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Abstract 

Background  Necroptosis has been reported to play a critical role in occurrence and progression of cancer. The 
dysregulation of long non-coding RNAs (lncRNAs) is associated with the progression and metastasis of clear cell renal 
cell carcinoma (CCRCC). However, research on necroptosis-related lncRNAs in the tumor heterogeneity and prognosis 
of CCRCC is not completely unclear. This study aimed to analysis the tumor heterogeneity among CCRCC subgroups 
and construct a CCRCC prognostic signature based on necroptosis-related lncRNAs.

Methods  Weighted gene co-expression network analysis (WGCNA) was performed to identify necroptosis-related 
lncRNAs. A preliminary classification of molecular subgroups was performed by non-negative matrix factorization 
(NMF) consensus clustering analysis. Comprehensive analyses, including fraction genome altered (FGA), tumor muta-
tional burden (TMB), DNA methylation alterations, copy number variations (CNVs), and single nucleotide polymor-
phisms (SNPs), were performed to explore the potential factors for tumor heterogeneity among the three subgroups. 
Subsequently, we constructed a predictive signature by multivariate Cox regression. Nomogram, calibration curves, 
decision curve analysis (DCA), and time-dependent receiver-operating characteristics (ROC) were used to validate 
and evaluate the signature. Finally, immune correlation analyses, including immune-related signaling pathways, 
immune cell infiltration status and immune checkpoint gene expression level, were also performed.

Results  Seven necroptosis-related lncRNAs were screened out by WGCNA, and three subgroups were classified 
by NMF consensus clustering analysis. There were significant differences in survival prognosis, clinicopathological 
characteristics, enrichments of immune-related signaling pathway, degree of immune cell infiltration, and expression 
of immune checkpoint genes in the various subgroups. Most importantly, we found that 26 differentially expressed 
genes (DEGs) among the 3 subgroups were not affected by DNA methylation alterations, CNVs and SNPs. On the con-
trary, these DEGs were associated with the seven necroptosis-related lncRNAs. Subsequently, the identified RP11-
133F8.2 and RP11-283G6.4 by multivariate Cox regression analysis were involved in the risk model, which could serve 
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as an independent prognostic factor for CCRCC. Finally, qRT-PCR confirmed the differential expression of the two 
lncRNAs.

Conclusions  These findings contributed to understanding the function of necroptosis-related lncRNAs in CCRCC 
and provided new insights of prognostic evaluation and optimal therapeutic strategy for CCRCC.

Keywords  Necroptosis-related lncRNA, Clear cell renal cell carcinoma, Tumor heterogeneity, Prognosis

Introduction
Kidney cancer is one of the most common malignant 
tumors in the genitourinary system, accounting for 
approximately 4.1% of all new cancer case in the United 
State in 2022 [1, 2]. Renal cell carcinoma (RCC), as the 
major form of kidney cancer, makes up approximately 
90% of all renal malignancies [3]. Of these, clear cell renal 
cell carcinoma (CCRCC) is the most aggressive subtype 
representing approximately 70% of all RCCs [4]. Patients 
with early-stage localized primary RCC may be cured 
after surgical resection, but approximately 20–30% of 
patients eventually develop recurrent and metastatic 
RCC [5]. At present, a combination of immune check-
point inhibitors or a combination of immune checkpoint 
inhibitor and tyrosine kinase inhibitors is the mainstay of 
treatment for patients with metastatic RCC [6]. In the last 
decade, due to the development of new tyrosine kinase 
inhibitors and immune checkpoint inhibitors, impressive 
advancements have been made in the treatment of RCC 
patients [7]. However, due to the lack of specific prog-
nostic biomarkers, individual differences in drug sensi-
tivity and obvious side effects of drugs, advanced RCC 
has a high mortality rate and a low 5-year survival rate 
[8]. Therefore, it is of vital importance to further explore 
a specific biomarker for the diagnosis and prognosis of 
CCRCC.

