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Prolyl 4-hydroxylase subunit beta (P4HB) 
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biomarker for prostate cancer patients
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Abstract 

Background Prolyl 4-hydroxylase subunit beta (P4HB) has been reported as a suppressor in ferroptosis. However, 
no known empirical research has focused on exploring relationships between P4HB and prostate cancer (PCa). In this 
research, we initially examine the function of P4HB in PCa by thorough analysis of numerous databases and prolifera-
tion experiment.

Methods We analyzed the correlations of P4HB expression with prognosis, clinical features, mutation genes, tumor 
heterogeneity, stemness, tumor immune microenvironment and PCa cells using multiple databases and in vitro 
experiment with R 3.6.3 software and its suitable packages.

Results P4HB was significantly upregulated in tumor tissues compared to normal tissues and was closely related 
to biochemical recurrence-free survival. In terms of clinical correlations, we found that higher P4HB expression 
was significantly related to older age, higher Gleason score, advanced T stage and residual tumor. Surprisingly, 
P4HB had highly diagnostic accuracy of radiotherapy resistance (AUC 0.938). TGF beta signaling pathway and dorso 
ventral axis formation were upregulated in the group of low-expression P4HB. For tumor stemness, P4HB expression 
was positively related to EREG.EXPss and RNAss, but was negatively associated with ENHss and DNAss with statistical 
significance. For tumor heterogeneity, P4HB expression was positively related to MATH, but was negatively associated 
with tumor ploidy and microsatellite instability. For the overall assessment of TME, we observed that P4HB expression 
was negatively associated with all parameters, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, 
dendritic cells, stromal score, immune score and ESTIMATE score. Spearman analysis showed that P4HB expres-
sion was negatively related to TIDE score with statistical significance. In vitro experiment, RT-qPCR and western blot 
showed that three siRNAs of P4HB were effective on the knockdown of P4HB expression. Furthermore, we observed 
that the downregulation of P4HB had significant influence on the cell proliferation of six PCa cell lines, includ-
ing LNCap, C4-2, C4-2B, PC3, DU145 and 22RV1 cells.

Conclusions In this study, we found that P4HB might serve as a prognostic biomarker and predict radiotherapy 
resistance for PCa patients. Downregulation of P4HB expression could inhibit the cell proliferation of PCa cells.
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Introduction
In 2022, new cancer cases are projected to total 
4,820,000 and 2,370,000 in China and the USA, respec-
tively [1]. Prostate cancer (PCa) serves as the third and 
sixth most prevailing malignancy among newly diag-
nosed cases in China and the USA, respectively [1–3]. 
The incidence, mortality, and disability-adjusted life 
years for PCa were also greater in areas and nations 
with higher sociodemographic indices [4]. Inflamma-
tion and age are risk factors of many diseases, such as 
macular degeneration [5, 6], cardiovascular diseases 
[7, 8], periodontitis [9], neurological disorders [10], 
and human cancer [11–15]. Globally, aging is posing a 
severe threat to human health [16]. The vast majority 
of PCa cases occurred in elderly people and it is antici-
pated that this trend will worsen as the world’s popula-
tion ages [4, 17–24]. There is growing recognition that 
genetic variability in PCa encompasses many tumor 
forms with unique biologic characteristics and clini-
cal behaviors [25]. The primary methods for treating 
patients with localized PCa include radical prostatec-
tomy or radiation, while biochemical recurrence (BCR) 
is unavoidable for patients after radical prostatec-
tomy (27–53%) or radiotherapy (10–70%), respectively 
[26–28]. Eight years is the typical period from BCR 
to metastasis, while 5 years is the median time from 
metastatic to death [19, 27, 28]. In addition, treatment 
resistance is fast developing more deadly and malig-
nant neuroendocrine PCa, and the prognosis for such 
patients is quite dismal with a survival time of less than 
1 year [29]. By integrating genetic and clinical data, the 
advancement of sequencing technology, particularly 
the completion of the Cancer Genome Atlas (TCGA), 
offers a feasible and effective method to screen such 
patients.

