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Abstract 

Background  Hypertrophic cardiomyopathy (HCM), one of the most common genetic cardiovascular diseases, but 
cannot be explained by single genetic factors. Circulating microRNAs (miRNAs) are stable and highly conserved. 
Inflammation and immune response participate in HCM pathophysiology, but whether the miRNA profile changes 
correspondingly in human peripheral blood mononuclear cells (PBMCs) with HCM is unclear. Herein, we aimed to 
investigate the circulating non-coding RNA (ncRNA) expression profile in PBMCs and identify potential miRNAs for 
HCM biomarkers.

Methods  A Custom CeRNA Human Gene Expression Microarray was used to identify differentially expressed (DE) 
mRNAs, miRNAs, and ncRNAs (including circRNA and lncRNA) in HCM PBMCs. Weighted correlation network analysis 
(WGCNA) was used to identify HCM-related miRNA and mRNA modules. The mRNAs and miRNAs from the key mod-
ules were used to construct a co-expression network. Three separate machine learning algorithms (random forest, 
support vector machine, and logistic regression) were applied to identify potential biomarkers based on miRNAs from 
the HCM co-expression network. Gene Expression Omnibus (GEO) database (GSE188324) and experimental samples 
were used for further verification. Gene set enrichment analysis (GSEA) and competing endogenous RNA (ceRNA) 
network was used to determine the potential functions of the selected miRNAs in HCM.

Results  We identified 1194 DE-mRNAs, 232 DE-miRNAs and 7696 DE-ncRNAs in HCM samples compared with normal 
controls from the microarray data sets. WGCNA identified key miRNA modules and mRNA modules evidently associ-
ated with HCM. We constructed a miRNA‒mRNA co-expression network based on these modules. A total of three 
hub miRNAs (miR-924, miR-98 and miR-1) were identified by random forest, and the areas under the receiver operator 
characteristic curves of miR-924, miR-98 and miR-1 were 0.829, 0.866, and 0.866, respectively.

Conclusions  We elucidated the transcriptome expression profile in PBMCs and identified three hub miRNAs (miR-
924, miR-98 and miR-1) as potential biomarkers for HCM detection.
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Background
Hypertrophic cardiomyopathy (HCM), a genetic disease 
of the sarcomere, is widely distributed with a prevalence 
of 1:200–1:500 in the general population, but owned 
a high undetected rate [1, 2]. Owing to morphological 
and clinical heterogeneity, many patients have no evi-
dent symptoms throughout their lifetime, but 30–40% of 
HCM patients will experience at least one adverse cardiac 
event, including progressive heart failure (HF), thrombo-
embolic events, or sudden cardiac death (SCD) due to 
ventricular tachycardia [1, 3]. With the advancement in 
the standardized management of HCM, the survival rate 
of HCM patients in dedicated HCM centers has become 
similar to that of the normal population [4, 5]. Therefore, 
prompt identification of the disease and dedicated refer-
rals is important for maintaining such success.

A variety of mechanisms are involved in HCM. Inflam-
mation occurs throughout HCM, and alleviation of 
inflammatory responses may reduce myocardial fibro-
sis [6, 7]. Monocyte activation mediates the aggregated 
infiltration and activation of monocytes–macrophages 
in the myocardium, which in turn promotes myocar-
dial hypertrophy and remodeling [8]. Oxidative stress is 
also involved in HCM. Myocardial hypercontraction in 
HCM increases the energy demand, which in turn leads 
to increased production of reactive oxygen species as 
byproducts of oxidative phosphorylation [9]. Increased 
ROS and insufficient antioxidants place mitochondria in 
a state of oxidative stress, leading to mitochondrial dam-
age [10]. Inflammation, oxidative stress, energy metabo-
lism disorders and mitochondrial dysfunction are all 
involved in HCM.

Surprisingly, in the completed human genome, pro-
tein-coding transcripts account for less than 3% of the 
entire genome, which means that more than 97% of 
transcripts are noncoding RNAs [11]. miRNAs, a class 
of small noncoding RNAs, negatively regulate target 
mRNAs and regulate nearly 2/3 of known human genes 
[12]. Many studies have confirmed that miRNAs are of 
great significance in the pathogeneses of cardiovascu-
lar diseases; for example, they help regulate myocardial 
fibrosis, pathological myocardial hypertrophy, and HF 
[13–15]. In hypertrophic cardiomyocytes, a reciprocal 
repression mechanism between CHRF and miR-489 was 
first described by Wang: CHRF promotes myocardial 
hypertrophy as an endogenous sponge of miR-489 [16]. 
miRNAs are highly conserved, so they have potential to 
be used as biomarkers for physiological and pathological 

