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Abstract 

Miscarriage is the most common complication of pregnancy. The most common causes of early miscarriage are 
chromosomal abnormalities of the embryo, maternal endocrine abnormalities, organ malformations, and abnormal 
immune factors. Late miscarriages are mostly caused by factors such as cervical insufficiency. However, the causes of 
50% of miscarriages remain unknown. Recently, increasing attention has been given to the role of metabolic abnor‑
malities in miscarriage. In this review, we mainly discuss the roles of four major metabolic pathways (glucose, lipid, 
and amino acid metabolism, and oxidation‒reduction balance) in miscarriage and the metabolism‑related genes that 
lead to metabolic disorders in miscarriage. Depending on aetiology, the current treatments for miscarriage include 
hormonal and immunological drugs, as well as surgery, while there are few therapies for metabolism. Therefore, we 
also summarize the drugs for metabolism‑related targets. The study of altered metabolism underlying miscarriage not 
only helps us to understand the mechanisms involved in miscarriage but also provides an important basis for clinical 
research on new therapies.
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Introduction
The most common complication of pregnancy is mis-
carriage, defined as spontaneous abortion of the foetus 
within 28  weeks of gestational age. The European Soci-
ety of Human Reproduction and Embryology (ESHRE) 
defined recurrent spontaneous abortion (RSA) as the loss 
of two or more pregnancies with the same sexual partner 
[1]. It is estimated that approximately 20% of pregnan-
cies end with miscarriage (< 20  weeks), and the average 

prevalence of miscarriage in females is 11% [2, 3]. Clini-
cal miscarriages can be subdivided into early (before 
12  weeks of pregnancy) and late clinical miscarriages 
(12 to 28  weeks of pregnancy). Previous studies have 
suggested many different causes of miscarriage, includ-
ing anatomical, genetic, endocrine, and immunological 
disorders, as well as various infections and environmen-
tal factors. Nonetheless, the potential factors remain 
obscure in roughly half of situations for which the aetiol-
ogy is unclear at this point [4–6]. Therefore, there is an 
urgent need to determine the mechanisms of miscarriage 
to clearly understand its causes.

In recent years, a developing number of studies have 
demonstrated that metabolism is altered during preg-
nancy and has a significant impact on pregnancy out-
comes. In one study, metabolomic analysis of maternal 
blood samples distinguished 4995 metabolic profiles 
(9651 in total), 460 annotated compounds (687 in total), 
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and 34 human metabolic pathways (48 in total) that were 
fundamentally modified during pregnancy [7]. Li et  al. 
[8] recognized 54 potential metabolites utilizing gas 
chromatography–time-of-flight mass spectrometry (GC-
TOFMS) and distinguished glycine, serine, threonine, 
β-alanine, the tricarboxylic acid (TCA) cycle, and phe-
nylalanine metabolism as key biological pathways in the 
development of RSA. With advances in research on mis-
carriage and metabolism-related studies, there is expand-
ing mindfulness that abnormalities in metabolites and 
metabolic pathways are common hallmarks in patients 
with RSA; however, treatment focusing on metabolic 
pathways has not yet become a therapeutic objective. 
Here, we first reviewed the changes in four metabolic 
pathways during normal pregnancy. Then, we explored 
the mechanisms by which metabolic abnormalities lead 
to miscarriage, along with the medications used against 
these targets, and eventually summarized the metabo-
lism-related genes leading to miscarriage.

Metabolic alterations in normal pregnancy
During pregnancy, the mother experiences many meta-
bolic adaptations to provide her with sufficient energy 
stores to meet the demands of pregnancy. During the 
first 6 months of pregnancy, the mother is in an anabolic 
period characterized by hyperphagia, increased insulin 
sensitivity, and lipid stores [9, 10]. Conversely, the last 
trimester of pregnancy is portrayed by a catabolic state, 
hyperinsulinaemia, diminished insulin responsiveness, 
and increased placental exchange of supplements [11, 
12]. These adaptations help to provide the appropriate 
environment for normal foetal growth in the uterus and 
prepare the mother for breastfeeding [13, 14].

In this review, we discuss the four major metabolic 
pathways associated with pregnancy and how their 
abnormalities result in miscarriage, including glu-
cose, lipid, and amino acid metabolism, and oxidation‒
reduction balance. In addition, we also summarize the 
medications for the relevant targets as well as the metab-
olism-related genes that contribute to adverse pregnancy 
outcomes. This will not only deepen our understanding 
of the mechanisms of miscarriage but also provide the 
theoretical foundation for clinical explorations of new 
treatments.