The role of ferroptosis has received increased atten-
tion across a number of diseases, since it was proposed 
by Prof. Brent R.Stockwell et al. in 2012 [30]. It is a novel 
of nonapoptotic cell death and is controlled by iron pool, 
lipid metabolism and antioxidant metabolism [31–34]. In 
2020, Dr. Nan Zhou and Jinku Bao proclaimed an excel-
lent FerrDb data set, which took 784 ferroptosis studies 
from the PubMed database and extracted ferroptosis 
regulators and markers and relevant diseases [35]. Using 
the TCGA and FerrDb databases [35], prolyl 4-hydroxy-
lase subunit beta (P4HB) and prostaglandin–endoper-
oxide synthase 2 (PTGS2) were detected to be potential 
biomarker for PCa patients from the perspective of fer-
roptosis, where research to date has not yet determined 
the impact of P4HB on PCa patients. Herein, through a 
thorough review of numerous databases and an in vitro 
experiment, we primarily investigated the function of 
P4HB in PCa.

Methods
Bioinformatic analysis
We obtained the PCa data of TCGA database and gene 
expression omnibus (GEO) data sets (GSE46602 [36], 
GSE32571 [37] and GSE62872 [38]) from our previ-
ous study [19]. From the FerrDb database, 474 genes 
relevant to human ferroptosis were taken [35]. llogFCl 
0.5 and p.adj 0.05 were used to determine the differen-
tially expressed genes (DEGs) between 498 tumour and 
52 normal samples in the TCCG database. The BCR-
free survival P value was constrained to less than 0.05. 
By combining DEGs, prognosis-related genes, and fer-
roptosis-related genes, P4HB and PTGS2 were discov-
ered. GEO data sets [36–38] were utilized to confirm 
the differential expression of P4HB and PTGS2. We 
selected P4HB for further research due to its less infor-
mation in PCa. The pan-cancer distinct expression of 
P4HB between cancer and normal samples was evalu-
ated through the TIMER database [39]. In addition, we 
again confirmed P4HB expression between samples of 
cancer and normal using UALCAN [40] and GEPIA [41]. 
We then conducted an analysis of the clinical P4HB lev-
els and created a nomogram. Using GSE53902 [42], We 
evaluated P4HB’s diagnostic effectiveness with regard to 
radiation resistance. Mutation data of PCa patients were 
downloaded from GDC (https:// portal. gdc. cancer. gov/) 
and were visualized by MuTect2 software and R pack-
age “maftools (version 2.2.10)” [43]. Using the median 
value of P4HB expression, we divided the PCa patients 
into groups based on the expression levels. Analysis was 
done on the variations about gene mutation frequency 
between these two groups. We used the human protein 
atlas (HPA) to examine P4HB’s potential intracellular 
localization [44, 45]. We also assessed the predicted func-
tional partners of P4HB using multiple databases, includ-
ing HPA, GeneMANIA [46] and STRING [47].

In terms of the functional analysis, We used the R pro-
gram "gene set variation analysis (GSVA)" [48] and “c2.
cp.v7.4.symbols.gmt” subset from the molecular signa-
ture database [49] to determine the enrichment scores 
of each sample’s relevant molecular processes and path-
ways. The set contained between 5 and 5000 genes. The 
"wilcox.test" tool was then applied to compare each path-
way between P4HB expression levels that were high and 
low. The fold change was 1.5, and statistical significance 
was defined as p. adj. 0.01 and false discovery rate 0.01. 
Using the Spearman analysis, the overall tumor immune 
microenvironment (TME) and immune cells were evalu-
ated by ESTIMATE and TIMER algorithms [50–52]. The 
TISIDB database examined the interactions of P4HB 
with tumor-infiltrating cells, immunoinhibitors, and 
immunostimulators [53]. Poor effectiveness of immune 
checkpoint blockade (ICB) is associated with high tumor 
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immune dysfunction and exclusion (TIDE) score. We 
used the TIDE algorithm [54] to estimate the TIDE score 
and assess the relationship of P4HB with TIDE score with 
Spearman analysis.

