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Abstract 

Objective  The latest research proposed a novel copper-dependent programmed cell death named cuproptosis. 
We aimed to elucidate the influence of cuproptosis in clear cell renal cell carcinoma (ccRCC) from a multi-omic 
perspective.

Methods  This study systematically assessed mRNA expression, methylation, and genetic alterations of cuproptosis 
genes in TCGA ccRCC samples. Through unsupervised clustering analysis, the samples were classified as different 
cuproptosis subtypes, which were verified through NTP method in the E-MTAB-1980 dataset. Next, the cuproptosis 
score (Cuscore) was computed based on cuproptosis-related genes via PCA. We also evaluated clinical and immunog-
enomic features, drug sensitivity, immunotherapeutic response, and post-transcriptional regulation.

Results  Cuproptosis genes presented multi-layer alterations in ccRCC, and were linked with patients’ survival 
and immune microenvironment. We defined three cuproptosis subtypes [C1 (moderate cuproptosis), C2 (low 
cuproptosis), and C3 (high cuproptosis)], and the robustness and reproducibility of this classification was further 
proven. Overall survival was best in C3, moderate in C1, and worst in C2. C1 had the highest sensitivity to pazopanib, 
and sorafenib, while C2 was most sensitive to sunitinib. Furthermore, C1 patients benefited more from anti-PD-1 
immunotherapy. Patients with high Cuscore presented the notable survival advantage. Cuscore was highly linked 
with immunogenomic features, and post-transcriptional events that contributed to ccRCC development. Finally, sev-
eral potential compounds and druggable targets (NMU, RARRES1) were selected for low Cuscore group.

Conclusion  Overall, our study revealed the non-negligible role of cuproptosis in ccRCC development. Evaluation 
of the cuproptosis subtypes improves our cognition of immunogenomic features and better guides personalized 
prognostication and precision therapy.

Keywords  Cuproptosis, Clear cell renal cell carcinoma, Prognosis, Immunogenomics, Immunotherapy, Precision 
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Introduction
Renal cell carcinoma (RCC) originating from renal 
tubular epithelial cells occupies ~ 3.8% of all newly diag-
nosed cancers [1]. Clear cell RCC (ccRCC) is an aggres-
sive histological subtype that accounts for ~ 75% of all 
cases [2]. Over one-third of ccRCC patients experience 
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relapse and metastasis after surgery, and patients with 
metastatic ccRCC have an undesirable prognosis, with a 
5-year survival rate of 10% [3]. Currently, the effects of 
ccRCC clinical treatment modalities mainly incorporat-
ing surgical management, conventional chemotherapy, 
targeted therapy, and immunotherapy, etc., is limited by 
intratumoral heterogeneity that challenges the molecu-
lar characterization of ccRCC and is a confounding fac-
tor for treatment selection [4, 5]. Recently, multi-omics 
technology have led to a significant advantage in under-
standing the molecular mechanism and cancer man-
agement [6, 7]. Extensive genomic characterization has 
unveiled a few genetic alterations (VHL, PBRM1, etc.) 
correlated to ccRCC [8]. Moreover, large-scale molecular 
profiling analysis (The Cancer Genome Atlas (TCGA), 
etc.) has identified critical biological processes in ccRCC 
[9]. Nonetheless, molecular profiling is not routinely 
applied for ccRCC prognostication and therapeutic 
options. Additional molecular mechanisms may further 
improve stratification of ccRCC patients into proper risk 
classifications.

Copper is a fundamental mineral nutrient, and its redox 
properties make it both beneficial and toxic to cells [10]. 
Both serum and tumor copper levels are elevated in solid 
tumors, which directly correlate to cancer progression 
[11]. Recently, a novel copper-dependent programmed 
cell death mechanism named cuproptosis has been 
proposed, which strongly correlates to mitochondrial 
metabolism and is mediated by protein lipoylation [12]. 
Evidence demonstrates that cuproptosis genes exhibit 
aberrant expression in ccRCC and are notably linked 
with patients’ prognosis [13]. In addition, cuproptosis 
might potentially predict immunotherapeutic response 
of ccRCC [14]. However, our cognition of cuproptosis is 
still in its infancy. Molecular profiling enables to provide 
crucial prognostic information and treatment guidance 
for the management of ccRCC patients. In this study, the 
clinical, immunological and pharmacogenomic role of 
cuproptosis was investigated in ccRCC, which may shed 
light on optimizing the precision management of ccRCC 
patients. The flowchart of our research is illustrated in 
Fig. 1.