processes [17]. Extracellular circulating miRNAs are 
remarkably stable and protected from endogenous RNase 
activity, even under several extreme conditions, such as 
repeated freeze–thaw cycles, boiling, and long-term stor-
age [18].  Furthermore, over 80% of genes expressed in 
heart muscle are also expressed in blood. Blood cells can 
act as sentinels for the diagnosis or prognosis of disease 
(the “Sentinel Principle”). Peripheral blood is an ideal 
surrogate tissue, because it is readily obtainable, provides 
a large biosensor pool in the form of gene transcripts and 
can be used to detect alterations in gene transcript levels 
in response to changes in the macro- and micro-environ-
ments [19].

Recent studies have identified potential competing 
endogenous RNA (ceRNA) regulatory networks in HCM 
myocardial tissue [20]. However, unfortunately, there 
are no circulating miRNAs that are reliable biomark-
ers for the detection of HCM, which limits their wide-
spread application in clinical practice. Peripheral blood 
mononuclear cells (PBMCs) play an important role in the 
immune-inflammation response, so we aimed to deter-
mine the miRNA profile in PBMCs and explore potential 
miRNA biomarkers for HCM.

In this study, we analyzed circulating transcriptome 
expression profile in PBMCs with HCM and identified 
key miRNA and mRNA modules by weighted gene net-
work co-expression analysis (WGNCA). Ultimately, a 
total of three key miRNAs with diagnostic potential were 
screened and further validated based on Gene Expres-
sion Omnibus (GEO) database and by RT-qPCR. Then, 
we predicted the potential ceRNA regulatory network of 
three key miRNAs.

Materials and methods
Sample collection
A total of 22 blood samples, including 6 from normal 
controls (NCs) and 16 from HCM patients (8 hyper-
trophic obstructive cardiomyopathy [HOCM] and 8 
hypertrophic nonobstructive cardiomyopathy [HNCM]), 
were collected when the individuals visited the Inter-
national Cooperation Center for Hypertrophic Car-
diomyopathy, Xijing Hospital, between September 
2019 and January 2020. Plasma was obtained after cen-
trifugation, at 2000 rpm for 10 min, and stored in sterile 
tubes at −  80  °C until further processing. PBMCs were 
extracted with a human PBMC isolation kit (Solarbio). 
Total RNA extraction from PBMCs was performed by 
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TRIzol LS Reagent (Invitrogen), following the manufac-
turer’s instructions. HCM was diagnosed according to 
the 2014 ESC guidelines on the diagnosis and manage-
ment of HCM [21]. Which is defined as a maximum wall 
thickness (MWT) ≥ 13 mm or ≥ 15 mm in any ventricular 
segment for individuals with and without a family history 
of HCM, respectively, with the absence of any abnormal 
secondary causes capable of producing such a magni-
tude of hypertrophy, such as uncontrolled hypertension 
or aortic stenosis (AS), etc. The left ventricular outflow 
tract gradient (LVOTG) was measured with color-guided 
continuous-wave Doppler Echo at rest (Philips Medical 
Systems) and during provocation, such as during Vals-
alva maneuver or exercise stress with a supine bicycle 
(semi-recumbent and tilting bicycle Ergometer; Lode 
BV) [22, 23]. The presence of a peak left ventricular 
LOVTG ≥ 30 mmHg at rest or during exercise provoca-
tion was considered indicative of HOCM, while HNCM 
was defined by LVOTG < 30  mmHg at rest and exer-
cise stress [21, 24]. NCs were individuals who were vis-
ited for screening HCM, but were eventually precluded 
from having HCM due to normal ventricular wall thick-
ness and normal genotype. All participants underwent 
transthoracic two-dimensional and Doppler echocardi-
ography independently conducted by two experienced 
ultrasound technicians. All procedures were conducted 
in accordance with the guidelines of the American Soci-
ety of Echocardiography (ASE) [25]. Genetic testing 
was conducted and analyzed for every participant by 
next generation sequencing (Mygenostics). The test and 
analysis of ceRNA was completed with a custom ceRNA 
human gene expression microarray (2*400 k) by Capital-
Bio Technology.

This study was approved by the ethics committee of 
Xijing Hospital, Fourth Military Medical University, 
and complied with the Declaration of Helsinki. Written 
informed consent was obtained from all participants.

Microarray data analysis
Differentially expressed genes (DEGs) in the microarray 
were screened using the R package limma. P < 0.05 and a 
fold change ≥ 1.5 were considered the cutoffs for DEGs.

miRNA function prediction
miRNA-targeted mRNAs were predicted using miRWalk 
v2.0 (http://​mirwa​lk.​umm.​uni-​heide​lberg.​de) with poten-
tial binding positions in the 3’ UTR [26].

