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Abstract 

Background During pregnancy, the increase in maternal insulin resistance is compensated by hyperplasia 
and increased function of maternal pancreatic beta cells; the failure of this compensatory mechanism is associ‑
ated with gestational diabetes mellitus (GDM). Serotonin participates in beta cell adaptation, acting downstream 
of the prolactin pathway; the blocking of serotonin receptor B (HTR2B) signaling in pregnant mice impaired beta cell 
expansion and caused glucose intolerance. Thus, given the importance of the serotoninergic system for the adapta‑
tion of beta cells to the increased insulin demand during pregnancy, we hypothesized that genetic variants (single 
nucleotide polymorphisms [SNPs]) in the gene encoding HTR2B could influence the risk of developing GDM.

Methods This was a case–control study. Five SNPs (rs4973377, rs765458, rs10187149, rs10194776, and s17619600) 
in HTR2B were genotyped by real‑time polymerase chain reaction in 453 women with GDM and in 443 pregnant 
women without GDM.

Results Only the minor allele C of SNP rs17619600 conferred an increased risk for GDM in the codominant model 
(odds ratio [OR] 2.15; 95% confidence interval [CI] 1.53–3.09; P < 0.0001) and in the rare dominant model (OR 2.32; CI 
1.61–3.37; P < 0.0001). No associations were found between the SNPs and insulin use, maternal weight gain, newborn 
weight, or the result of postpartum oral glucose tolerance test (OGTT). In the overall population, carriers of the XC 
genotype (rare dominant model) presented a higher area under the curve (AUC) of plasma glucose during the OGTT, 
performed for diagnostic purposes, compared with carriers of the TT genotype of rs17619600.

Conclusions SNP rs17619600 in the HTR2B gene influences glucose homeostasis, probably affecting insulin release, 
and the presence of the minor allele C was associated with a higher risk of GDM.
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Introduction
To maintain glycemic homeostasis during pregnancy, the 
increase in maternal insulin resistance is compensated by 
hyperplasia and increased function of maternal pancre-
atic beta cell. The failure of this compensatory mecha-
nism is associated with gestational diabetes mellitus 
(GDM) [1].

GDM occurs in 10–18% of all pregnancies [2–4] and it 
confers a higher risk of different pregnancy outcomes as 
cesarean delivery and possible pregnancy complications 
for both mother and newborn, such as polyhydramnios, 
preeclampsia, jaundice, macrosomia, and neonatal hypo-
glycemia. GDM is also considered a risk factor for type 2 
diabetes mellitus (T2D), obesity and cardiovascular dis-
ease [5, 6].

Studies conducted in vitro and in rodent models have 
shown modified expression of many islet genes during 
pregnancy. Among the most significantly upregulated 
genes are the ones encoding the two isoforms of tryp-
tophan hydroxylase (Tph1 and Tph2), the rate-limiting 
enzyme of serotonin (5-hydroxytryptamine, 5-HT) syn-
thesis [7, 8], together with other genes involved in cell 
cycle regulation and islet regeneration, such as the genes 
encoding regenerating islet-derived 3 alpha and 3 beta 
[7]. Βeta cells have the ability to synthesize, store and 
secrete 5-HT and islet 5-HT content increases during 
pregnancy [7–9], secondarily to stimulation of TPH1 and 
TPH2 expression in beta cells. This process is depend-
ent on placental lactogen (PL) acting through prolactin 
receptors (PRLR) [9]; thus, 5-HT acts downstream of PL 
signaling to drive beta cell expansion [8, 10, 11].

5-HT receptors are classified into seven different fami-
lies (HTR1–7), some of which contain different subtypes 
[12]. All of them, except the HTR3 subtype, are G-pro-
tein-coupled receptors which trigger various intracellular 
signaling pathways; their unique distribution explains the 
tissue-specificity of serotonin effects [13]. In pregnant 
mice, the HTR2B expression closely matched the period 
of increased beta cell proliferation [8, 14] and blocking 
HTR2B signaling impaired beta cell expansion, causing 
glucose intolerance [8].

Microarray and ribonucleic acid (RNA) sequencing 
analyses revealed transcripts of almost all 5-HT receptors 
in human islets [15, 16] and an in vitro study have shown 
that the activation of HTR2B promoted glucose-stimu-
lated insulin secretion (GSIS) not only in mouse, but also 
in human beta cells, suggesting that 5-HT also stimulates 
insulin release through HTR2B [16].

