXA1, TP53BP1, LRRTM1 and ERF; D the top 
15 mutation genes between high and low-expression group for KIRP patients, including TP53, SPOP, FOXA1, TP53BP1, LRRTM1 and ERF; E the top 15 
mutation genes between high and low-expression group for LIHC patients. BAP1, RB1, SPEG, IRS4, COL15A1, STK32B, RP1L1, EPG5, TLR8 and CHSY3 
mutations were significant; F the correlation of APOF expression and RNA modification genes
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Fig. 4 (See legend on previous page.)
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Fig. 5 The Spearman analysis of APOF expression and immune checkpoints and regulatory genes. A The correlation of APOF expression with 
immune checkpoint genes; B the correlation of APOF expression with immune regulatory genes
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Fig. 6 Tumor immune environment. A The correlation of APOF expression with ESTIMATE score; B the correlation of APOF expression with immune 
score; C the correlation of APOF expression with stromal score; D the correlation of APOF expression with immune infiltrating cells in the TIMER 
database
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proliferation of LIHC cells in  vitro and migrated slowly 
after APOF expression was upregulated [14]. There-
fore, we hypothesize that APOF may play a role similar 
to that of a tumor suppressor gene and the one of the 
mechanisms of APOF-LIHC association is mediated 
through the intermediary of nonalcoholic fatty liver dis-
ease (NAFLD), which is a precancerous lesion of LIHC 
and can proceed to cirrhosis through fibrotic phase and 
can be exacerbated by LIHC [86]. APOF expression levels 
were reduced in mice on an obesogenic diet, which led 
to subsequent development of NAFLD and LIHC [87]. In 
addition, we found a large number of differences in the 
levels of TILs between the high and low groups of APOF 
mRNA expression levels, which were negatively corre-
lated with all immune cells except CD8+ T cells. We pos-
tulate that the poor prognosis in patients with low APOF 
expression is associated with remodeling of the hepatic 
immune cell pool during NAFLD and involvement in the 
uncontrolled inflammatory environment that promotes 
liver injury and liver fibrosis [88]. In contrast, CD8+ T 
cells that can limit tumor load through their ability to ini-
tiate anti-tumor immune responses are instead observed 
to be reduced in the high-risk group [88, 89]. It is also 
interesting to note that our study found significant dif-
ferences in APOF expression levels in male and female 
LIHC patients, with higher expression levels in men. In 
fact, in normolipidemic plasma, APOF level was 30% 
higher in men than in women and was positively associ-
ated with HDL and TG in normolipidemic men but not 
in women [8, 90]. This gender difference in APOF expres-
sion may be related to the role of HDL and TG in tumo-
rigenesis. Care should be taken when APOF is used as a 
target of action.

KIRP, the incidence of which is much less studied than 
for KIRC, is the third most common type of RCC. Renal 
tumors are known to be characterized by high lipid con-
tent [91]. In our study, we found that unlike BRCA, PRAD 
and LIHC, APOF expression was elevated in normal tis-
sues, and KIRP patients with high APOF expression had 
a worse prognosis, suggesting that APOF might not be a 
tumor suppressor gene for KIRP and has a tenuous rela-
tionship with immune checkpoints and immunomodula-
tion. It is a question to be explored in the future.

Intuitively, diets rich in cholesterol or fatty acids would 
reduce liver APOF mRNA levels to less than half of the 
food-fed value [85]. However, little was previously known 
about the mechanisms regulating APOF gene expression. 
Shen et  al. found that overexpression of C/EBPα and 
members of the ETS family increased APOF promoter 
activity in Huh7 cells, whereas knockdown of C/EBPα 
resulted in decreased APOF promoter activity in HepG2 
and Huh7 cells [73]. FXR binds to and activates the FXR 
element ER1 in the promoter of the APOF gene [92]. For 

LIHC, C/EBPα is thought to activate the APOF promoter 
alone, from which it was hypothesized that mutations in 
the C/EBP binding site may almost completely eliminate 
APOF promoter activity [14]. Liu et al. found that APOF 
is also negatively regulated by agonist-activated LXR or 
PPARα nuclear receptors binding to a regulatory ele-
ment ~ 1900 bases 5’ to the APOF promoter [93].

Our research has certain limitations. Firstly, despite 
our observation that APOF was associated with various 
tumor types and tumor indicators, its specific mecha-
nism cannot be presented through bioinformatics meth-
ods. On the other hand, we did not categorize patients of 
different races, according to ARIC study, there are signifi-
cant racial disparities in lipid metabolism [10].

APOF is elevated during tumorigenesis in two hor-
mone-dependent tumors, BRCA and PRAD, resulting in 
elevated circulating cholesterol levels by regulating cho-
lesterol transport and esterification to supply the elevated 
cholesterol needs of tumor cells. Low APOF expression 
is then associated with poor prognosis for various tumor 
types, but the causal relationship might be the opposite 
of what we thought, and technical levels might in turn 
regulate a variety of lipid metabolic processes, includ-
ing cholesterol accumulation. In the case of LIHC, it is 
most likely that the driving role of genes regulating lipid 
metabolism, including APOF, in NAFLD as well as in the 
process of LIHC is a direct result, and various immune 
cells in the NAFLD microenvironment could confirm 
this speculation. In contrast, for KIRP, APOF definitely 
regulates tumors in a different way. In the future, some 
approaches targeting APOF promoter regulation might 
be beneficial for the development of future therapeutic 
targets.

Conclusions
Our pan-cancer study offered a relatively comprehensive 
understanding of the roles of APOF on BRCA, PRAD, 
KIRP, and LIHC.
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