Function enrichment analysis
Gene Ontology (GO) biological process (BP) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed by the R package 

clusterProfiler with P < 0.05 [27]. The R package GOplot 
was used to show the results of GO BP [28]. Gene set 
enrichment analysis (GSEA) was performed using KEGG 
pathway annotation data and analyzed using the package 
clusterProfiler, and a ridgeline plot was used to show the 
results of GSEA [29].

WGCNA
All miRNAs (2798 miRNAs) and DE-mRNAs from HCM 
and NC imported for weighted gene co-expression net-
work analysis (WGCNA) were merged to construct the 
co-expression network. First, to construct the correlation 
network, the power of β = 6 for miRNA data and β = 9 for 
mRNA data realizes the scale-free topology criterion of 
R2 > 0.8 in this study (Additional file 1: Figure S1). Second, 
the average linkage hierarchical clustering method was 
applied to cluster DEGs into different modules with dif-
ferent colors. The cut height was set as 0.3, and the num-
ber that was selected as the minimum number of genes in 
each module. Different modules are shown with different 
colors, except the gray module, which contained DEGs 
that could not be merged. Third, the correlation between 
each module and HCM-related traits was calculated 
using Pearson correlation. The module with a P < 0.05 
and the highest correlation coefficient was screened out 
for further analysis [30, 31].

Screening for HCM potential biomarkers
First, the R package caret was used to divide HCM and 
NC samples into a training set and a test set. Then, three 
machine learning algorithm including random forest 
(RF), support vector machine (SVM) and logistic regres-
sion (LR) were used to build classifiers for HCM based 
on the expression of miRNAs from the miRNA‒mRNA 
co-expression network via the R packages randomForest, 
glmnet, and e1071, respectively. The R package pROC 
was used to display the receiver operating characteris-
tic (ROC) curves and calculate the area under the curve 
(AUC). The best-performing classifier with the high-
est AUC was utilized to examine the test set and inde-
pendent external data (GEO accession: GSE188324 data 
set) containing miRNA expression assays with 24 HCM 
patients and 11 NCs. In addition, the best optimal char-
acteristic variables were used for further experimental 
verification.

Real‑time quantitative polymerase chain reaction 
(RT‑qPCR)
The miRNAs contained in the PBMCs were extracted 
using the RNeasy Mini Kit for Small RNA (217004, Qia-
gen) followed with the standard procedures. The reverse 
transcription of pre-miRNAs and mature miRNAs was 

http://mirwalk.umm.uni-heidelberg.de
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Fig. 1  Transcriptome profile analyses of HCM. A Volcano plots of DE-mRNAs, DE-miRNAs and DE-ncRNAs (including DE-lncRNAs and DE-circRNAs) 
between the HCM and NC groups. B Ridge plots of the GSEA results based on KEGG between the HCM and NC groups. X-axis showed the log2 (fold 
change) of per genes present in each KEGG terms, with positive values indicating up-regulated expression and negative values as down-regulated 
expression in HCM. Peaks are colored based on P values as shown by the legend. C Enrichment analysis of DE-mRNAs and DE-miRNAs based on 
KEGG (top) and GO BP (bottom) terms. The dot size showed the number of genes which enriched in the KEGG or GO BP terms, and the color 
represents the P values of the KEGG or GO BP terms
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conducted using the PrimeScript™ RT Reagent Kit 
(RR047A, Takara) and miScript II RT Kit (218161, Qia-
gen). RT-qPCR was performed using the TB Green Pre-
mix ExTaq II Kit (RR 820A, Takara), and U6 was set as 
the expression control. RT-qPCR was conducted on a 
QuantStudio 5 (Thermo Fisher Scientific) with the fol-
lowing protocol: 95  °C for 5 min, 45 cycles of 95  °C for 

10 s, and 60 °C for 30 s. The relative expression of miRNA 
expression was calculated using the comparative cycle 
threshold 2−ΔΔCt method. The primer sequences were 
listed in the Additional file 1: Table S1.