Necroptosis is a novel programmed form of necrotic 
cell death in a caspase-independent manner, which 
is mainly mediated by receptor-interacting protein 
kinase 1 (RIPK1), receptor-interacting protein kinase 
3 (RIPK3), and mixed lineage kinase domain-like pseu-
dokinase (MLKL) [9]. When activated RIPK1 interacts 
with RIPK3, a crucial complex, necrosome, is formed. 
In the necrosome, RIPK3 phosphorylates its substrate 
MLKL, which is then oligomerized and translocated to 
plasma membrane, ultimately leading to the execution 
of necroptosis [9, 10]. Necroptosis shares similar mor-
phological features with necrosis, mainly characterized 
by the rupture of the cellular membrane, progres-
sively translucent cytoplasm and swelling of organelles 
[9, 11]. When the cellular membrane is ruptured in 
necroptotic cells, the released cell contents can cause 
the exposure of damage-associated molecular patterns 
(DAMPs) and trigger strong inflammatory responses 

[9, 12]. Necroptosis has been reported to play a criti-
cal role not only in viral infection and development 
but also in the regulation of cancer biology, mainly 
manifested in tumorigenesis, cancer metastasis, cancer 
immunity and cancer subtypes [9, 13]. It is worth not-
ing that necroptosis has the dual effects of promoting 
and reducing tumor growth depending on the tumor 
type and conditions [9]. In the different types of tumor 
cells, the expression of several key factors in necrop-
totic signaling pathways were decreased, which was 
associated with poor prognosis as well as promotion of 
tumor progression and metastasis [14–18]. At present, 
targeting necroptosis has become a novel cancer ther-
apy for bypassing apoptosis-resistance and supporting 
antitumor immunity [9].

Long non-coding RNAs (lncRNAs) are a class of tran-
scribed non-coding RNAs with a length of more than 
200 nucleosides, which are widely distributed in the 
cytoplasm and nucleus [19]. Accumulating evidence 
has shown that lncRNAs are involved in the develop-
ment and progression of cancer and implicated in vari-
ous biological processes, such as cell proliferation, cell 
cycle, cell differentiation and apoptosis [20, 21]. Recent 
research has indicated that the dysregulation of lncR-
NAs is associated with the progression and metastasis 
of CCRCC [22–25]. However, research on necroptosis-
related lncRNAs in the tumor heterogeneity and prog-
nosis of CCRCC has not been reported, and the role 
of necroptosis-related lncRNAs in CCRCC remained 
unclear.

In this study, we analyzed the tumor heterogeneity 
among CCRCC subgroups and constructed a novel pre-
dictive signature based on necroptosis-related lncRNAs, 
aiming to explore the potential factors for tumor hetero-
geneity and its prognostic value in CCRCC patients.

Materials and methods
Data extraction
All transcriptome RNA-seq and genomics data and clini-
cal characteristics of enrolled samples were downloaded 
from The Cancer Genome Atlas (TCGA) (https://​portal.​
gdc.​cancer.​gov/). A total of 531 CCRCC samples were 
enrolled in this study, which 76 normal tissues extracted 
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from the TCGA database were termed as the control 
group.

Weighted gene co‑expression network analysis
Weighted gene co-expression network analysis 
(WGCNA), a systematic biological method, is used to 
construct a gene co-expression network to explore the 
relationship between network modules and clinical 
traits [26]. In this study, the expression profiles of lncR-
NAs in CCRCC samples enrolled samples was applied 
to construct gene co-expression networks using the 
“WGCNA” package in R software [26]. The construc-
tion process was the same as described previously [26, 
27].

Non‑negative matrix factorization clustering analysis
Non-negative matrix factorization (NMF) is an effi-
cient method whose algorithm divides the original 
matrix into two non-negative matrices to identify the 
potential feature in the gene expression profile [28]. In 
this study, we first integrated survival information of 
TCGA-KIRC and gained the necroptosis-related lncR-
NAs by WGCNA. Second, non-negative matrix fac-
torization clustering was applied for identification of 
new subtypes using the “NMF” package in R software. 
All the necroptosis-related lncRNAs were selected to 
construct a principal component analysis (PCA) scor-
ing system with the “prcomp” function in R software. 
The difference in survival probability among these sub-
groups was analyzed using the “survival” package in R 
software by Kaplan–Meier analysis and log-rank test. 
Third, the differential analysis of tumor clinicopatho-
logical characteristics among these subgroups was 
performed using the cBioportal, and the difference in 
fraction genome altered (FGA) and tumor mutational 
burden (TMB) were also analyzed using the cBioportal 
at the same time. Then, DNA methylation alterations, 
copy number variations (CNVs) and single nucleotide 
polymorphisms (SNPs) were further analyzed using the 
cBioportal and the “maftools” package in R software.