GDM is a complex condition resulting from environ-
mental and genetic factors. Variants in T2D susceptibil-
ity genes involved in insulin secretion (such as TCF7L2 
[coding for transcription factor 7-like 2] and MTNR1B 
[coding for melatonin receptor 1B]) and in insulin 

resistance (such as PPARG  [peroxisome proliferator acti-
vated receptor γ]) have been associated with GDM, sug-
gesting a similar genetic architecture between these two 
metabolic diseases, although it is believed that some 
genes are unique to GDM [17]. Given the importance of 
the serotoninergic system for the adaptation of beta cells 
to the increased insulin demand during pregnancy, we 
hypothesized that genetic variants in the HTR2B gene 
could influence the risk of developing GDM.

Participants and methods
This was a case–control study that initially recruited 1130 
pregnant women between September 2014 and Septem-
ber 2017; 90 refused to participate and 36 were consid-
ered ineligible for not meeting the inclusion criteria. Of 
the 1004 pregnant women then recruited, 108 were lost 
to follow up, resulting in a final number of 896. All preg-
nant women were followed-up at the Obstetric Clinic of 
a tertiary university hospital in the city of São Paulo, Bra-
zil; they were recruited from two outpatient clinics: one 
specialized in endocrinopathies, where participants with 
GDM were recruited (N = 453) and the other in charge of 
low-risk pregnancies, where participants without GDM 
were recruited (N = 443). The study was carried out in 
compliance with the Declaration of Helsinki [18] and was 
approved by the institutional ethics committees (CAP-
Pesq # 777.904, 09/03/2014). After signing informed 
consent, participants were evaluated for clinical and bio-
chemical characteristics.

GDM was defined by criteria proposed by the Inter-
national Association of Diabetes and Pregnancy Study 
Groups (IADPSG) [19–21] based on first trimester fast-
ing plasma glucose (FPG) ≥ 92  mg/dL (5.1  mmol/L) 
(n = 257) or 2-h OGTT with 75  g of glucose performed 
between 24 and 28  weeks of gestation with at least one 
altered value (FPG ≥ 92 mg [5.1 mmol/L], 1-h plasma glu-
cose ≥ 180  mg/dL and 2-h plasma glucose ≥ 153  mg/dL 
[8.5 mmol/L]) (n = 196).

The inclusion criteria for women without GDM were 
no prior GDM or other metabolic conditions, nor-
mal FPG in the first trimester and normal 75  g OGTT 
between 24- and 28-week gestational age. The inclusion 
criteria for women with GDM were: GDM diagnosis in 
the index pregnancy and no use of steroids before GDM 
diagnosis. For both groups, the exclusion criteria were 
twin pregnancy, diabetes or known blood glucose altera-
tion before pregnancy, failure to perform OGTT when 
the first trimester FPG < 92 mg/dL and previous bariatric 
surgery.

Women with GDM who failed to reach 30% of the 
glycemic targets (FPG < 95  mg/dL, 1-h postprandial 
glucose < 140  mg/dL), after dietary and lifestyle modi-
fications, were administered insulin. A 2-h OGTT was 
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performed in the GDM group at 6 to 12-week postpar-
tum, and the American Diabetes Association (ADA) 
diagnostic criteria for diabetes mellitus (DM) [20] were 
applied.

Single nucleotide polymorphisms genotyping
Blood was collected from a peripheral vein at the time of 
inclusion in the study. In the group without GDM, inclu-
sion occurred after the OGTT performed between 24 and 
28 weeks. In the group with GDM, inclusion occurred after 
confirmation of the diagnosis by FPG or after 24–28 weeks 
in the participants who were diagnosed by OGTT. Deoxy-
ribonucleic acid extraction from blood leukocytes was car-
ried out by a salting-out procedure [22]. Single nucleotide 
polymorphisms (SNPs) were genotyped by real-time poly-
merase chain reaction (StepOne Plus; Applied Biosystems, 
USA), using predesigned Human TaqMan Genotyping 
Assays 40X: C__2398885_30 (rs765458), C__30043265_10 
(rs10187149), C__32997861_10 (rs17619600), 
C__27918443_10 (rs4973377), C__29863060_10 
(rs10194776). This assay includes two differentially labeled, 
allele-specific probes (FAM and VIC) and a polymer-
ase chain reaction primer pair that uniquely amplify and 
provide unmatched specificity for the alleles of interest; 
allelic discrimination plots were generated for genotype 
determination (Thermo Fisher Scientific, Waltham, USA). 
The five Tag SNPs cover approximately 95% of the genetic 
variability of the extended region of HTR2B gene and were 
selected using a pair wise approach, a  r2 ≥ 0.8 and a minor 
allele frequency (MAF) of at least 0.1. The genotyping suc-
cess rate was ~ 99% for all SNPs. The SNP rs4973377 was 
not evaluated, because only one genotype was found in 
the studied population. The Hardy–Weinberg equilibrium 
(HWE) was tested; the distribution of genotypes was con-
sistent with HWE for all remained SNPs.