Fig. 2  KEGG pathways in different HCM subgroups. Venn plot showing the common and unique DE-miRNAs (A) and DE-mRNAs (B) in different 
HCM subgroups. C Heatmap showing the P values of the top 5 significant upregulated (left) and downregulated (right) KEGG pathways based on 
the common and unique DE-miRNAs and DE-mRNAs in different HCM subgroups, respectively. The cell color represents the value of − log10(P 
values) in each KEGG term. HOCM obstructive hypertrophic cardiomyopathy; HNCM non-obstructive hypertrophic cardiomyopathy; Com, common 
NCs
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Fig. 3  Identified HCM-related miRNA modules based on WGCNA. A Cluster dendrogram of samples based on the expression of all miRNAs. B 
Cluster dendrogram of co-expression modules by hierarchical clustering of miRNAs. Different colors represent different modules which contains a 
group of highly associated genes. C Heatmap of the correlation between miRNA modules and HCM-related clinical features. The cell is colored by 
correlation coefficient according to the color legend. D Correlation of miRNAs in blue miRNA module with LVOTGmax and MWT, all P < 0.05. HCM, 
hypertrophic cardiomyopathy. LVOTGrest.max, the maximum left ventricular outflow tract gradient at rest. LVOTGactive.max, the maximum left 
ventricular outflow tract gradient after provocation. MWT maximum wall thickness
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Functional prediction of clinical miRNAs for HCM
Gene set variation analysis (GSVA) was used to estimate 
the score of all selected miRNA expression levels for each 
HCM sample. Then, GSEA was used to perform func-
tional prediction between the selected miRNAs with 
high expression levels and the selected miRNAs with low 
expression levels in HCM patients.

Construction of the ceRNA network
According to the ceRNA hypothesis, miRNAs can 
induce gene silencing and downregulate gene expres-
sion by binding to mRNA, and lncRNAs can enrich 
miRNA binding sites and act as miRNA sponges, lead-
ing to changes in the expression levels of miRNA‒target 
mRNAs. Differentially expressed ncRNAs (DE-ncRNAs, 
fold change ≥ 1.5, P < 0.05) in HCM with a highly positive 
correlation coefficient (correlation coefficient > 0.9) for 
mRNAs from mRNA modules and targeted by miRNAs 
based on miRWalk that could bind the same miRNAs 
with related mRNAs based on RNA hybrid prediction 
were used to construct ceRNA networks. Consequently, 
the result was used to construct a ceRNA network in 
Cytoscape.

Statistical analysis
Continuous variables are presented as the mean (stand-
ard deviation, SD) or median (interquartile range, IQR) 
when appropriate, and categorical variables are presented 
as counts (percentages). The independent t test was used 
for the comparison of two continuous variables with a 
normal distribution, and nonnormally distributed data 
were compared using a two-sided nonparametric Mann–
Whitney U test. χ2 or Fisher’s exact test was used for the 
comparison of unordered categorical variables. ROC 
were performed and the area under the ROC (AUC) with 
95% confidence interval, sensitivity and specificity were 
calculated to evaluate the key miRNAs as potential HCM 
biomarkers.

All data were analyzed by SPSS (version 26.0) and R 
software (version 4.1.1). A two-tailed P < 0.05 was consid-
ered to indicate statistical significance.

Results
Baseline characteristics
The baseline clinical characteristics of a total of 22 
samples, including 6 NC and 16 HCM (8 HOCM and 
8 HNCM) were presented in Table 1. In the two HCM 
subgroups, 4 for sarcomere gene positive, including 2 
for MYH7 and 2 for MYBPC3 positive, respectively; 
and the 4 others were gene negative. There was no dif-
ference in mean age, sex, and blood pressure between 

HCM and NC, HOCM and HNCM (all P > 0.05). The 
mean MWT was 24.69 mm, and LVOTGmax was 49.5 
mm Hg in HCM patients. 

Identification of DEGs
To explore the profiles of differentially expressed (DE) 
mRNAs, miRNAs, and ncRNAs between HCM and 
NC, a total of 1194 mRNAs (549 upregulated and 645 
downregulated), 232 miRNAs (212 upregulated and 
20 downregulated) and 7696 ncRNAs (3757 upregu-
lated and 3939 downregulated) were identified (Fig. 1A 
and Additional file  2: Table  S2). Compared with NCs, 
HCM patients exhibited an inflammatory state, with 
overall upregulation of pathways, such as ECM − recep-
tor interaction, cytokine − cytokine receptor interac-
tion and inflammatory bowel disease, based on GSEA. 
In addition, metabolic disorders were also evident in 
HCM, such as tryptophan metabolism upregulation and 
starch and sucrose metabolism downregulation. Fur-
thermore, we investigated the potential biological func-
tions of DE-miRNAs and DE-mRNAs through KEGG 
and GO enrichment analyses. Unlike DE-mRNAs, DE-
miRNAs were rarely associated with signaling mol-
ecules and interactions, such as cytokine − cytokine 
receptor interactions and neuroactive ligand − receptor 
interactions. DE-miRNAs and DE-mRNAs were both 
involved in cell development and the calcium signaling 
pathway. Moreover, DE-miRNAs were directly involved 
in HCM pathogenesis-related pathways, such as HCM 
and dilated cardiomyopathy (Fig. 1B, C). These results 
suggest that transcriptome alterations, especially those 
of miRNAs in PBMCs, may have an important impact 
on the pathogenesis of HCM.