Tumor immune analysis
Gene set enrichment analyses (GSEA) was performed 
to identify significantly enriched immune-related sign-
aling pathways using the “clusterprofiler” package in R 
software [29]. Values of p < 0.05 and FDR < 0.25 were 
defined as thresholds for statistical significance. The 
differential expression of tumor-infiltrating immune 
cells (TIICs) among subgroups was evaluated using 
CIBERSORT algorithm. In addition, we also compare 
to the expression level of immune checkpoint gene 
among subgroups. The degree of difference was noted: * 
if p < 0.05, ** if p < 0.01, and *** if p < 0.001.

Establishment of the risk model of CCRCC​
The prognostic necroptosis-related lncRNAs 
screened were used for multivariate Cox regres-
sion analysis and risk model construction. The risk 
score was calculated using following algorithm: Risk 
S c o r e  =  

∑n
i=1

expression value(lncRNAi)× regression

coefficient(lncRNAi).

Construction and calibration of predictive nomogram
A nomogram was created to predict the 1-, 3-, and 
5-year OS of CCRCC patients based on multivariate Cox 
regression. Subsequently, a calibration curve was used 
to illustrate the predictive power the established nomo-
gram model. Decision curve analysis (DCA) was used 
to compare the clinical benefits conferred by the prog-
nostic evaluation of the nomogram and a single predic-
tor. Receiver operator characteristic (ROC) curves were 
established to evaluate the diagnostic ability of nomo-
gram and individual predictors.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)
HK-2 (human renal proximal convoluted tubule cell 
line) and 786-O (CCRCC cell line) are obtained from 
National Collection of Authenticated Cell Cultures, 
China. Total RNA was extracted with TRIzol reagent 
(Beyotime, China). Total RNA was reversely transcripted 
into cDNA. qPCR amplification was performed using the 
SYBR Green PCR kit (Servicebio, China) according to the 
manufacturer’s protocol. The PCR parameters were set 
for an initial cycle of 1 min at 95 °C, followed by a total 
of 40 cycles at 95 °C for 20 s, 55 °C for 20 s, and 72 °C for 
30 s. The relative expression of each gene was normalized 
to human GAPDH levels and calculated using the 2−ΔΔCt 
method. Experiments were repeated three times. The 
primer sequences for PCR amplification were as follows:

RP11-133F8.2, forward: 5′-CGA​AGC​CAA​GCA​AAG​
CAA​CA-3′,

Reverse: 5′-TCG​CCC​AAA​CAC​TTA​AAC​GC-3′;
RP11-283G6.4, forward: 5′-AGT​TGG​AAC​TTG​TGA​

CCA​GCA-3′,
Reverse: 5′-AGC​CTC​ACT​TTG​GCA​GGA​AC-3′.

Statistical analysis
The statistical analyses were performed with R Studio 
software (version 1.3.1093; https://​rstud​io.​com/​produ​
cts/​rstud​io/). Statistical significance levels were deter-
mined by two-sided tests and p < 0.05 was considered 
statistically significant. The Mann–Whitney U test and 
t-test were used for continuous variables analysis and the 
χ2 test for categorical variables analysis. Univariate and 
multivariate Cox proportional hazard regression analyses 
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were used for determining the risk model of necroptosis-
related lncRNAs. The Kaplan–Meier method with a two-
sided log-rank test was used for survival analysis.