The correlation between P4HB and tumor heterogene-
ity and stemness related indexes was analyzed and the 
specific methods could be seen from the previous studies 
[55–62]. GSCALite was used to examine the relationship 
between P4HB and medication sensitivity in pan cancer 
[63], which integrated the data of the cancer therapeu-
tics response portal and genomics of drug sensitivity in 
cancer.

In vitro experiment
The acquisition of PCa cell lines and their culture were 
described from our previous study [64]. The culture 
condition of 22RV1 cell is similar to common PCa cells, 
such as DU145 cells. In addition, RT-qPCR methods 
was also described in the previous study [64]. siRNA 
was obtained by HIPPOBIO (www. hippo biotec. com). 
P4HB si-1sense: 5′-UGC UGU UCU UGC CCA AGA 
GUGdTdT-3′; P4HB si-1 antisense: 5′-CAC UCU UGG 
GCA AGA ACA GCAdTdT-3′. P4HB si-2 sense: 5′-AGG 
UGA AAU CAA GAC UCA CAUdTdT-3′; P4HB si-2 anti-
sense: 5′-AUG UGA GUC UUG AUU UCA CCUdTdT-3′; 
P4HB si-3 sense: 5′-GUG UGG UCA CUG CAA ACA 
GUUdTdT-3′; P4HB si-3 antisense: 5′-AAC UGU UUG 
CAG UGA CCA CACdTdT-3′. An internal control was 
implemented using glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH). GAPDH: 5′-CTG GGC TAC ACT 
GAG CAC C-3′ (forward) and 5′-TCC AAG TGG TCG 
TTG AGG GCA ATG-3′ (reverse); P4HB: 5′-GGT GCT 
GCG GAA AAG CAA C-3′ (forward) and 5′-ACC TGA 
TCT CGG AAC CTT CTG-3′ (reverse). The siRNAs of 
P4HB that were most efficient were found using RT-
qPCR. Cells were collected and lysed in RIPA Lysis Buffer 
containing freshly added PMSF and a protease inhibitor 
cocktail for the western blot. Using a BSA kit, protein 
concentration was discovered. A 30 ug protein sample 
was run via an SDS–PAGE gel. Gel electrophoresis was 
used to separate the proteins, which were then trans-
ferred to a polyvinylidene difluoride membrane. The 
membranes were blocked for 2  h at room temperature 
with 5% nonfat dry skim milk before being incubated 
with matching primary antibodies overnight at 4 ℃. The 
main antibodies are anti-P4HB (1:1000, ab2792 Abcam, 
USA) and β-Actin (1:10,000, 81115-1-RR, Proteintech, 
China). The membranes were detected using horserad-
ish peroxidase-conjugated secondary antibodies (1:3000, 
SA00001-1, SA00001-2, Proteintech, China) followed 
by exposure to enhanced chemiluminescence substrate 
(Millipore, WBKLS0500, USA). Six PCa cell lines were 
transfected with P4HB siRNAs, and the impact of P4HB 

on their ability to proliferate was examined using the cell 
counting kit-8 (CCK8) assay at 24 h, 48 h, and 72 h. The 
study’s flowchart is shown in Fig. 1.

Statistical analysis
For statistical analysis, R 3.6.3 software and its appropri-
ate packages were utilised. Through the use of log-rank 
tests and Kaplan–Meier curves, the survival analysis was 
carried out. Based on the findings of the Cox regression 
studies, a nomogram was created, and the nomogram 
model was assessed using the Harrell’s concordance 
index (C-index) and decision curve analysis (DCA) curve. 
The aforementioned statistical tests are all two-sided. 
Statistical significance was defined as a P value of 0.05. 
The following symbols were noteworthy: ns, p ≥ 0.05; 
*p < 0.05; **p < 0.01; ***p < 0.001.