Glucose metabolism
In early gestation, the embryo depends on glycolysis to 
produce adenosine triphosphate (ATP), and the most 
important source of the required substrates is glycogen 
stored in the endometrium [15]. To meet the increased 
metabolic needs, glucose homeostasis during pregnancy 
is altered, especially by the transient state of insulin 
resistance, which is compensated by the proliferation of 

pancreatic beta cells and the increasing insulin secretion 
capacity stimulated by glucose [16–18]. On one hand, 
prolactin, as a known regulator of beta-cell growth and 
function, acts at multiple scales to prepare the mother for 
the new demands associated with the offspring. As pitui-
tary prolactin secretion ceases, serum concentrations 
of leptin, oestradiol, progesterone, and other placental 
hormones increase with gestation, and these hormones 
also work together to maintain insulin resistance during 
pregnancy [19, 20]. On the other hand, due to the high 
substrate demand and the inefficiency of foetal gluco-
neogenesis, the fetoplacental unit forms a system for the 
rapid transfer of glucose from the maternal blood to the 
placenta. This transfer system is mainly associated with 
the expression of glucose transporter proteins (GLUTs), 
which promote insulin responsiveness [21]. There are six 
GLUTs confirmed in the placenta to date: GLUT1, 3, 4, 
8, 9, and 12, with GLUT1, 3, and 4 assuming a significant 
role [22, 23]. The characteristics and regulatory factors of 
selected GLUTs in human placenta have been described 
in detail in the review by Stanirowski PJ et al. [24]. The 
expression of GLUT1 increased with the progression of 
pregnancy [25], whereas the expression of GLUT3 was 
significantly higher in hypoxic conditions in early gesta-
tion and diminished in late gestation [26, 27]. In general, 
the maternal body is regulated by several hormones to 
maintain the state of insulin resistance during pregnancy, 
while increased insulin secretion promotes the expres-
sion of GLUT in the foetal placental unit to provide ade-
quate glucose and energy for the foetus.

Lipid metabolism
Changes in maternal lipid metabolism during human 
pregnancy may be classified according to the anabolic 
and catabolic periods. Of these, the anabolic period 
occurs in the initial six months of human pregnancy 
and is dominated by increasing lipid deposition in 
maternal tissues [10, 12, 28]. At the macroscopic scale 
of lipid synthesis, during this period, the mother usu-
ally increases her food intake and the accumulation of 
body fat. At the molecular scale, research has shown 
that in rats, the conversion of glucose to fatty acids and 
glycerin gradually increases by the 20th day of gestation 
[29]. In addition, the activity of lipoprotein lipase (LPL) 
was enhanced in plasma; in contrast, its activity in adi-
pose tissue did not change significantly. The functions 
of LPL differ between the two locations. In plasma, LPL 
can promote the absorption of lipids by hydrolysing tri-
glyceride-rich chylomicrons and very low-density lipo-
proteins [14, 30], while LPL in adipose tissue contributes 
to the deposition of fat [31]. In late pregnancy, multiple 
hormones, including insulin, progesterone, cortisol, pro-
lactin, oestrogen, and leptin [32, 33], mediate increased 
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mRNA expression and the activity of hormone-sensitive 
LPL in white adipose tissue, thereby promoting lipolysis 
[34]. Thus, maternal lipid synthesis and accumulation 
increase in early gestation (increased intake, increased 
gluconeogenesis, increased plasma LPL activity), with lit-
tle change in catabolism (little change in LPL activity in 
adipose tissue), while catabolism increases in late gesta-
tion (promoting LPL activity in adipose tissue). In con-
trast, the mother promotes LPL activity in adipose tissue 
in late pregnancy through the combination of multiple 
hormones, which increases lipolysis.