Results
Identification of differentially expressed lncRNAs
We collected RNA-seq data of enrolled samples from 
531 CCRCC patients and 76 normal tissues from TCGA. 
These data were used for differential expression analy-
sis, and 138 lncRNAs were significantly differentially 
expressed between CCRCC and normal groups (Addi-
tional file 3: Table S1). The expression profiles of differen-
tially expressed genes (DEGs) were visualized in the form 
of heat map and volcano map (Fig.  1A and B, respec-
tively). Then, we obtained 67 necroptosis-related genes 
according to previously reported literature (Additional 
file 4: Table S2) [30, 31].

Construction of co‑expression network in CCRCC​
WGCNA was performed to analyze the expression val-
ues of 138 lncRNAs in 531 enrolled samples. The soft-
thresholding power was six which was determined 
according to a scale-free topology fit index (R2 = 0.85) 
(Additional file  1: Fig. S1). Therefore, the network con-
formed to the power-law distribution and was closer to 
the real biological network state. Resulting gene clus-
tering tree and respective module colors are shown in 
Fig. 1C. The number of lncRNAs per module was noted 
in Additional file 5: Table S3. The topological overlap in 
the gene network is revealed in Fig.  1D. The heat map 
indicated the eigengene adjacency of modules (Fig.  1E). 
Our study focusses on the mechanism of necropto-
sis-related lncRNAs in CCRCC. Therefore, we mainly 
focused the black module (r = 0.33, p = 1e−14), which had 
the strongest correlation with the clinical characteristics, 
biologically (Fig.  1D). Finally, seven necroptosis-related 
lncRNAs, including TTC21B-AS1, RP4-764O22.1, RP11-
133F8.2, RP11-283G6.4, AC073115.6, AC073115.7, and 
LINC01428 (Additional file  5: Table  S3), were screened 
out for the subsequent analysis.

NMF clustering of necroptosis‑related lncRNAs in CCRCC​
Based on the expression of these identified necrop-
tosis-related lncRNAs, a preliminary classification of 
molecular subgroups was performed by NMF consensus 

clustering analysis, and three subgroups were reason-
ably classified (Fig. 2A). As shown in Fig. 2B, the expres-
sion profiles of seven necroptosis-related lncRNAs in the 
three subgroups were visualized using a heatmap. PCA 
was applied to further verification the distinction among 
the three subgroups at the expression patterns of seven 
necroptosis-related lncRNAs (Fig.  2C). Kaplan–Meier 
survival curves indicated significantly differences in sur-
vival among the three subgroups (p < 0.0001) (Additional 
file 6: Table S4), and Cluster 2 had a better survival prob-
ability than Cluster 1 and Cluster 3 (Fig.  2D). The clin-
icopathological characteristics of the three subgroups are 
presented in Fig. 2E–J, which showed that the differences 
in T stage, M stage, pathologic stage, histologic grade and 
tumor status were statistically significant. These results 
suggest tumor heterogeneity among the three subgroups. 
In addition, FGA and TMB had obvious difference 
between subgroups (Fig.  2K–M), which prompted us to 
further analyze the effect of these alterations on mRNA 
expression levels.

Analysis of tumor heterogeneity among CCRCC 
subgroups
To explore the potential factors for tumor heterogeneity 
among CCRCC subgroups, we analyzed whether DEGs 
among subgroups were associated with DNA meth-
ylation alterations, CNVs in the genome and SNPs. Fig-
ure  3A–C shows DEGs among subgroups used for the 
subsequent analysis. Of these, Cluster 1 had one gene 
with high expression and 7 genes with low expression 
(Fig.  3A), Cluster 2 had 48 genes with high expression 
and 3 genes with low expression (Fig. 3B), Cluster 3 had 
14 genes with high expression (Fig.  3C). Gene expres-
sion levels associated with DNA methylation alterations 
between subgroups were visualized on volcano maps 
using the cBioportal (Fig. 3D–F). The data revealed that 
the significant difference in 1642 genes between Cluster 
1 and Cluster 2, one gene between Cluster 1 and Cluster 
3, as well as 4661 genes between Cluster 2 and Cluster 
3. The Venn diagram revealed that there were 78 DEGs, 
of which only 26 DEGs (excluding 2 lncRNAs) were not 
affected by DNA methylation alterations (Fig. 3G).