Results
Bioinformatic analysis
P4HB and PTGS2 were discovered as a result of the inter-
section of DEGs, prognosis-related genes, and ferropto-
sis-related genes (Fig. 2a). P4HB was upregulated in the 
TCGA database (Fig. 2b) and was validated in the GEO 
data sets [14–16] (Fig.  2c). With statistical significance, 
P4HB was differently expressed in a variety of malignan-
cies, including PCa (Fig.  2d). In comparison to normal 
samples, UALCAN [18] and GEPIA [19] were used to 
confirm that tumor samples had increased P4HB expres-
sion (Fig. 2e, f ). In the GEPIA database [19], Based on the 
median value of P4HB, PCa patients were split into two 
groups, and those with lower expression of P4HB had sig-
nificantly shorter disease-free life than those with higher 
expression of P4HB (Fig. 2g). In addition, we found that 
P4HB was strongly linked with BCR-free survival in our 
analysis (Fig. 3a). In the subgroup survival study, higher 
P4HB expression was associated with a reduced probabil-
ity of BCR in terms of N0 stage, White population, resid-
ual tumor, age < 60, and overlapping or multiple zones 
than lower P4HB expression (Fig. 3b–f). In addition, we 
created a nomogram incorporating P4HB and clinical 
characteristics to forecast the likelihood of BCR for PCa 
patients (Fig. 3g). DCA curve indicated that this might be 
acceptable (C-index: 0.718; Fig.  3h). Surprisingly, P4HB 
demonstrated a high level of diagnostic accuracy about 
radiation resistance (AUC: 0.938; Fig. 3i). Clinical corre-
lations revealed that older age, a higher Gleason score, an 
advanced T stage, and residual tumour were all strongly 
correlated with increased P4HB expression (Table 1).

Missense mutations were found in 0.2% of PCa 
patients, according to the mutation landscape (Fig.  4a). 
We divided the PCa patients into two groups accord-
ing to the median value of P4HB. OBSCN, FLG, 
AGCA13, NALCN, CNTN6, DGKI, and DYNC1HI 

http://www.hippobiotec.com
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were significantly differentially expressed between the 
two groups among the top 20 altered genes, while TP53 
was the most frequently mutant gene in PCa (Fig.  4b). 
In the HPA database [22, 23], P4HB was found in the 
endoplasmic reticulum (ER) and was implicated in the 
metabolism of arginine, proline, insulin, and glutathione 
(Fig. 4c, d). P4HB was predicted to be potential partner 
of MTTP, P4HA2 and GPX7 using the GeneMANIA [24] 
(Fig. 4e) and STRING databases [25] (Fig. 4f ). Glyoxylate 
and dicarboxylate metabolism, proteasome, oxidative 

phosphorylation, protein export, N glycan biosynthesis, 
glycosylphosphatidylinositol anchor biosynthesis, amino 
sugar and nucleotide sugar metabolism and terpenoid 
backbone biosynthesis were upregulated in the group of 
high-expression P4HB, while TGF beta signaling pathway 
and dorso ventral axis formation were upregulated in the 
group of low-expression P4HB (Fig. 4g).

P4HB expression had statistically significant positive 
relationships with EREG.EXPss and RNAss, but nega-
tive relationships with ENHss and DNAss (Fig.  4h). For 

Fig. 1 Flowchart of this study. Pca prostate cancer, DEGs differentially expressed genes, GSVA gene set variation analysis, TIDE tumor immune 
dysfunction and exclusion, RT-qPCR real-time quantitative polymerase chain reaction, TCGA  the cancer genome atlas
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tumor heterogeneity, P4HB expression was positively 
related to MATH, but was negatively associated with 
tumor ploidy and microsatellite instability. However, 
the correlation values of P4HB with the above indica-
tors were smaller than 0.3, which indicated that the cor-
relation strength was low. For the overall assessment of 

TME, we observed that P4HB expression was negatively 
associated with all parameters, including macrophages, 
dendritic cells, B cells, CD8+ T cells, CD4+ T cells, 
neutrophils, stromal score, immunological score and 
ESTIMATE score (Fig.  4i), which was confirmed by the 
TISIDB database [31] (Fig. 4j). Spearman analysis showed 