Amino acid metabolism
The maternal demand for amino acids increases dur-
ing pregnancy for the establishment of the metabolic 
microenvironment of the endometrium in preparation 
for implantation and early pregnancy. Increased amino 
acid metabolism provides not only required proteins for 
exponential foetal growth, but also intermediate metabo-
lites that promote multiple biosynthetic pathways [35]. 
Most amino acids are found at higher concentrations 
in foetal plasma than in maternal plasma, suggesting 
their active accumulation in the syncytial trophecto-
derm [36, 37]. The active uptake of neutral amino acids 
by syncytiotrophoblast cells is mainly mediated by the 
combination of sodium-coupled neutral amino acid 
transporters (SNATs) and non-sodium-dependent L-type 
amino transporters (LATs). The expression and activ-
ity of SNAT, the A system, increases with gestational age 
and foetal size [38, 39]. Meanwhile, the LAT, or L system, 
is present in only a few normal tissues and is primarily 
responsible for the transport of essential amino acids 
[40]. As a consequence, circulating amino acid concen-
trations increase during pregnancy and are actively trans-
ported into foetal tissues through special placental amino 
acid transporters (the A and L systems), which provide 
amino acids for foetal growth and development.

Oxidation–reduction balance
In the female reproductive system, physiological levels of 
reactive oxygen species (ROS) serve an important regu-
latory role through various signal transduction pathways 
in folliculogenesis, oocyte maturation, the endometrial 
cycle, embryogenesis, and pregnancy [41]. Under nor-
mal physiological conditions of the placenta, the balance 
between the elements of the intrinsic redox reaction is 
maintained mainly through antioxidant reactions medi-
ated by the Keap1-nuclear factor-erythroid 2 related 
factor 2 (Nrf2) pathway [42–44]. Furthermore, in the 
hypoxic environment of the placenta during gestation, the 
hydroxylation of hypoxia-inducible factor-1α (HIF-1α) 
(as its common degradation pathway) decreases, leading 
to HIF-1α accumulation and nuclear translocation [45]. 

HIF-1α promotes the transcription of the forkhead box 
protein P3 (FoxP3) gene and the production of regula-
tory T cells under hypoxic conditions, which promotes 
immune tolerance and reduces oxidative stress [46, 47]. 
In summary, the balance between ROS and antioxidants 
during pregnancy is essential and is mainly maintained 
by Keap1/Nrf2 and FoxP3 activated by HIF-1α in the spe-
cific hypoxic environment of the placenta.

Abnormal metabolism and miscarriage
Abnormal glucose metabolism and miscarriage
A previous study found that women with recurrent 
miscarriages are more likely to have abnormal glucose 
metabolism [48]. In the following, we detail the studies 
related to abnormal glucose metabolism and abortion 
through three aspects: (i) glycogen synthesis; (ii) glyco-
lysis and HIF; and (iii) CD39- and CD73-mediated ATP 
metabolism.

In terms of glycogen synthesis, data show that glycogen 
accumulates tenfold to meet the energy metabolic sub-
strate requirements during pregnancy, and this process 
primarily relies on GLUT or sodium-glucose cotrans-
porter (SGLT) [49, 50]. Studies have proven that SGLT1 
gene and protein expression is significantly reduced in 
the endometrium of RSA patients during the implan-
tation window [51, 52]. This was corroborated in the 
SGLT1-deficient mouse model, in which endometrial gly-
cogen, litter size, and pup birth weight were lower than 
those of wild-type mice. This leads us to conclude that 
SGLT1 deficiency in the human endometrium at implan-
tation can lead to miscarriage and intrauterine growth 
restriction through decreased glycogen synthesis.

It has been relatively well demonstrated that HIF-1α is 
involved in the regulation of glucose metabolism home-
ostasis under hypoxic conditions. It acts as an oxygen-
sensitive transcriptional activator and can induce the 
transcription of a variety of genes related to gluconeo-
genesis [53]. Lactate (LA) is an important metabolite in 
hypoxia-inducible factor (HIF)-mediated glycolysis and 
is synthesized by lactate dehydrogenase A (LDHA) upon 
activation by highly expressed HIF-1α under hypoxic 
conditions [54]. Lactate can act as an active metabolite 
in physiological, immunological, and cell-biological reg-
ulation through the mediation of the monocarboxylate 
transporter protein (MCT) [55–57]. It has been shown 
that LA content is significantly elevated in the decidua 
of RSA patients. LA enhances inducible nitric oxide syn-
thase (INOS) expression in a HIF-1α-dependent manner, 
which in turn promotes M1 polarization of decidual mac-
rophages, leading to the disruption of immune tolerance 
to trigger miscarriages [58]. The studies of mouse mis-
carriage models in this manuscript have also shown that 
blocking LA uptake with AZD3965 (MCT-1 inhibitor) 
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could improve pregnancy outcomes, suggesting that 
MCT-1 could be a potential therapeutic target for RSA. 
Since the HIF family plays an important role in regulat-
ing glucose metabolism homeostasis, its degradation 
pathways are of equal interest [59, 60]. It was found that a 
decrease in chorionic succinate, an intermediate product 
of the tricarboxylic acid cycle during pregnancy, could 
promote HIF-1α degradation via the PHD-VHL path-
way by promoting the hydroxylation of HIF-1α [61]. This 
leads to a decrease in HIF-1α, which inhibits angiogen-
esis, invasive migration of trophoblast cells and glycolysis 
and ultimately causes RSA. It is evident that while HIF 
regulates glucose metabolism homeostasis, the glycolytic 
products LA and succinate can also influence pregnancy 
outcomes by affecting HIF levels.