Subgroup analysis in HCM
To further explore the transcriptome in the HCM sub-
types, we determined the DE-mRNAs and DE-miR-
NAs in each subgroup (Fig. 2A, B). The results showed 
that compared with HNCM patients, HOCM patients 
exhibited more unique DE-mRNAs and DE-miRNAs, 
especially downregulated DE-miRNAs. Further analy-
sis showed that upregulated miRNAs in both HNCM 
and HOCM had similar biological functions, while 
upregulated mRNAs in HOCM were more relevant to 
inflammatory pathways than those in HNCM. Distinct 
metabolic changes were also observed between HOCM 
and HNCM. In HOCM, downregulated DE-mRNAs 
exhibited abnormal suppression of the AMP signaling 
pathway and FOX signaling pathway, while downregu-
lated DE-miRNAs were mainly involved in cell prolif-
eration and apoptosis-related pathways (Fig. 2C).
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Fig. 4  Identified HCM-related mRNA modules based on WGCNA. A Cluster dendrogram of samples based on DE-mRNA expression. B Cluster 
dendrogram of co-expression modules by hierarchical clustering of DE-mRNAs. Different colors represent different modules which contains a 
group of highly connected genes. C Heatmap of the correlation between mRNA modules and HCM-related clinical features. The cell is colored by 
correlation coefficient according to the color legend. D Correlation of mRNAs in turquoise mRNA modules with LVOTGmax and MWT, all P < 0.05
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Fig. 5  Identification of the miRNA‒mRNA co-expression network based on key miRNA modules and mRNA modules. A miRNA‒mRNA 
co-expression network based on key miRNA modules and mRNA modules. Circle represents mRNAs from key mRNA modules and triangle 
represents miRNAs from key miRNA modules. Red represents mRNAs or miRNAs up-regulation in HCM, and blue represents mRNAs or miRNAs 
down-regulation in HCM. B Results of GO BP enrichment analysis based on mRNAs from miRNA-mRNA co-expression network. The dot size 
indicated the number of genes which enriched in the GO BP terms, and the color represents the P values of the GO BP terms
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Identification of HCM‑related key miRNA modules 
and mRNA modules via WGCNA
To identify the hub miRNAs and hub mRNAs in HCM, 
WGCNA was used to determine key miRNA modules 
and mRNA modules. First, all miRNAs (a total of 2798 
miRNAs) were used to construct the co-expression net-
work. The clustering results showed that all miRNAs 
were still able to distinguish NCs from patients with 
HCM (Fig.  3A). After WGCNA, these miRNAs were 

clustered into a total of 7 modules using the average link-
age hierarchical clustering algorithm (Fig. 3B and Addi-
tional file  2: Table  S3). Subsequently, we detected the 
correlation between these miRNA modules and clinical 
traits. All the related clinical traits, including the maxi-
mum LVOTG (LVOTGmax) and maximum wall thick-
ness (MWT), were positively correlated with the blue 
miRNA module (all P < 0.05), which indicated that the 
key miRNAs in the blue miRNA module were also 

Fig. 6  Screening and validation of potential biomarkers for the detection of HCM from key miRNAs. A ROC curves of the training set based on three 
ML (SVM, RF, LR) algorithms for distinguishing HCM patients from NCs. B ROC curves of the testing set based on the RF module. C ROC curves of 
external validation (GSE188324) based on the RF module. D Boxplot showing the expression levels of three miRNAs which were important variables 
based on RF in HCM patients and NCs. ** and *** indicated P values < 0.01 and < 0.001. E ROC curves of experimental validation based on the RT-qPCR 
results of three miRNAs for distinguishing HCM patients from NCs
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important for the module itself and clinical characteriza-
tion (Fig. 3C, D).