Fig. 2 Process of screening P4HB. a Upset plot shwnig the intersection of DEGs, prognosis-related genes and ferroptosis-related genes; b volcano 
plot showing the expression of P4HB and PTGS2 between tumor and normal samples in the TCGA database; c volcano plot showing the expression 
of P4HB and PTGS2 between tumor and normal samples in the GEO data sets; d bar graph showing the expression of P4HB between tumor 
and normal samples at pan-cancer level; e bar graph showing P4HB expression between tumor and normal samples in the UALCAN database; 
f bar graph showing P4HB expression between tumor and normal samples in the GEPIA database; g Kaplan–Meier curve showing the survival 
differences of high and low P4HB expression using GEPIA database. DEGs differentially expressed genes, TCGA  the cancer genome atlas, GEO gene 
expression omnibus
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that P4HB expression was negatively related to TIDE 
score with statistical significance (Fig. 4k). Similar results 
were observed in terms of immunostimulators (Fig.  4l) 
and immunoinhibitors (Fig. 4m) in the TISIDB database 
[31]. Among these indicators, it was striking that P4HB 
expression showed significant relationship with PVRL2 
expression with good correlation (r = 0.659, p < 0.001; 
Fig. 4n).

Owing to the opposite results of between prognostic 
analysis and differential expression and clinical correla-
tions, we detected the impact of P4HB on the cell pro-
liferation of PCa cell lines. RT-qPCR and western blot 
showed that three siRNAs of P4HB were effective on the 
knockdown of P4HB expression (Fig. 5a, b). Furthermore, 
we observed that the downregulation of P4HB had sig-
nificant influence on the cell proliferation of six PCa cell 

Fig. 3 Correlations of P4HB with prognosis and radiotherapy resistance. a Kaplan–Meier curve showing the survival differences of high and low 
P4HB expression in the TCGA database; b Kaplan–Meier curve showing the survival differences of high and low P4HB expression in patients with N0 
stage; c Kaplan–Meier curve showing the survival differences of high and low P4HB expression in White patients; d Kaplan–Meier curve showing 
the survival differences of high and low P4HB expression in patients with residual tumor; e Kaplan–Meier curve showing the survival differences 
of high and low P4HB expression in patients with age < 60 years; f Kaplan–Meier curve showing the survival differences of high and low P4HB 
expression in patients with overlapping or multiple zones; g nomogram plot integrating P4HB expression and clinical featurs; h decision curve 
analysis curve; i ROC curve showing the diagnostic ability of P4HB in radiotherapy resistance. TCGA  the cancer genome atlas, ROC receiver operating 
characteristic curve
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lines, including LNCap, C4-2, C4-2B, PC3, DU145 and 
22RV1 cells (Fig. 5c–h).

Discussion
Similar to apoptosis, ferroptosis is a form of programmed 
cell death brought on by the fatal accumulation of iron-
dependent lipid peroxides [65–69]. The ferroptosis-
related enzyme GSH peroxidase 4 (GPX4) is the only one 
that can use glutathione (GSH) as an electron donor to 
remove harmful lipids from biofilms. Glutathione (GSH) 
can reduce lipid peroxidation to prevent membrane dam-
age [70]. The basic mechanisms of ferroptosis include 

GSH depletion and decreased GPX4 activity. Another 
recently found GSH-independent ferroptosis pathway 
includes Q10 (CoQ10) and CoQ oxidoreductase ferrop-
tosis-suppressing protein 1 (FSP1) [71, 72]. Some fer-
roptosis inducers, such as erastin and sorafenib, work by 
inactivating GPX4, while the tiny molecule FIN56 works 
by depleting GPX4 protein and CoQ10 at the same time 
[73, 74]. Even tumor cells that have demonstrated resist-
ance to apoptosis are innately susceptible to ferroptosis. 
For instance, PCa is reliant on mitochondrial metabolism 
early on and exhibits altered fatty acid production and 
oxidation pathways, which raises the possibility that fer-
roptosis may be involved in the carcinogenesis of this dis-
ease [27].