CNVs in the genome of CCRCC patients were ana-
lyzed using maftools according to the GISTIC algo-
rithm. The results showed that significant copy 

Fig. 1  Identification of necroptosis-related lncRNAs in CCRCC. A The heatmap of differentially expressed genes. B The volcano plot 
of the differentially expressed genes. C The cluster dendrogram of co-expression network modules. D The heatmap of topological overlap 
in the gene network. E The heatmap of eigengene adjacency. F The module–trait relationships

(See figure on next page.)
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number amplification or deletion were distributed on 
different chromosomes (Fig. 4A–C), and the details of 
copy number amplification and deletion in the genome 
were presented in Additional file  2: Fig. S2A–F. In 
addition, the alterations of gene expression levels were 
analyzed according to the CNVs in the genome. The 
data revealed that the expression level of 1612 genes 
in Cluster 1, 2331 genes in Cluster 2 and 1007 genes 
in Cluster 3 were affected by CNVs (Fig.  4D–F). The 
specific distribution of copy number amplification 
and deletion as well as copy number variation-related 
genes were presented in Fig.  4G–I. The Venn dia-
gram revealed that the remaining 26 DEGs (excluding 
two lncRNAs) also were not affected by CNVs in the 
genome (Fig. 4J).

Tumorigenesis results from the accumulation of gene 
mutations [32]. The differences of gene mutations in the 
three subgroups were analyzed according to the SNPs 
data. The mutation frequencies of 26 DEGs in each sub-
group were presented as waterfall plots (Fig.  5A–C). 
However, the data revealed that no significant mutations 
were found in these genes. Finally, the correlation of 
expression level between the 26 DEGs and 7 necroptosis-
related lncRNAs for each subgroup is demonstrated in 
Fig. 6A–C. The above comprehensive analysis suggested 
that the 26 DEGs screened may only be associated with 7 
necroptosis-related lncRNAs.

Immune correlation analysis among CCRCC subgroups
Based on the different prognosis of CCRCC patients 
among the three subgroups, we conducted GSEA 
to explore the underlying differences in biologi-
cal functions in two subgroups. We found that the 
INTERFERON_GAMMA_RESPONSE, INTERFERON_
ALPHA_RESPONSE, INFLAMMATORY_RESPONSE, 
IL6_JAK_STAT3_SIGNALING, and IL2_STAT5_SIGN-
ALING were significantly enriched in the Cluster 1, 
indicating that CCRCC patients in Cluster 1 are closely 
related to immune-related signaling pathway (Fig.  7A). 
Subsequently, we further  explored the heterogeneity 
of tumor immune microenvironment among CCRCC 
subgroups. As shown in Fig.  7B, the differences in the 
immune cell infiltration among the three subgroups 
were statistically significant. In addition, the percentage 
of 22 TIICs in each TCGA-KIRC sample was shown in 

the bar plot (Fig. 7C). The result revealed that T cells and 
macrophages were seen to account for the largest com-
ponents. In addition, we compared the expression level 
of immune checkpoint genes in the three subgroups and 
found that almost all the immune checkpoint genes were 
significantly elevated in the Cluster 2 and 3 (Fig.  7D). 
These results suggested that Cluster 2 and 3 are more 
active in immune function and might be more sensitive 
to immunotherapy.

Establishment of necroptosis‑related lncRNAs predictive 
risk score
To evaluate the prognostic ability of these identified 
necroptosis-related lncRNAs, we analyzed the relation-
ship between the survival probability and the expression 
levels of these necroptosis-related lncRNAs. The Kaplan–
Meier survival analysis demonstrated that the CCRCC 
patients with high expression of TTC21B-AS1, RP4-
764O22.1, RP11-133F8.2, AC073115.6, and LINC01428 
and low expression of RP11-283G6.4 had significantly 
longer overall survival (Fig.  8A–G). Subsequently, two 
necroptosis-related lncRNAs (RP11-133F8.2 and RP11-
283G6.4) were identified using multivariate Cox regres-
sion analysis in TCGA dataset (Fig.  8H). The risk score 
predictive model was constructed by adding the lncRNAs 
expression level and relevant coefficient of each lncR-
NAs as follows: risk score = 【(− 4.970e−01) × RP11-
133F8.2 expression】 + 【(1.412e−01) × RP11-283G6.4 
expression】.