Abnormalities in the metabolism of ATP, the prod-
uct of glucose metabolism, which is the direct provider 
of energy during pregnancy, are also closely associated 
with miscarriage. The ATP adenosine metabolic pathway 
modulated by CD39/CD73 has recently been suggested 
to play a significant role in immunosuppression [62]. 
CD39 hydrolyses ATP and ADP to produce AMP, and the 
membrane-bound 5’-nucleotidase CD73 further hydro-
lyses AMP into adenosine [63]. Therefore, CD39 and 
CD73 can convert proinflammatory immune cells driven 
by ATP to anti-inflammatory immune cells evoked by 
adenosine, thus causing immunosuppression [64, 65]. It 
was shown that downregulation of the TGF-β/mTOR/
HIF-1α pathway leads to the inhibition of ATP-aden-
osine metabolism and causes a decrease in the number 
of  CD39+ and  CD73+ cells at the maternal–foetal inter-
face [66]. This depresses the proliferation and invasion 
of trophoblast cells, reduces apoptosis and increases the 
cytotoxicity of decidual natural killer (dNK) cells, which 
contributes to RSA.

In conclusion, reduced GLUT protein expression dur-
ing pregnancy affects glycogen transport synthesis in 
the endometrium, which leads to insufficient substrates 
for gluconeogenesis and induces RSA. After reviewing 
points ii and iii, we found that HIF, as an important fac-
tor regulating glucose metabolism homeostasis in the 
special hypoxic environment of pregnancy, can also be 
regulated by glucose metabolites, thus leading to miscar-
riages (details in Fig.  1). HIF activation by LA can pro-
mote macrophage M1 polarization to disrupt immune 
tolerance, leading to miscarriages (details in Fig.  1A); 
decreased succinate expression promotes the degra-
dation of HIF-1α, which in turn inhibits angiogenesis, 
trophoblast invasion and migration and glycolysis (details 
in Fig.  1B); the downregulation of the TGF-β/mTOR 
pathway reduces HIF-1α expression, which inhibits ATP-
adenosine metabolism and increases dNK cell toxicity 
(details in Fig. 1C).

Abnormal lipid metabolism and miscarriage
Several studies have shown that abnormal lipid metab-
olism is associated with spontaneous abortion and 
pregnancy complications such as endothelial injury, 
preeclampsia, and gestational hypertension [67–69]. In 
this section, we detail the studies related to abnormal 
lipid metabolism and abortion through three aspects: 
(i) peroxisome proliferator-activated receptors (PPARs); 
(ii) total polyunsaturated fatty acids (PUFAs), TG and 
inflammation; and (iii) the arachidonic acid metabolic 
pathway, leptin and myometrial contractions.

PPARs (PPAR-α, PPAR-β/δ, and PPAR-γ) are members 
of the nuclear receptor superfamily, acting as ligand-
inducible transcription factors and playing crucial roles 
in glucose and lipid metabolism [70]. Studies have shown 
that PPAR deficiency inhibits fatty acid uptake and 
expression of fatty acid transporter proteins and pro-
motes the production and secretion of proinflammatory 
cytokines, leading to impaired placental development 
and functional impairment [71–73]. This might account 
for the high abortion rate in PPARα knockout mice 
in animal experiments and the fact that mutations in 
PPARγ and PPARδ cause infertility [74–76]. In addition, 
a study has demonstrated that PPAR-agonists have anti-
diabetogenic, anti-inflammatory, and antioxidant effects, 
which are all potentially beneficial in the treatment of 
gestational diabetes mellitus (GDM) [77]. This suggests 
another possible mechanism of action for improvement 
of pregnancy outcomes. However, determining whether 
PPAR gene polymorphism is relevant to the development 
of GDM still requires further evidence [78].