The most prevalent cancer in the western world is 
unquestionably PCa [75]. It is a type of cancer liable to 
ferroptosis induction, e.g., enzalutamide therapy results 
in GPX4 inhibition and consequent ferroptosis sensiti-
zation [76, 77]. The ferroptosis inducers erastin or RSL3 
markedly decreased prostate cancer cell growth and 
migration in  vitro and markedly slowed tumor growth 
of treatment-resistant prostate cancer in vivo, indicating 
that this could be used in conjunction with conventional 
second-generation antiandrogens for PCa treatment [77]. 
Furthermore, even in PCa that is resistant to castration, 
PCa cells respond to the ferroptosis inducer erastin [77]. 
Recent research has revealed that the ferroptosis inducer 
erastin can both in  vitro and in  vivo down-regulate the 
androgen receptor (AR) and its splice variants, which 
are essential for the development of castration-resistant 
PCa [78]. Future prospects for PCa therapy may involve 
combining several ferroptosis inducers with conventional 
antineoplastic or antiandrogen medications. For instance, 
the combination of docetaxel and erastin improves the 
inhibition of castration-resistant PCa by inhibiting the 
expression of both full-length and splice variants in 
cancer cells, and the combination of an isothiocyanate-
containing hybrid AR antagonist and the GSH synthesis 
inhibitor buthionine sulfoximine results in ferroptosis 
and lowers AR activity [78]. Ferroptosis has considerable 
prospects in PCa tumorigenesis [79] and treatment.

Table 1 Clinical features between high and low expressions of 
P4HB for prostate cancer patients in the TCGA database

IQR interquartile range

Characteristics P4HB expression P value

Low High

Sample 215 215

Age, median (IQR) 60 (55, 65) 62 (57, 67) 0.009

Gleason score, n (%)  < 0.001

 GS6 24 (5.6%) 15 (3.5%)

 GS7 122 (28.4%) 84 (19.5%)

 GS8 27 (6.3%) 32 (7.4%)

 GS9 42 (9.8%) 84 (19.5%)

T stage, n (%) 0.002

 T2 92 (21.7%) 63 (14.9%)

 T3 118 (27.8%) 143 (33.7%)

 T4 1 (0.2%) 7 (1.7%)

Race, n (%) 0.271

 Asian 8 (1.9%) 3 (0.7%)

 Black or African American 23 (5.5%) 27 (6.5%)

 White 176 (42.3%) 179 (43%)

N stage, n (%) 0.596

 N0 151 (40.3%) 155 (41.3%)

 N1 31 (8.3%) 38 (10.1%)

Residual tumor, n (%) 0.008

 No 149 (35.6%) 124 (29.6%)

 Yes 59 (14.1%) 87 (20.8%)

(See figure on next page.)
Fig. 4 Mutation genes, location, predicted partners, functional pathway, tumor immune microenvironment, tumor heterogeneity and stemness 
of P4HB. a Mutation landscape of PCa patients in the TCGA database; b mutation genes between high and low P4HB expression; c predicted 
sublocation of P4HB; d reported pathway of P4HB in the HPA database; e predicted interaction genes of P4HB using GeneMANIA database; f 
predicted functional partners of P4HB using STRING database; g functional pathways between high and low P4HB expression using GSVA methods; 
h bubble diagram showing the correlations of P4HB expression with tumor heterogeneity and stemness; i bubble diagram showing the correlations 
of P4HB expression with tumor microenvironment scores; j heatmap showing the relationship between P4HB expression and tumor-infiltrating 
cells; k scatter diagram showing the relationship between P4HB expression and TIDE score; l heatmap showing the relationship between P4HB 
expression and immunostimulators; m heatmap showing the relationship between P4HB expression and immunoinhibitors; n scatter diagram 
showing the relationship between P4HB expression and PVRL2. TIDE tumor immune dysfunction and exclusion
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Fig. 4 (See legend on previous page.)
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Fig. 5 Effect of P4HB on PCa cell proliferation. a RT-qPCR results of P4HB siRNAs; b western blot results of P4HB siRNAs using C4-2B and DU145 
cells; c effect of P4HB siRNAs on LNCap using CCK8 assay; d effect of P4HB siRNAs on C4-2 using CCK8 assay; e effect of P4HB siRNAs on C4-2B 
using CCK8 assay; f effect of P4HB siRNAs on PC3 using CCK8 assay; g effect of P4HB siRNAs on DU145 using CCK8 assay; h effect of P4HB siRNAs 
on 22RV1 using CCK8 assay. RT-qPCR real-time quantitative polymerase chain reaction