Materials and methods
Publicly available ccRCC datasets
Transcriptome profiling (HTSeq-counts) of ccRCC 
(n = 539) and normal (n = 72) specimens together with 
clinical parameters were acquired from TCGA (https://​
portal.​gdc.​cancer.​gov/). Raw counts data were con-
verted into transcripts per million (TPM), followed by 
log2 transformation. DNA methylation data (Methyla-
tion450K), somatic mutation (mutation annotation for-
mat), copy-number alteration (SCNA; Masked Copy 

Number Segment) and microRNA (miRNA) expression 
data of ccRCC patients were also collected from TCGA. 
Matrix files of transcriptome profiling and prognostic 
data of ccRCC patients (n = 101) were acquired from the 
E-MTAB-1980 dataset (https://​www.​ebi.​ac.​uk/​array​expre​
ss/​exper​iments/​E-​MTAB-​1980/), which was utilized for 
external verification. The detailed clinicopathological 
information is listed in Additional file 2: Table S1.

Collection of cuproptosis genes
Cuproptosis genes were collected from a previously pub-
lished study [15]. Circos plot containing chromosome 
positions of cuproptosis genes was drawn via RCircos 
package [12].

Methylation analysis
For DNA methylation data, only the probes that mapped 
to the promoter region of cuproptosis genes were 
retained. For genes with multiple probes, the average β 
value of all probes was utilized as the methylation level.

Somatic mutation and SCNA analysis
To lower the false-positive rate, only non-silent muta-
tions were retained. Through maftools package [16], the 
mutation annotation format from TCGA was analyzed. 
For SCNA, significant amplifications and deletions were 
identified via GISTIC2.0 [17]. Then, OncoPrint plots of 
mutations and SCNA were produced with ComplexHeat-
map package [18].

Functional enrichment analysis
The enrichment score of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) gene 
sets was evaluated between low and high expression 
of CDKN2A groups using gene set enrichment analy-
sis (GSEA) [19]. GO and KEGG enrichment analysis of 
cuproptosis-related genes was conducted via cluster-
Profiler package [20]. Terms with false discovery rate 
(FDR) < 0.05 were regarded as significant enrichment. 
Gene set variation analysis (GSVA) [21], and fast GSEA 
(fGSEA) were used to compute and compare the activity 
of the 50 hallmark pathways based on the Molecular Sig-
natures Database-derived “h.all.v7.4.entrez.gmt” gene set 
as the reference [22].

Unsupervised clustering analysis
ccRCC samples were classified as distinct cuproptosis 
subtypes based on the transcriptome profiling of cuprop-
tosis genes using unsupervised clustering algorithm. The 
number of clusters was identified via ConsensusCluster-
Plus package [23], with iterations for increasing the clas-
sification reliability.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1980/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1980/
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Subtype validation
The top 200 up-regulated genes in each subtype versus 
others were identified via limma package [24], which 
were used to validate the cuproptosis subtypes through 
nearest template prediction (NTP) algorithm in the 
E-MTAB-1980 cohort [25].

Immunogenomic and stemness signatures
Single-nucleotide variant (SNV) neoantigens, tumor 
mutation burden (TMB), SCNA, cancer-testis antigen 

(CTA) score, homologous recombination defects, intra-
tumor heterogeneity, and aneuploidy score were acquired 
from previously published literature [26]. In addition, 
mRNA expression-based stemness index (mRNAsi) was 
computed utilizing one-class logistic regression machine-
learning approach [27].