Statistical analyses
The statistical analyses were performed with the use of 
JMP software version 8.0 (SAS Institute, Cary, NC). Due 
to non-normal distribution of the data, non-parametric 
tests were used. Continuous variables are expressed as 
median and 25–75% interquartile ranges, and categorical 
variables are expressed as number of cases and percent-
age of affected individuals. The Mann–Whitney test for 
independent samples was used to compare continuous 
variables between the studied groups, while categorical 
variables were compared by Pearson’s χ2 test, which was 
also used to compare the frequency of SNPs between the 
groups.

The HWE was determined using the frequency of 
alleles in the Pearson’s χ2 test at a significance level of 
0.05. The SNPs were evaluated in the rare dominant 

model and in the codominant model. The magnitude of 
the risk conferred by the SNPs was estimated using odds 
ratio (OR) with a 95% confidence interval (CI). To esti-
mate the OR adjusted for potential confounding factors 
(age at last menstrual period [LMP], previous body mass 
index [BMI], and weight gain during pregnancy), a binary 
logistic regression analysis was performed with these fac-
tors as covariates in the regression model. The correction 
for multiple comparisons due to the multiple SNPs tested 
was made by Bonferroni’s correction, dividing 0.05 by 
the number of studied SNPs in the HTR2B gene. Thus, a 
P < 0.01 (two-tailed) was considered significant.

This study was exploratory in nature. Thus, a conveni-
ence sample was used, in which we sought to include as 
many participants as possible. The power calculation was 
performed a posteriori using the GAS Power Calculator 
(Genetic Association Study power calculator) [23]. The 
power of the study was > 90% (100% and 99.7%, respec-
tively) to detect associations of the SNP rs17619600 in 
the HTR2B gene with GDM in the codominant model 
and in the rare dominant model. Haplotype analysis was 
performed using the software available online SHEsis. All 
haplotypes with a frequency < 0.03 were ignored for anal-
ysis [24].

The area under the curve (AUC) of plasma glucose 
during the OGTT was calculated using the trapezoidal 
method and the results were expressed as mean ± stand-
ard deviation. For comparison of the AUC of plasma 
glucose between genotypes, one-way ANOVA was used, 
adjusted for age at LMP, previous BMI, and weight gain 
during pregnancy.

Results
The characteristics of the pregnant women with and 
without GDM are shown in Table 1.

Compared to the group without GDM, women with 
GDM were older, had a higher number of previous preg-
nancies, a higher pre-pregnancy BMI with a higher fre-
quency of family history of T2D. Women with GDM had 
less weight gain during pregnancy (probably due to the 
higher frequency of follow-up visits in comparison with 
women without GDM; in addition, only the group with 
GDM attended consultations with dietitians), higher 
frequency of hypertension and use of medications, and 
higher FPG compared to women without GDM. Cesar-
ean delivery was more frequent in women with GDM 
and the weight of newborns from women with GDM was 
lower than the weight of newborns from women without 
GDM. Among women with GDM, 18.7% used insulin.

The SNPs rs10187149, rs10194776 and rs765458 
did not associate with GDM (Table  2). After binary 
logistic regression analysis, the minor allele C of SNP 
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rs17619600 conferred an increased risk for GDM in 
the codominant model (OR 2.15; 95% CI 1.53–3.09; 
P < 0.0001) and in the rare dominant model (OR 2.32; 
CI 1.61–3.37; P < 0.0001). None of the four SNPs were 
associated with insulin use, maternal weight gain, 
newborn birth weight or glycemic change in the post-
partum OGTT (data not shown).

In evaluating the association between haplotypes 
in the HTR2B gene and the presence of GDM, the 
selected SNPs were placed in the following order 
for analysis: rs10194776, rs765458, rs10187149 and 
rs17619600. The TACC haplotype, which contains the 
rare allele C of rs17619600, was associated with an 
increased risk of GDM, as shown in Table 3 (the total 
number of carriers of the haplotype was 83).