Page 10 of 14Feng et al. European Journal of Medical Research          (2023) 28:245 

The prolyl 4-hydroxylase beta subunit is encoded by 
the gene P4HB, which is located at 17q25.3. Preprocol-
lagen’s prolyl residues are hydroxylated by P4HB, and this 
process has the primary effect of preventing the aggrega-
tion of improperly folded proteins. For the protein-fold-
ing catalyst, bacitracin is regarded as either a selective or 
nonspecific P4HB inhibitor [80]. P4HB has been reported 
to be associated with a variety of cancer and oncological 
outcomes, like bladder cancer from our previous study 
[81]. Direct deletion of this gene makes cells more sus-
ceptible to known ferroptosis inducers, while the P4HB 
inhibitor PACMA31 directly promotes ferroptosis [82]. 
The intermediate regulators SLC7A11 and GSH work 
in concert with a variety of upstream factors, such as 
many lncRNAs and circRNAs, to control ferroptosis. The 
expression of circP4HB in lung adenocarcinoma (LUAD) 
was found to be elevated both in  vivo and in  vitro, and 
it was shown to prevent ferroptosis caused by erastin 
through regulating miR-1184/SLC7A11-mediated GSH 
production, which promoted tumor growth [83]. In 
addition, in LUAD cells with significant P4BH expres-
sion, the enrichment and positive expression of the GSH 
metabolic pathway were clearly seen [83]. Our study is 
the first to describe the predictive role of P4HB in PCa 
prognosis and speculate its possible mechanism related 
to ferroptosis. Similar to LUAD, the results of our in vitro 
experiments showed that P4HB downregulation of multi-
ple PCa cell lines significantly reduced proliferation, and 
the P4HB high-expression group had significantly higher 
Gleason score and more advanced T stage.

The majority of protein synthesis takes place in the 
ER, and the P4HB protein serves as an ER chaperone to 
ensure that newly generated proteins are folded correctly 
[84, 85]. The chemicals that influence ferroptosis by alter-
ing lipid peroxidation are predominantly located in the 
ER, which is the most significant organelle for ferroptosis 
[86]. One of the fundamentals of prostate carcinogenesis, 
ER stress is a rapidly reproducing cell’s adaptive defensive 
response that frequently manifests in tumor cells [87, 88]. 
Ferroptosis was discovered to be brought on by the acti-
vation of the ER stress signaling system [89, 90]. In these 
conditions, the requirement for protein synthesis rises, 
activating the unfolded protein response (UPR) [91, 92]. 
In PCa, it was discovered that the UPR is androgen-sensi-
tive, and AR signaling controls enhanced protein folding, 
mRNA degradation, and protein translation, boosting 
PCa cell survival by blocking the PERK-eIF2a axis [93–
95]. During endoplasmic reticulum stress, the chaper-
ones are primarily in charge of facilitating protein folding 
and removing abnormal proteins [96]. While some chap-
erone proteins have been discovered to be involved in 
cancer and drug resistance, ER chaperones are currently 
not thought to be confined to functions required for 

protein folding, assembly, and membrane protein trans-
port [97, 98]. Fonseca et  al. found that P4HB and other 
protein disulfide isomerases are immunogenic, and the 
gene products they produce could be used as therapeutic 
monoclonal antibody targets [99].