Drug sensitivity assessment
Drug sensitivity data of cancer cell lines (CCLs) were 
acquired from Genomics of Drug Sensitivity in Can-
cer (GDSC) [28], Cancer Therapeutics Response Portal 

Fig. 1  Schematic diagram of the study design
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(CTRP) [46], and PRISM [29] databases. GDSC covers 
the half-maximal inhibitory concentration (IC50) data; 
meanwhile, both CTRP and PRISM cover the area under 
the curve (AUC) data as an evaluation indicator of drug 
sensitivity. Transcriptome profiling of CCLs was acquired 
from the Cancer Cell Line Encyclopedia (CCLE) [30]. 
The IC50 of GDSC-derived compounds was evaluated 
through oncoPredict package [31]. CTRP- and PRISM-
derived compounds with more than 20% missing data 
were removed before K-nearest neighbor imputation. 
Next, pRRophetic package was employed to estimate the 
AUC of compounds [32]. Spearman correlation analysis 
on Cuscore and IC50 or AUC was executed to evaluate 
the drug response of ccRCC patients to each compound.

Tumor‑infiltrating immune cells
Single-sample GSEA (ssGSEA) was utilized to quantify 
the relative abundance of 22 tumor-infiltrating immune 
cell types and two stromal components (fibroblasts and 
endothelial cells) based on the known marker genes 
(Additional file 3: Table S2) [33]. Immune score and stro-
mal score were estimated through ESTIMATE algorithm 
[34].

Multi‑omics analysis of immunomodulators
Multi-omics profiling (comprising mRNA expression, 
SCNA, and DNA methylation) of 75 immunomodulators 
was observed across distinct cuproptosis subtypes (Addi-
tional file 4: Table S3) [35].

Immunotherapy response prediction
Subclass Mapping (SubMap) analysis was adopted 
to assess the expression similarity between the three 
cuproptosis subtypes and immunotherapeutic responses 
[36]. The degree of commonality between the two groups 
was inferred via GSEA algorithm. Bonferroni-corrected 
p < 0.05 denoted that two groups were significantly 
similar.

Generation of the cuproptosis score (Cuscore)
To identify the cuproptosis-related genes based on the 
three cuproptosis subtypes, differentially expressed genes 
(DEGs) were screened through limma package with the 
threshold of |fold change|> 1.5 together with adjusted 
p < 0.05. Prognostic value of cuproptosis-related genes 
was assessed via univariate Cox regression analysis. 
Then, genes with p < 0.05 were retained for computing 
the Cuscore through adopting PCA, with the principal 
components (PCs) 1 and 2 as the final signature score. 
The Cuscore was defined as Cuscore = 

∑
m

n
(PCn+ PCm) , 

where n and m denoted the order and total number 
of prognostic cuproptosis-related genes in ccRCC, 
respectively.

Nomogram construction
Univariate Cox regression on clinicopathological param-
eters together with Cuscore was analyzed across ccRCC 
patients. Thereafter, significant prognostic predictors 
(p < 0.05) were retained for multivariate Cox regression 
analysis, and a nomogram was defined through adopting 
independent predictive variables (p < 0.05). The consist-
ency between predicted and actual prognostic outcome 
was assessed via calibration curves. Through deci-
sion curve analysis, the net benefits of the nomogram, 
Cuscore and other clinicopathological parameters were 
measured.

Analysis of post‑transcriptional mechanisms
MiRNAs with differential expression were screened 
between low and high Cuscore groups based on |fold 
change|> 2 and adjusted p < 0.01. Then, targeted pathways 
were enriched through KEGG enrichment analysis.

Statistical analysis and visualization
Continuous variables in two or more than two groups 
were compared utilizing parametric test (Student’s t-test 
or analysis of variance) if the variables displayed normal 
distribution or nonparametric test (Wilcoxon rank-sum 
test or Kruskal–Wallis test). Associations between con-
tinuous variables were evaluated via Pearson or Spear-
man correlation test. Kaplan–Meier (K-M) analysis of 
overall survival (OS) with log-rank test was conducted 
using survminer package. Time-dependent receiver oper-
ating characteristic (ROC) curves were plotted with tim-
eROC package, and AUC was computed. Relationships 
of Cuscore with clinicopathological parameters were 
analyzed through Chi-square test. The discrimination of 
transcriptome profiling between groups was displayed 
via principal component analysis (PCA). Uni- and mul-
tivariate Cox regression analysis was executed to deter-
mine the prognostic genes and independent prognostic 
parameters via survival package. All statistical analyses 
were executed through R packages. Statistical signifi-
cance was set as a two-tailed p < 0.05.