Then, we adopted the same method to identify key 
mRNA modules in HCM based on a total of 1992 

DE-mRNAs. The clustering results showed that such 
DE-mRNAs were able to distinguish HCM from NC 
cases (Fig.  4A and Additional file  2: Table  S4). After 
WGCNA, these mRNAs were clustered into a total of 5 

Fig. 7  GSEA and ceRNA network of the three target miRNAs. A Upregulation pathway of three miRNAs in the high-expression group compared 
with the low-expression group (top). Downregulated pathways of the three miRNAs in the high-expression group compared with the 
low-expression group (bottom). B ceRNA network of miR-1-5p and miR-98-3p in HCM PBMCs
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modules which involved in different pathways (Fig.  4B 
and Additional file  1: Figure S2). Similarly, the genes in 
the turquoise mRNA module and clinical traits, including 
LVOTG and MWT, were positively correlated with great 
significance (all P < 0.05), so the turquoise mRNA module 
was identified as the key mRNA module (Fig. 4C, D).

Construction of the key miRNA‒mRNA co‑expression 
network in HCM
Then, we constructed a co-expression network based 
on miRNAs and mRNAs from key modules to explore 
the potential relationship between the two key modules. 
Usually, miRNAs suppress the expression of mRNAs, so 
we selected the co-expression pairs with a negative cor-
relation between miRNAs and mRNAs to construct a 
co-expression network including 185 miRNAs and 355 
mRNAs in Cytoscape (Fig. 5A). Further analysis showed 
that the mRNAs from these networks were involved in 
regulating G protein − coupled receptor-related signaling 
pathway and fibroblast growth factor-related biological 
process such as cell chemotaxis to fibroblast growth fac-
tor (Fig. 5B).

Screening and validation of potential biomarkers from key 
miRNAs
To screen potential biomarkers for HCM, we randomly 
divided these miRNAs into training and testing groups, 
used three different machine learning (ML) algorithms 
(including SVM, RF and LR), and showed that all these 
miRNAs were able to discriminate HCM from NC by all 
3 ML algorithms (AUC was 0.770 with SVM, 1.000 with 
RF, and 0.979 with LR, all AUC > 0.75) (Fig. 6A). The RF 
module has the highest AUC value compared with two 
others, and then the validation results of the test group 
and external validation (GSE188324) with RF mod-
ule also showed the potential for the detection of HCM 
(AUC was 0.900 and 0.803, respectively, all AUC > 0.75) 
(Fig.  6B, C). Then, we screened 3 important variables 
based on RF and performed the next experimental vali-
dation, which showed that miR-924, miR-98 and miR-1 
were all significantly elevated in HCM, which was con-
sistent with our gene chip results (Fig. 6D and Additional 
file 1: Figure S3). The AUC of miR-924 was 0.829, that of 
miR-98 was 0.866, and that of miR-1 was 0.866, respec-
tively (Fig. 6E).

GSEA and ceRNA network construction for the three 
selected miRNAs
To explore the potential biological function and regula-
tory network of these three selected miRNAs with diag-
nostic performance, we assigned a specific score value 
for each HCM patient according to the overall expression 
levels of these three miRNAs. Then, HCM patients were 

divided into a high expression group and a low expres-
sion group. Through GSEA, it was found that in patients 
with high expression, genes related to mineral absorption 
and PPAR were upregulated, while genes related to the 
JAK–STAT pathway, sugar absorption and metabolism, 
and viral cardiomyopathy were downregulated (Fig. 7A). 
Furthermore, we constructed a potential ceRNA regula-
tory network of miRNAs on target mRNAs and found 
that miR-1 and miR-98 can regulate the expression of 
ADH1B through the ceRNA network. The lncRNA 
(LINC01923) and the circRNA (hsa-circ-0078634) could 
prevent miRNA binding with ADH1B (Fig. 7B).

Discussion
In this study, we created a differentially expressed tran-
script atlas for PBMCs in HCM. Compared with NCs, 
HCM patients showed more abnormalities in inflamma-
tory signaling, metabolic pathways and calcium path-
ways. Previous studies have shown that abnormalities of 
such pathways in cardiac muscle tissue play an important 
role in the development of HCM, presenting consistent 
changes in PBMCs and myocardial tissue in HCM [32]. 
Furthermore, DE-miRNAs in PBMCs are more relevant 
to HCM-related pathogenic pathways than DE-mRNAs, 
which suggests the importance of circulating miRNA 
alterations for the pathogenesis of HCM and their poten-
tial as diagnostic biomarkers and therapeutic targets.

It has been reported that HOCM accounts for 60–70% 
of all HCM cases [33]. Because of the distinct treat-
ment approaches and prognoses, the discrimination of 
the two subgroups is also significant. Based on the tran-
scriptome atlas, we found more significantly differen-
tially expressed mRNAs in HOCM than in HNCM, and 
these DE-mRNAs were involved in metabolic, apoptosis-
related and proliferation-related pathways. There were 
fewer DE-miRNAs between the two subtypes. These 
results indicated that there were different transcription 
factors and pathways between HOCM and HNCM, even 
though the upregulated miRNAs were functionally con-
sistent between the two subgroups. This may suggest that 
the transcriptome of PBMCs is a potential biomarker to 
distinguish HOCM from HNCM, and may be useful to 
explore the different mechanisms between HOCM and 
HNCM.