We also discovered that the high-expressing P4HB 
group had an up-regulated level of energy metabolism, 
including oxidative phosphorylation, as well as protein 
production. According to the Warburg effect, it is well 
known that maintaining tumor metabolism necessitates 
greater energy supply and metabolic activity and that 
tumor cells significantly rely on antioxidant systems. For 
instance, oxidative phosphorylation disruption can raise 
unstable iron pools and increase the risk of ferroptosis in 
cells by preventing mitochondrial metabolism [100]. This 
implies that the main gene of P4HB can be used to par-
ticularly increase the ferroptosis sensitivity of malignan-
cies by blocking metabolism.

We discovered through functional analysis that 
P4HB, which was found in the ER, was involved in GSH 
metabolism. GSH is a crucial cofactor for the enzyme 
GPX4 in the conversion of lipid hydroperoxides to lipid 
alcohols, which reduces lipid peroxidation and prevents 
ferroptosis [101, 102]. We hypothesized that P4HB 
might control tumor cell ferroptosis by contributing 
to GSH depletion. Fibroblasts has been reported to be 
important to many diseases, including cancers [8, 103–
108]. Our previous study also observed that P4HB was 
related to cancer-related fibroblasts [62]. Apart from 
this kind of stromal cell, we discovered that P4HB had 
a negative correlation with a range of immune cells in 
the tumor microenvironment, such as T cells, B cells, 
and macrophages. This finding inferred that P4HB 
functions as a pro-oncogene with immunosuppressive, 
pro-angiogenic, and anti-inflammatory effects, creat-
ing a stromal microenvironment that is favorable for 
the growth and transformation of prostate epithelial 
cells, resulting in PCa [109]. However, the causal rela-
tionship between immune cells and ferroptosis remains 
questionable. For instance, interferon gamma (IFN)-
mediated ferroptosis of tumor cells is one way that 
CD8+ T lymphocytes contribute to the suppression 
of malignancies [110]. T cells have the ability to inter-
nalize P4HB, which improves their activation, prolif-
eration, adhesion, and migration [111]. In addition, the 
novel PDI inhibitor E64FC26 was discovered to alter T 
cell metabolism and decrease global P4HB expression 
in healthy T cells, which improves immune responses 
against tumors [112]. Notably, we found that the P4HB 
group with low expression triggered the TGF signal-
ing pathway. Inhibiting the TGF signaling pathway 
enhances the immune response in the TME, which is 
followed by the polarization of M1-type macrophages, 
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which triggers the Fenton response and the consequent 
ferroptosis of tumor cells. This provides a possible 
course of action for the therapy of cancers [113]. PCa 
patients may benefit from this TGF-β receptor inhibi-
tor and modified nanoparticle breast cancer medication 
(SB431542) [114]. Thus, there is reason to believe that 
the immune microenvironment’s crosstalk may con-
tribute to the up-regulation of the ferroptosis-related 
gene P4HB in malignancies.

In addition, even though we were able to demonstrate 
that si-P4HB has an anti-proliferative effect on six PCa 
cells, more researches are required to show and under-
stand the role of P4HB in PCa, like overexpressing 
P4HB in PCa cells as well as in vivo animal studies and 
so forth. Further research is needed based on our cur-
rent findings. According to our research, P4HB is a new 
oncogene connected to the development of prostate 
tumors. ER stress and modifications to the metabolic 
route may be related to the process. We hypothesized 
that one of the anti-cancer targets could be achieved by 
inhibiting the pro-oncogene P4HB, such as using the 
P4HB inhibitor bacitracin. This hypothesis has to be 
verified by subsequent in vitro and in vivo testing. The 
mechanism of P4HB and ferroptosis in PCa must be 
identified, as well as if ferroptosis-inducing drugs may 
be utilized in conjunction with immune checkpoint 
inhibitors, or whether using ferroptosis to activate 
immune cells or target metabolic patterns to trigger 
ferroptosis can help treat PCa.

Conclusions
In this study, we found that P4HB might serve as a prog-
nostic biomarker and predict radiotherapy resistance for 
PCa patients. Downregulation of P4HB expression could 
inhibit the cell proliferation of PCa cells.
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