PUFAs, especially n-6 fatty acids, contribute to lipid 
peroxidation fragility and the proinflammatory effects 
of the corresponding peroxidation products, which in 
turn increase oxidative stress, alter lipid metabolism, 
and disrupt hormones [79–81]. This would lead to lower 
probability of pregnancy and live birth and increased 
risk of miscarriage [82]. In addition, it has been pro-
posed that patients with insulin resistance (IR) have sig-
nificantly higher triglyceride (TG) levels (which brings 
about an increased ratio of  CD3+CD4+) and numbers of 
 CD3+CD8+ lymphocytes, reduced insulin sensitivity, and 
induction of metabolic inflammation, resulting in RSA 
[83].

Metabolomic analysis revealed that the expression of 
the arachidonic acid metabolic pathway-related genes 
cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), 
prostaglandin F2α receptor (PTGFR), and thromboxane 
A2 receptor (TBXA2R) was significantly increased in 
RSA patients. Related animal experiments have shown 
that abnormal expression of COX genes and TBXA2R 
can cause uterine contraction by regulating the cyto-
plasmic phospholipase A2α (PLA2α)/COX-2 pathway in 
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endometrial stromal cells and inducing increased prosta-
glandin synthesis, ultimately leading to RSA [84–86]. All 
of these findings suggest that modulation of the arachi-
donic acid metabolic pathway may be a prospective ther-
apeutic strategy to alleviate symptoms in women with 
RSA. It has also been reported that the adipokine leptin 
can inhibit spontaneous and oxytocin-induced myome-
trial contractions by increasing NO and cGMP through 
stimulation of short-type leptin receptors and activa-
tion of the NO pathway in a JAK/STAT-dependent man-
ner [87]. However, this trial demonstrated the inhibitory 
effect of leptin on uterine contractions only in late preg-
nancy, and it is not yet known whether it can be used in 
early pregnancy to reduce the incidence of spontaneous 
miscarriage.

In conclusion, the abnormal lipid metabolism provoked 
by the decrease in PPAR and the increases in PUFA and 
TG can promote inflammation and oxidative stress, 
which would contribute to miscarriage. In contrast, 

the arachidonic acid pathway increases prostaglandin 
synthesis to cause myometrial contractions, leading to 
miscarriage, which might be ameliorated by pathway 
modulation and leptin.

Abnormal amino acid metabolism and miscarriage
The regulation of amino acid metabolism in the endome-
trium is one of the most important metabolic processes 
to meet the increased nutritional demands of early preg-
nancy. It provides not only protein components but also 
intermediate metabolites that promote multiple biosyn-
thetic pathways, which help to establish the metabolic 
microenvironment of the endometrium in preparation 
for implantation and early pregnancy [35, 88]. Therefore, 
we introduce the effects and mechanisms of amino acid 
metabolism on different tissues during pregnancy from 
three aspects: (i) autophagy of the endometrium; (ii) 
apoptosis of trophoblast cells; and (iii) inflammation of 
the maternal–foetal interface (Fig. 2).
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Metabolomic analysis identified 19 decreased metab-
olites and 22 increased metabolites in the endome-
trium of women with recurrent miscarriages, including 
decreases in pyruvate, glutamate and succinate as well as 
an increase in glutamine [89]. The reduction of various 
amino acids accounts for the accumulation of uncharged 
transfer RNA (tRNA), which binds a protein kinase 
called eukaryotic translation initiation factor 2α kinase 
4 (eIF2αK4) and activates the general control nondere-
pressible 2 (GCN2)/eIF2α/transcription activation factor 
4 (ATF4) pathway, thereby inhibiting protein synthe-
sis and inducing autophagy [90]. In addition, glutamine 
metabolism can induce autophagy through the release of 
NH3 [91]. This suggests that abnormal collusion between 
amino acid metabolism and autophagy may contribute 
to an impaired endometrial microenvironment, which in 
turn induces RSA (Fig. 2A).