WGCNA is an important bioinformatics analysis 
method that builds a network according to systematic 
gene expression to obtain genetic clusters that are func-
tionally similar. We identified 7 miRNA modules and 5 
mRNA modules based on WGCNA, analyzed the poten-
tial biological functions and correlation with clinical 
features of each module. The mRNAs in the turquoise 
mRNA module and miRNAs in the blue miRNA module 
were positively correlated with MWT and LVOTGmax. 
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Based on key miRNA modules and mRNA modules cor-
related with clinical parameters, we identified a potential 
hub miRNA‒mRNA regulatory network and found that 
key miRNAs may regulate genes related to the JAK–
STAT pathway, which is the key pathway in the patho-
genesis of HCM [34].

In the present study, we identified three potential bio-
markers based on ML and experimental verification, 
including miR-1, miR-98 and miRNA-924. miR-1 is a 
highly conserved miRNA with high expression in mus-
cle tissue, particularly heart muscle. As a key regulator of 
cardiac hypertrophy, miR-1 may lead to a marked reduc-
tion in myocardial fibrosis, an improvement in calcium 
handling, inhibition of apoptosis, and inactivation of the 
mitogen-activated protein kinase signaling pathways [35]. 
Such results indicates that miR-1 has beneficial effects in 
preventing maladaptive ventricular remodeling, revers-
ing pressure overload-induced cardiac hypertrophy and 
attenuating pathological remodeling. miR-1 is substan-
tially downregulated in the rat hypertrophic left ventri-
cle and in cardiomyocytes with phenylephrine-induced 
hypertrophy, and overexpression of miR-1 in hyper-
trophic cardiomyocytes reduces the cell size and attenu-
ates the expression of hypertrophic markers, whereas 
silencing of miR-1 in cardiomyocytes results in the hyper-
trophic phenotype [36]. A recent study [37] has shown 
that oxidized miR-1 [7o(8)G-miR-1] can induce cardiac 
hypertrophy, indicating that position-specific oxidation 
of miR-1 could serve as a posttranscriptional mecha-
nism to coordinate pathophysiological redox-mediated 
gene expression. It has been reported that some features 
in the plasma and cardiac tissues exhibit opposite altera-
tion trends in HCM [38]. This may be explained by the 
phenomenon that cardiomyocyte death releases tissue-
enriched miRNAs into the circulatory bloodstream, 
while in HCM, cardiomyocytes die in a staggered man-
ner, in contrast to the abrupt and massive death observed 
in ischemic cardiac disease [39]. Similarly, we observed 
that circulating miR-1 was upregulated, consistent with 
the findings of others [40, 41], although was in contrast to 
the expression of hypertrophic cardiomyocytes [42]. Fur-
thermore, its AUC was 0.866 in external samples (> 0.75, 
which indicates a clearly useful discrimination ability 
[43]), so the single miR-1 in PBMCs had a clearly useful 
ability to discriminate patients with HCM from NCs.

Cardiomyocyte hypertrophy, interstitial fibrosis, 
microvascular dysfunction and abnormal immune 
inflammatory response are pathological features of 
HCM [21, 44]. In this study, miR-98 was also evidently 
upregulated in HCM PBMCs. Upregulation of miR-98 
dramatically ameliorates TGF-β1-induced collagen accu-
mulation in cardiac fibroblasts, reflecting a protective 
effect of miR-98 overexpression against TGF-β1-induced 

cardiac fibrosis [45]. It has demonstrated that miR-98 
negatively regulates cardiac hypertrophy. Since miR-98 
is also upregulated by pressure overload in the mouse 
heart, it may act as a negative feedback regulator of Ang 
II-induced cardiac hypertrophy as well as other forms 
of cardiac hypertrophy [46]. Furthermore, expression 
of miR-98 is also increased by hypoxia. Zhang et al. has 
reported that hypoxia-induced bone marrow mesenchy-
mal stem cells derived exosome miR-98-5p to protect 
against myocardial ischemia–reperfusion injury [47]. 
In addition, miR-98 protects endothelial cells against 
hypoxia/reoxygenation-induced apoptosis by targeting 
caspase-3 and attenuates cardiac ischemia/reperfusion 
(I/R) injury [48, 49]. Similarly, cardiac fibrosis, the acti-
vation of renin–angiotensin–aldosterone system (RAAS) 
and myocardial ischemia/hypoxia may partly explain the 
upregulation of miR-98 in HCM. It has also reported that 
miRNAs are associated with the immune inflammatory 
response. miR-98 is reported to suppress IL-10 expres-
sion in B cells of the heart, which plays an important role 
in myocarditis [50]. In brief, we found miR-98 in PBMCs 
was upregulated, which to some degree may reflect dis-
ease severity, and was associated with cardiomyocyte 
hypertrophy, cardiac fibrosis, microvascular dysfunction, 
cardiac ischemia, and immune inflammatory state. The 
AUC of miR-98 in PBMCs was 0.866 with experimental 
samples, so miR-98 has also a clearly useful ability to dif-
ferentiate patients with HCM from NCs.