Construction of the comprehensive nomogram in TCGA 
dataset
Based on our previous results, we constructed a new 
nomogram using risk score combined with clinical indica-
tors for preoperatively evaluation of patients’ survival and 
therapy response. Univariate Cox regression followed by 
multivariate Cox regression was used to identify the most 
significant independent risk/protective factors. The for-
est plot showed the risk score, age, stage III and stage IV 
are independent risk factors (Fig.  9A). The Schoenfeld 
residual test showed that all of the variables met equally 
proportional hazards (PH) assumption (Fig. 9B). Consider-
ing all the identified significant predictive factors, we con-
struct a comprehensive nomogram including risk score, 
age and stage to predict the 1-, 3-, and 5-year OS rates of 
CCRCC patients (Fig. 9C). The calibration curves displayed 

(See figure on next page.)
Fig. 2  Tumor classification based on the identified seven necroptosis-related lncRNAs. A Three subgroups were classified by NMF consensus 
clustering analysis (k = 3). B The heatmap of seven necroptosis-related lncRNAs in the three subgroups. C The PCA of seven necroptosis-related 
lncRNAs for the three subgroups. D Kaplan–Meier survival curves in the three subgroups. E–J The comparison of differential clinicopathological 
characteristics in the three subgroups. K The difference of FDA in the three subgroups. M The difference of TMB in the three subgroups
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suitable calibration efficiency indicating a good consistency 
between the actual OS rates and predicted survival rates at 
1, 3, and 5 years (Fig. 9D). Subsequently, we compared the 
scores of the nomogram among the three subgroups and 
found that Cluster 2 had the lowest score and Cluster 3 had 
the highest score. The result was consistent with the previ-
ous survival analysis among the three subgroups, indicating 
that the nomogram may be used to guide clinical prognos-
tic analysis (Fig.  9E). The DCA was used to evaluate the 
clinical application of nomogram and the net benefits of 
different prediction models at different threshold probabili-
ties. As shown in Fig. 9F–H, the new nomogram showed 
better net benefit than age, stage and risk score. Moreover, 
the time-dependent ROC curve verified that prediction 
performance of the nomogram was better compared to the 
other index (Fig. 9I–K).

Analysis of qRT‑PCR
Two necroptosis-related lncRNAs (RP11-133F8.2, 
RP11-283G6.4) were selected for further analysis. The 
two lncRNAs were tested in HK-2 and 786-O cells. As 
shown in Fig. 10A, B, the two lncRNAs are differentially 
expressed between tumor and normal renal cells. The 

expression of RP11-133F8.2 was reduced in CCRCC 
cells, and the expression of RP11-283G6.4 was elevated in 
CCRCC cells compared with renal proximal convoluted 
tubule cells. This means that the experimental results also 
confirmed the reliability of the risk model.

Discussion
RCC, a urological malignant tumor, represents approxi-
mately 90% of all malignancies of the kidney [3]. Due to 
the aggressive nature of RCC, 20–30% of patients have 
synchronous metastases at the time of initial diagnosis, 
and 20–40% of patients develop metachronous metas-
tases after nephrectomy [33]. Although a combination 
of immune checkpoint inhibitors or a combination of 
immune checkpoint inhibitor and tyrosine kinase inhibi-
tors has achieved significant therapeutic improvement in 
the treatment of metastatic RCC, the 5-year survival rate 
of these patients remains poor [5, 6, 34]. In our study, two 
necroptosis-related lncRNAs, including RP11-133F8.2 
and RP11-283G6.4, could be used to predict the survival 
outcome of patients with CCRCC, and further study of 
these lncRNAs may be helpful for individualized treat-
ment of these patients.