It has been reported that nitric oxide (NO) can inhibit 
trophoblast apoptosis, thereby reducing adverse preg-
nancy outcomes [92]. In the placenta, NO is promoted 
by L-arginine via inducible NOS (iNOS) and endothe-
lial NOS (eNOS) [93]. This process can be selectively 
inhibited by asymmetric dimethylarginine (ADMA), 
which originates from type I protein L-arginine meth-
yltransferase (PRMT)-mediated protein degradation 
[94, 95]. A mechanistic study on the effect of decidual 
macrophages (DMs) on the regulation of trophoblast 
apoptosis showed that DM can promote trophoblast 
apoptosis by activating the PRMT3/ADMA/NO path-
way, which reduces the concentration of NO in meta-
phase and leads to RSA [96]. Furthermore, animal 
experiments have also revealed that the PRMT3 inhibi-
tor SGC707 could significantly reduce the embryo 
uptake rate in a mouse model prone to miscarriage, 

which demonstrates that the PRMT3/ADMA/NO 
pathway could be a potential target for the treatment 
of miscarriage. However, clinical and safety trials still 
need to be completed (Fig. 2B).

Homocysteine, a thiol-containing amino acid, is 
involved in sulfation and methylation metabolic path-
ways. Studies have shown that elevated homocysteine 
levels can activate proinflammatory pathways through 
endothelial dysfunction and lead to leukocyte-endothe-
lial cell interactions and leukocyte recruitment, caus-
ing vascular inflammatory changes that contribute to 
microembolism at the maternal–foetal interface, which 
ultimately results in RSA [97–99]. In addition, the 
trans-sulfuration pathway of homocysteine metabo-
lism requires cystathionine beta-synthase (CBS) and 
the cofactor vitamin B6. Since the CBS gene is a tar-
get of the vitamin D receptor, vitamin D deficiency 
can increase homocysteine levels by decreasing CBS, 
inducing increased NK cell cytotoxicity, which in turn 
further promotes the inflammatory immune response 
at the maternal–foetal interface and leads to RSA 
[100–102]. This demonstrated the relationship between 
amino acid metabolism and inflammation in preg-
nancy and suggested the necessity of vitamin D and 
B6 supplementation during pregnancy in RSA patients 
(Fig. 2C).

In conclusion, abnormal amino acid metabolism can 
act in several pregnancy-related tissues, leading to 
adverse pregnancy outcomes. Abnormal amino acid 
metabolism in the endometrium can induce autophagy 
leading to an impaired microenvironment; at the 
maternal–foetal interface, it can be regulated by DM to 
activate the PRMT3/ADMA/NO pathway and promote 
trophoblast apoptosis; and increased homocysteine 
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levels at the maternal–foetal interface can induce the 
inflammatory immune response, leading to abortion, 
which can be alleviated by vitamin D supplementation.

Abnormal oxidation–reduction balance and miscarriage
Research on hyperandrogenemia and insulin resistance-
related miscarriage in women showed that the important 
factors contributing to embryonic damage in polycystic 
ovary syndrome (PCOS)-like conditions include exces-
sive production of ROS, mitochondrial dysfunction, 
and the inhibition of superoxide dismutase 1 (SOD1) 
and Keap1/Nrf2 antioxidant responses in the placenta 
[103]. This suggests that the disturbance in the balance 
between oxidative stress (ROS production) and antioxi-
dants is responsible for the initiation and development 
of pathological processes affecting female reproduction 
[104, 105]. Therefore, we elaborate on the mechanisms by 
which dysregulation of redox reaction balance contrib-
utes to abortion in terms of abnormalities in both oxida-
tive stress and antioxidants.

It has been reported that increased levels of malondi-
aldehyde and lipid peroxides in placental tissue increase 
ROS, which can lead to sudden and premature forma-
tion of maternal placental perfusion while damaging the 
trophectoderm, resulting in RSA [106, 107]. In addition, 
activation of the Fas/FasL signalling pathway in villi tis-
sue can promote oxidative stress-induced apoptosis 
of trophoblast cells, contributing to miscarriage. The 
molecular mechanism is associated with inhibition of the 
Notch1 signalling pathway and upregulation of epithe-
lial cadherin (E-cadherin), soluble vascular endothelial 
growth factor receptor 1 (sFlt-1), and vascular endothe-
lial growth factor (VEGF) expression [108]. It follows that 
excessive activation of oxidative stress can lead to pre-
mature placental perfusion, induction of apoptosis, and 
destruction of the trophectoderm, which would result in 
miscarriage.