Previous research has shown that miR-924 inhibited 
cell proliferation as a tumor suppressor in non-small 
cell lung cancer (NSCLC) and hepatocellular carcinoma 
(HCC) [51, 52]. However, the role of miR-924 in heart 
disease is still unknown. In this study, the AUC of miR-
924 in PBMCs was 0.829, which was also higher than 
0.75. This indicated that miR-924 may also have a clearly 
useful capacity for identifying HCM. However, because 
of the lack of evidence about miR-924 in heart disease, 
more study is needed to verify its exact role in HCM.

Alcohol dehydrogenase-1B (ADH1B), as alcohol 
metabolizing genes, was differentially downregulated in 
many types of cancers, which exists glucose metabolism 
(Warburg Effect) [53]. Similarly, HCM myocardium is 
characterized as disordered energy metabolism, includ-
ing impaired fatty acid oxidation and decreased glucose 
metabolism [9]. It has been reported that ADH1B ∗ 2 
reduces the risk of NASH and fibrosis in adults with 
NAFLD regardless of alcohol consumption status [54]. 
Among East Asians, frequent alcohol use and individuals 
carrying ADH1B (A/A) polymorphisms was associated 
with worse global longitudinal strain, systolic and early 
diastolic strain rates [55]. It suggested that even moder-
ate alcohol consumption imposed subclinical adverse 
effects on cardiac systolic/diastolic functions and cardiac 
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remodeling, which was most evident in subjects carrying 
common alcohol metabolizing genes, including ADH1B. 
Based on such results, ADH1B was involved in energy 
metabolism, organ fibrosis, cardiac remodeling and func-
tion, which were all also the pathophysiological charac-
teristics of HCM, so we speculate ADH1B may correlate 
with HCM. Nevertheless, the exact effect of ADH1B in 
HCM should be further conducted in the future study.

In this manuscript, we found ADH1B was to be regu-
lated by miR-1 and miR-98 in peripheral blood, while the 
gene is mainly related to glucose absorption and energy 
metabolism. Therefore, we speculate that miR-1 and 
miR-98 may regulate energy metabolism by modulating 
the expression of ADH1B, and affect the pathogenesis of 
HCM. Furthermore, lncRNA (LINC01923) and circRNA 
(circ-0078634) can antagonize miR-1 and miR-98, which 
providing new perspectives for potential treatment in the 
future.

In the present study, we depicted the entire transcrip-
tome profile in PBMCs with HCM and identified HCM-
related key miRNA modules and mRNA modules via 
WGCNA. Then, 3 potential biomarker miRNAs (miR-1, 
miR-98, miR-924) were screened from the key miRNAs 
by different ML algorithms. Finally, further verification 
was performed with other external samples by ROC 
curve analysis. These 3 key miRNAs in PBMCs all had a 
potential discriminative ability for HCM.

Conclusion
This study represents a preliminary attempt to delineate 
the entire transcriptome profile in PBMCs with HCM. 
Utilizing bioinformatics analysis and multiple ML algo-
rithms, key miRNA modules and mRNA modules were 
identified, and 3 miRNAs, including miR-1, miR-98 and 
miR-924, were selected and further verified with exter-
nal samples. Such key miRNAs in PBMCs have the 
clearly useful ability to be used as biomarkers for HCM 
detection.

Limitations
This study had several limitations. First, the study was 
performed in a single center. Even though the center is 
one of the largest dedicated HCM centers in China, the 
sample size was relatively small. Furthermore, because 
circulating features are a reflection of the general disease 
state, whether the identified DE-miRNAs are involved 
in HCM pathophysiology and disease progression is still 
undetermined. Finally, although initial external validation 
by RT-qPCR was performed in this study and although 
all 3 key DE-miRNAs exhibited a satisfactory discrimi-
nation ability, research on a large prospective cohort is 

required to address the value for future clinical applica-
tion in HCM detection and diagnosis.
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