Fig. 3  The potential factors for tumor heterogeneity in the three subgroups. A–C The volcano plots of DEGs between subgroups. D–F The volcano 
plots of DNA methylation alterations between subgroups. G The Venn diagram showed that there were 78 DEGs, of which only 26 DEGs were 
not affected by DNA methylation alterations
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LncRNAs are a class of transcribed non-coding RNAs 
with a length of more than 200 nucleosides, which affects 
gene expression of protein coding genes in several ways 
[35]. Many lncRNAs play an important role in the initia-
tion, evolution and progression of RCC, as well as in the 
development and spread of metastases [35]. Chen found 
that lncRNAs SNHG12 promoted RCC proliferation, 
migration invasion and sunitinib resistance via CDCA3 
in vitro and increased tumor growth in vivo [36]. Zhang 
confirmed that lncRNAs DARS-AS1 promotes the pro-
gression of CCRCC by sequestering miR-194-5p to up-
regulate DARS [37]. Dong revealed that lncRNAs TUG1 
promotes cell proliferation and inhibits cell apoptosis and 
autophagy in CCRCC via miR-31-5p/FLOT1 axis [38]. In 

recent years, many studies have highlighted the critical 
role of lncRNAs in CCRCC. However, the relationship 
between them is still unclear.

Necroptosis is a new programmed form of necrotic 
cell death that shares mechanistic similarities with 
apoptosis and morphological similarities with necro-
sis [39]. Recent studies have revealed a significant role 
of necroptosis in tumorigenesis and metastasis and 
implicated the potential of targeting necroptosis as a 
novel cancer therapy [40]. However, the mechanism 
of necroptosis in cancer is still unclear. In our study, a 
preliminary classification of molecular subgroups was 
performed based on the expression of these identified 
necroptosis-related lncRNAs and survival was further 

Fig. 4  The potential factors for tumor heterogeneity in the three subgroups. A–C The difference of copy number amplification or deletion 
in the three subgroups. The red represented the copy number amplification, and the blue represented the copy number deletion. D–F The 
alterations of gene expression levels in the three subgroups. The red solid circles represented the copy number amplification, and the blue 
solid circles represented the copy number deletion. G–I The specific distribution of copy number amplification and deletion as well as copy 
number variation-related genes in the three subgroups. J The Venn diagram showed that the remaining 26 DEGs also were not affected by CNVs 
in the genome
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Fig. 5  Mutation information of the genes. A–C The mutation frequencies of 26 DEGs in the 3 subgroups

Fig. 6  Analysis of correlation. A–C Correlation between the 26 DEGs in the 3 subgroups and 7 necroptosis-related lncRNAs
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analyzed in these classified three subgroups. Further-
more, we systematically studied the correlation between 
the tumor heterogeneity in the three subgroups and 
necroptosis-related lncRNAs and look forward to using 
these results to contribute to the mechanism research of 
necroptosis-related lncRNAs in CCRCC.

In this study, we first carried out differential expres-
sion analysis and 138 lncRNAs were significantly differ-
entially expressed between CCRCC and normal groups. 
WGCNA was performed to analyze the expression val-
ues of 138 lncRNAs and 7 necroptosis-related lncRNA 
were screened out for the subsequent analysis. Then, 
NMF consensus clustering analysis was used to divide 
these identified lncRNAs into three subgroups. In addi-
tion, survival analysis showed that Cluster 2 had a bet-
ter survival probability than Cluster 1 and Cluster 3. To 

explore the potential factors for tumor heterogeneity in 
three subgroups, we revealed that only 26 DEGs were 
not affected by DNA methylation alterations, CNVs and 
SNPs. On the contrary, these DEGs were associated with 
the seven necroptosis-related lncRNA. Subsequently, 
survival analysis demonstrated that the CCRCC patients 
with high expression of TTC21B-AS1, RP4-764O22.1, 
RP11-133F8.2, AC073115.6, and LINC01428 and low 
expression of RP11-283G6.4 had significantly longer 
overall survival. The risk score prognostic model was 
constructed by multivariate Cox regression analysis, and 
two necroptosis-related lncRNAs were used to establish 
the risk model. Based on our previous results, we con-
structed a new nomogram using risk score combined 
with clinical indicators for preoperatively evaluation of 
patients’ survival and therapy response. The scores of 