Changes in the consumption of antioxidants can also 
lead to disturbances in the balance of pro-oxidant and 
antioxidant factors, which could lead to miscarriage [109, 
110]. Glutathione and glutathione peroxidase are antioxi-
dants that neutralize free radicals and lipid peroxides to 
maintain intracellular homeostasis and redox balance. In 
a large case‒control study on genetic polymorphisms of 
the glutathione family enzyme glutathione S-transferase 
(GST), an elevated risk of RSA was found to be associ-
ated with increased oxidative stress due to null polymor-
phisms of the GSTM1 and GSTT1 genotypes in RSA 
patients [111–113]. Nonetheless, epidemiological stud-
ies and related experiments have shown that sulfur diox-
ide (SO2) and its derivatives can inhibit trophoblast cell 
viability and the ROS/IL-6/STAT3 pathway, interfere 
with cell proliferation by blocking the cell cycle, induce 

apoptosis, disrupt the secretion of inflammation-related 
cytokines, and inhibit cell invasion and migration, lead-
ing to miscarriage and pregnancy complications [114]. 
This reflects the fact that both reduced and inappropri-
ate use of antioxidants can lead to adverse pregnancy 
outcomes.

Although it is controversial whether antioxidant sup-
plementation could change pregnancy outcomes [115–
117], some new findings on antioxidant drugs have been 
achieved. A study in 2020 revealed that astaxanthin sig-
nificantly alleviated poor glucose tolerance and beta-
cell insufficiency and improved pregnancy outcomes by 
restoring the Nrf2/heme oxygenase-1 (HO-1) antioxidant 
pathway in the livers of gestational diabetic mice, inhib-
iting oxidative stress in vivo, and enhancing the activity 
of antioxidant enzymes [118]. It has also been reported 
that alpha lipoic acid (ALA) and its reduced form dihy-
drolipoic acid (DHLA) may improve pregnancy outcomes 
through specific stimulatory activity on Nrf2-dependent 
gene transcription and by the inhibition of NF-kB activity 
[119, 120], but more patient samples and further studies 
on safety in pregnancy and the pharmacokinetics of the 
vaginal pathway are still needed.

Metabolism‑related genes and miscarriage
RSA is considered idiopathic in approximately 50% of 
cases, thus highlighting the potential genetic and epige-
netic origins of the disease [121–123]. While we previ-
ously discussed the effects of glucose metabolism, lipid 
metabolism, amino acid metabolism, and redox reactions 
on pregnancy outcome, we then attempted to summarize 
the metabolism-related genes that cause miscarriage to 
support its heritability (details in Table 1).

An Austrian study linked unexplained miscarriages 
with a variant of a specific gene called nitric oxide syn-
thase 3 (NOS3) [124]. The data suggest that heterozy-
gous carriers of the NOS3 polymorphism have a 1.6-fold 
increased risk of RSA, which might be due to reduced 
levels of NO causing vasoconstriction, which in turn 
leads to increased risk of impaired placental perfusion 
and infarction. In addition, another study showed that 
genetic defects in epithelial membrane protein 2 (EMP2) 
can inhibit angiogenesis and oxidative phosphorylation 
by suppressing FAK and Src to inhibit the production 
of HIF-1α in the trophectoderm, leading to miscarriage 
[125–127]. The increased recruitment of HIF-1α in NK 
cells in the uterus of EMP2-/- mice might represent a 
compensatory mechanism.

Lipocalin is a hormone involved in the regulation of 
energy, lipid and glucose metabolism and is encoded 
by the ADIPOQ gene. A study in 2021 demonstrated 
the contribution of ADIPOQ gene variants to inherited 
susceptibility to RSA [128]. Of the 14 single nucleotide 
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polymorphisms (SNPs) tested, RSA risk was moderately 
associated with rs4632532, rs7649121, and rs1501299 
and strongly associated with rs17366568, rs2241766, and 
rs2241767 [129].