The analysis of plasma glucose during the OGTT 
performed between 24 and 28  weeks of gestation, for 
diagnostic purpose, in 636 women with (n = 196) and 
without GDM (n = 440) showed that carriers of the XC 
genotype (rare dominant model) (n = 135) presented a 
significantly higher AUC compared to carriers of the 
TT genotype (n = 501) of rs17619600 (121.52 ± 29.69 
versus 113.45 ± 24.76; P < 0.001) (Fig. 1).

Discussion
The main finding of the present study was that the pres-
ence of the rare allele C in the HTR2B rs17619600 SNP 
conferred an increased risk of GDM in the population 
evaluated. In addition to the analysis of isolated SNP, the 
TACC haplotype, which contains the aforementioned 
allele, was associated with a higher risk of GDM.

HTR2B encodes a Gαq-coupled 5-HT receptor. 5-HT 
is believed to be critical in regulating pancreatic beta cell 
proliferation [7, 9]. In pregnant rodent islets, there is an 
increase in the expression of HTR2B during the period 
of increased beta cell replication; blocking the signaling 
of this receptor prevents the expansion of these cells and 
is associated with GDM [8]. In human islets, the activa-
tion of this receptor is associated with GSIS [7, 25]. Thus, 
5-HT signaling through HTR2B plays an important role 
in the maintenance of glycemic homeostasis during preg-
nancy [16, 26, 27].

The only study that evaluated the SNP rs17619600 in 
HTR2B found no association with GDM. However, it was 

Table 1 Characteristics of women with and without gestational diabetes mellitus

Results expressed as median and interquartile range

BMI: body mass index; GDM: gestational diabetes mellitus; T2D: type 2 diabetes mellitus
a Self-defined ethnicity
b Weight gain during pregnancy was calculated by subtracting the pre-pregnancy weight (or the weight measured at first appointment, held before 12 weeks) 
from the weight at delivery (although women had been recruited between 24 and 28 weeks, they were being followed at the Obstetric Clinic and these data were 
registered in the electronical medical record)
c Only the participants with GDM needed insulin. The Mann–Whitney test for independent samples was used to compare continuous variables between the studied 
groups, while categorical variables were compared by Pearson’s χ2 test

The Mann-Whitney test P ≤ 0.05 was considered significant. The missing data (percentage) for each reported variable is as follows: age (0.77%), ethnicity (8.7%), parity 
(7.1%), BMI (1.88%), family history (0%), weight gain (4.5%), preeclampsia (0.33%), arterial hypertension (1.2%), smoking (14.6%), use of medicines (1.4%), insulin 
treatment (0.5%), fasting plasma glucose (5.5%), type of delivery (16.4%), newborn birth weight (16.7%)

Without GDM With GDM P value

N 443 453

Age (years) 29.1 (24.4–33.4) 33.2 (28.8–37.1)  < 0.0001

White (%)a 85 85 0.94

Parity 1.0 (1.0–2.0) 2.0 (1.0–3.0)  < 0.0001

Pre‑pregnancy BMI (kg/m2) 24.7 (21.8–28.1) 28.2 (24.8–32.9)  < 0.0001

Positive family history of T2D (%) 49 58  < 0.0001

Weight gain during pregnancy (kg)b 12.0 (8.7–15.2) 9.0 (5.0–13.3)  < 0.0001

Preeclampsia (%) 8.4 8.5 0.76

Arterial hypertension (%) 7.5 23.8  < 0.0001

Smoking (%) 9.1 7.9 0.30

Use of medicines (%) 28 51  < 0.0001

Insulin treatment (%)c – 18.7 –

Fasting plasma glucose (mg/dL) 78 (74–82) 92 (83–97)  < 0.0001

Cesarean delivery (%) 48 60 0.001

Newborn birth weight (g) 3240 (2897–3542) 3210 (2780–3512) 0.04
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a case–control study which compared women with GDM 
with non-pregnant women, aged 60 and older with no 
personal and family history of DM. The study did not 
find any association of this SNP with weight gain during 
pregnancy, postpartum BMI, FPG, or fasting insulin con-
centration in women with GDM. In addition, this vari-
ant did not associate with waist circumference and BMI 
in non-diabetic control subjects and in the independent 

population cohort from the Korean Genome Epidemiol-
ogy Study, or with T2D in this same cohort [28].