Fig. 7  Immunological characteristics. A The GSEA of immune-related signaling pathway in the three subgroups. B The difference in proportions 
of TIICs in the three subgroups. C The relative percent of TIICs in the enrolled samples. D The difference in expression levels of immune checkpoint 
genes in the three subgroups. *p < 0.05, **p < 0.01, and ***p < 0.001



Page 12 of 15Lin et al. European Journal of Medical Research          (2023) 28:236 

the nomogram among the three subgroups were com-
pared and the results showed that Cluster 2 had the low-
est score and Cluster 3 had the highest score. This was 
consistent with the previous survival analysis among the 
three subgroups, indicating that the nomogram may be 
used to guide clinical prognostic analysis. In addition, 
we also analyzed the level of immune cell infiltration and 
immune checkpoint genes among the three subgroups. 
These results may provide significant evidence for new 
targets of immunotherapy in the future.

An increasing number of studies have shown that 
necroptosis-related lncRNAs are associated with the 
occurrence and progression of malignant tumors, but 
the relevant research about CCRCC in this field remains 
unclear. In this study, we first constructed gene co-expres-
sion networks by WGCNA to screen out seven necropto-
sis-related lncRNAs for the subsequent analysis. Second, 
we comprehensively analyzed the potential reasons for 
the tumor heterogeneity among CCRCC subgroups for 
the first time, providing new insights for further research 

into the molecular mechanisms of necroptosis-related 
lncRNAs. However, our study has some limitations. First, 
all data for this study were downloaded from TCGA, 
which may lead to bias in the relevant analysis. Second, 
we did not perform relevant experiments to validate the 
differences in the levels of molecular transcription and 
expression, which may reduce its credibility. Third, we 
lacked follow-up information on CCRCC patients to 
demonstrate the clinical value of our prognostic model.

Conclusions
In this study, we comprehensively evaluated the value of 
necroptosis-related lncRNAs in predicting survival, the 
potential factors of tumor heterogeneity, and the role 
of the tumor immune microenvironment. A novel risk 
model was constructed based on two necroptosis-related 
lncRNAs, including RP11-133F8.2 and RP11-283G6.4, 
which could be used to predict the survival outcome of 
patients with CCRCC. These findings contributed to 
understand the function of necroptosis-related lncRNAs 

Fig. 8  The prognosis value of the seven necroptosis-related lncRNAs. A Kaplan–Meier survival curves of high- and low-expression 
TTC21B-AS1 patients. B Kaplan–Meier survival curves of high- and low-expression RP4-764O22.1 patients. C Kaplan–Meier survival curves 
of high- and low-expression RP11-133F8.2 patients. D Kaplan–Meier survival curves of high- and low-expression AC073115.6 patients. E Kaplan–
Meier survival curves of high- and low-expression LINC01428 patients. F Kaplan–Meier survival curves of high- and low-expression RP11-283G6.4 
patients. G Kaplan–Meier survival curves of high- and low-expression AC073115.7 patients. H The prognostic necroptosis-related lncRNAs extracted 
by multivariate Cox regression analysis

Fig. 9  Construction and evaluation of the comprehensive nomogram. A Univariate and multivariate Cox analyses of the risk score and clinical 
factors with OS. B The Schoenfeld residual suggested that this model met the equally PH assumption. C Comprehensive nomogram, including risk 
score, age and stage, was established to predict 1-, 3-, and 5-year OS probability in CCRCC. D The calibration curves of 1, 3, and 5 years showed more 
appropriate calibration ability. E The different score of nomogram in the three subgroups. F–H The DCA curves showed a comparable net benefit 
if the threshold probability for a patient or a doctor was within a range from 0 to 0.80 during 1, 3, and 5 years. I–K The time-dependent ROC curve 
analysis for the nomogram and single indicator during 1, 3, and 5 years, respectively

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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in CCRCC and provided new insights of prognosis 
assessment and optimal therapeutic strategy for CCRCC.
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