Pregnancy can induce complex immune responses at 
the implantation site to promote and protect the preg-
nancy. Therefore, immune dysfunction is also consid-
ered to be an important cause of spontaneous abortion 
[130]. The complement system is essential for stable pla-
cental and foetal development. It has been verified that 
polymorphisms of complement factors D (CFD) and H 
(CFH) can influence pregnancy outcomes through the 
regulation of C3 [131–133]. Clinical data showed that 
women with RSA and CFH rs1065489TT genotypes 
had significantly lower homocysteine levels than women 
with RSA and CFH rs1065489GG and GT genotypes. 
In addition, patients with the CFH rs1065489TT geno-
type had higher prolactin levels than patients with the 
CFH rs1065489GG and GT genotypes. Patients with the 
CFH rs1061170TC genotype had significantly higher uric 
acid and triglyceride levels than patients with the CFH 
rs1061170TT genotype. Evidence has suggested that the 
CFH rs1065489G > T polymorphism is related to homo-
cysteine and prolactin levels, and the CFH rs1061170 TC 
genotype is related to uric acid and triglyceride levels in 
RSA patients. These results indicated that the comple-
ment system could impact pregnancy outcomes through 
the modulation of metabolism.

In addition, many studies have also shown that the reg-
ulation of mitochondrial energy metabolism by nucleic 
acids such as mtDNA, miR-210, miR-218, miR-574-5p 
and miR-3135b could lead to pregnancy complications 

such as foetal growth restriction (FGR), preeclampsia 
(PE) and GDM [134–137]. However, their roles in spon-
taneous abortion are relatively unexplored. The link 
between genetics and metabolism might contribute to 
further insights into the genetic mechanisms leading to 
spontaneous miscarriages.

Conclusion
During pregnancy, the mother undergoes many meta-
bolic adaptations to meet the demands of pregnancy. 
These adaptations help prepare the mother for breast-
feeding and provide the proper environment for normal 
foetal growth in the uterus. Metabolomic analysis has 
identified abnormal metabolic indicators in both human 
miscarriage patients and animal miscarriage models. 
Studies have revealed that abnormal glucose metabolism, 
lipid metabolism, amino acid metabolism, and oxida-
tion‒reduction balance can lead to adverse pregnancy 
outcomes by inducing maternal inflammatory responses, 
promoting uterine contraction, disrupting immune tol-
erance, inducing autophagy, activating apoptosis, and 
inhibiting invasive migration and angiogenesis. In addi-
tion, animal studies have been conducted on some of 
these targets and have demonstrated that drugs target-
ing metabolic abnormalities can improve pregnancy 
outcomes in miscarriage models, but further studies 
and clinical trials are needed to clarify their therapeutic 
efficacy and safety in women with miscarriage. In this 
review, we summarize the pathways and related thera-
peutic agents regarding abnormal metabolism triggering 
miscarriage (Table  2). This might provide directions for 
future research and new therapies related to miscarriage.

Table 1 Metabolism‑related genes and miscarriage

SGLT1 sodium-glucose co-transporter 1, PPAR Peroxisome proliferator activated receptor, COX cyclooxygenase, TBXA2R thromboxane A2 receptor, PLA2α 
phospholipase A2α, GST glutathione S-transferase, NOS3 nitric oxide synthase 3, EMP2 epithelial membrane protein 2, FAK focal adhesion kinase, Src steroid receptor 
coactivator, ADIPOQ Adiponectin

Gene Target Study model Effect Refs

SGLT1 SGLT1 C57BL/6 J mice
Human Endometrial Stromal Cells

Reduce glycogen synthesis [52]

PPARα PPARs C57BL/6 J mice Inhibit fatty acid uptake and fatty acid transporter protein expres‑
sion

[74]

COXs
TBXA2R

PLA2α/COX‑2 CD1 mice Increase synthesis of prostaglandins, leading to uterine contrac‑
tions

[84, 85]

GSTM1
GSTT1

Glutathione Human blood samples Increase oxidative stress [112, 113]

NOS3 NO Human blood samples Decrease levels of NO cause vasoconstriction, which in turn leads 
to impaired placental perfusion and an increased risk of infarction

[124]

EMP2 FAK/Src/HIF‑1α C57BL/6 mice
Human placenta samples

Inhibite angiogenesis and oxidative phosphorylation [127]

ADIPOQ Lipocalin Human blood samples Unknown [129]

CFHrs1065489G > T C3 Human blood samples Homocysteine and prolactin levels [131]

CFH rs1061170 TC C3 Human blood samples Uric acid and triglyceride levels
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