No functional studies were performed with rs17619600, 
but according to the GTEx Consortium atlas, this SNP 
has the potential to be functional, as it has a cis-expres-
sion quantitative trait loci (eQTL) effect, that is, it modu-
lates gene expression by influencing its transcription rate 
[29]. In 7 out of 9 tissues evaluated, the presence of the 
allele C was associated with a lower expression of the 
HTR2B gene.

Given these findings, we hypothesized that SNP 
rs17619600 could modulate the expression of the HTR2B 
gene in beta cells. Thus, in presence of the rare allele C, 
there would be a lower expression of this receptor, which 
could impair maternal beta cell adaptation. The finding 
that carriers of the genotypes containing the allele C pre-
sented a higher AUC of plasma glucose during OGTT 
than carriers of the TT genotype corroborates that SNP 
rs17619600 influences glucose homeostasis, probably 
affecting insulin release, since activation of HTR2B pro-
motes GSIS.

This study has the limitation of having been carried 
out in a tertiary hospital, in which a significant number 
of patients have other comorbidities. The small number 
of patients who used insulin, only 84 participants, made 
it difficult to assess the association of SNPs with GDM 
severity. As GDM is a prevalent clinical condition, the 
lack of replication in an independent population and the 

Table 2 Genotype frequencies of single nucleotide 
polymorphisms in HTR2B according to status of gestational 
diabetes mellitus

Analyses were performed in the rare dominant (RD) and in the co-dominant (CD) 
models after adjustment for age, pre-gestational body mass index and weight 
gain by binary logistic regression analysis

CI confidence interval; GDM gestational diabetes mellitus; MAF minor allele 
frequency; OR odds ratio; SNPs single nucleotide polymorphisms

SNPs Without 
GDM

With GDM OR (CI 95%) P value

HTR2B (N) 443 453

rs765458

 AA 0.248 0.239 0.90 (0.64–1.27) 0.55 (RD)

 AG 0.542 0.518 1.02 (0.82–1.27) 0.82 (CD)

 GG 0.210 0.243

 MAF 0.481 0.502

rs10187149

 AA 0.324 0.338

 AC 0.509 0.498 0.94 (0.77–1.45) 0.70 (RD)

 CC 0.167 0.164 0.92 (0.74–1.14) 0.46 (CD)

 MAF 0.422 0.413

rs10194776

 TT 0.277 0.279

 TC 0.526 0.495 0.99 (0.79–1.52) 0.57 (RD)

 CC 0.197 0.226 0.96 (0.78–1.19) 0.74 (CD)

 MAF 0.479 0.473

rs17619600

 TT 0.839 0.614 2.32 (1.61–3.37)  < 0.0001 (RD)

 TC 0.149 0.329 2.15 (1.53–3.09)  < 0.0001 (CD)

 CC 0.012 0.057

 MAF 0.087 0.223

Table 3 Frequency of the haplotype TACC in HTR2B according to 
the status of gestational diabetes mellitus

Sequence of single nucleotide polymorphisms: rs10194776, rs765458, 
rs10187149 and rs17619600. Results expressed in absolute numbers (each 
carrier with two haplotypes) and relative frequency in the overall population. 
Haplotype analysis was performed using the software SHEsis

CI confidence Interval; GDM gestational diabetes mellitus; OR odds ratio

Without GDM With GDM OR (CI 95%) P value

N 443 453

TACC 60 (0.072) 99 (0.113) 1.70 (1.22–2.39) 0.001

Time (hours)

P < 0.001

Pl
as
m
a
gl
uc
os
e
(m

g/
dL
)

0 1 2

HTR2B rs17619600

Fig. 1 Plasma glucose during oral glucose tolerance test (OGTT) 
according to genotypes of rs17619600 (rare dominant model). OGTT 
was performed between 24 and 28 weeks of gestation in 636 women 
with (n = 196) and without (n = 440) gestational diabetes mellitus. P 
value was adjusted for age at last menstrual period, previous body 
mass index, and weight gain during pregnancy
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sample size are also limitations of the study, although the 
present series is larger than those included in several pre-
viously published studies [30–34]. Although genetic test-
ing is not yet justified in clinical practice, broadening the 
spectrum of candidate genes may help to elucidate mech-
anisms underlying GDM.

Conclusion
SNP rs17619600 in the HTR2B gene influences glucose 
homeostasis, probably modulating insulin release, and 
the presence of the minor allele C was associated with a 
higher risk of GDM.
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