Results
Multi‑omics landscape of cuproptosis genes in ccRCC​
Figure  2A illustrates the genomic location of each 
cuproptosis gene. Most cuproptosis genes (FDX1, DLD, 
DLAT, PDHA1, PDHB, and GLS) were notably down-
regulated in ccRCC versus normal tissues, with only 
up-regulated CDKN2A (Fig.  2B, C). At the transcrip-
tional level, cuproptosis genes positively interacted 
except CDKN2A in ccRCC (Fig. 2D). Next, we analyzed 
the reasons for the low expression of cuproptosis genes. 
Higher methylation levels of most cuproptosis genes 
were observed in ccRCC than normal tissues (Fig.  2E). 
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In addition, copy number deletion of cuproptosis genes 
occurred in ccRCC, especially PDHB (Fig.  2F). Hyper-
methylation and copy number deletion might contrib-
ute to the low expression of cuproptosis genes. Their 
prognostic value was then assessed. Consequently, most 
cuproptosis genes were linked with better OS outcome of 
ccRCC, with opposite effect of CDKN2A (Fig. 2G). PCA 
revealed the remarkable discrimination of transcriptome 
profiling of cuproptosis genes between ccRCC and nor-
mal samples (Fig.  2H). Altogether, cuproptosis might 
be indispensable for ccRCC initiation and progression. 
ccRCC is highly immune infiltrated; adaptive and innate 
immune cells infiltrate the tumor microenvironment 
and constitute an ecosystem that regulates each aspect 
of ccRCC development [37]. Most cuproptosis genes 
were negatively correlated to the infiltration of immune 
cells, with positive relationships between CDKN2A and 
immune cell infiltration (Fig.  2I). Based on above find-
ings, CDKN2A was identified as a cuproptosis gene 
of interest. CDKN2A expression was higher in more 
advanced grade and stage (Fig. 2J, K). GSEA revealed that 
CDKN2A positively correlated to immunity (activation 
of immune response, immunoglobulin production, lym-
phocyte-mediated immunity, etc.) (Fig. 2L).

Construction and external verification of cuproptosis 
subtypes in ccRCC​
According to the transcriptome profiling of cuproptosis 
genes, cuproptosis subtypes were established via unsu-
pervised clustering analysis. When the consensus value 
k was 3, most of the colors in the consensus matrix did 
not overlap (Fig.  3A). Cumulative distribution function 
(CDF) as well as item tracking demonstrated the cluster 
stability when k = 3 (Additional file  1: Figure S1A–C). 
Taken together, we classified ccRCC as three cuprop-
tosis subtypes, namely C1 (moderate cuproptosis), C2 
(low cuproptosis), and C3 (high cuproptosis) (Additional 
file 5: Table S4; Fig. 3B). PCA illustrates the notable dis-
crepancy of transcriptome profiling among the three 
cuproptosis subtypes (Fig. 3C). Prognosis difference was 

observed among the three cuproptosis subtypes, with 
the best OS in C3, intermediate in C1, and worst in C2 
(Fig.  3D). According to fold change > 1 together with 
adjusted p < 0.05, we determined up-regulated genes in 
each cuproptosis subtype (Fig.  3E). The top 200 genes 
were regarded as up-regulated biomarkers of each 
cuproptosis subtype (Additional file 6: Table S5). To fur-
ther verify the stability and robustness of cuproptosis 
subtypes, NTP analysis that may quantify the prediction 
confidence of each patient based on transcriptome profil-
ing was implemented in the E-MATB-1980 cohort. Con-
sequently, the three cuproptosis subtypes exhibited high 
reproducibility in the E-MATB-1980 dataset (Fig.  3F). 
The differences in OS outcome and transcriptome profil-
ing among the three cuproptosis subtypes were proven 
in this cohort (Fig.  3G, H). Clinicopathological features 
were prominently different among the three cuproptosis 
subtypes, with the lowest proportions of grade and stage 
in C3, intermediate in C1, and highest in C2 (Fig.  3I). 
Altogether, the cuproptosis-based classification was 
reproducible and stable in ccRCC.

Genomic alterations, stemness, and drug sensitivity 
features across cuproptosis subtypes
DNA alterations mainly comprise somatic mutation 
and SCNA. Overall, somatic mutation exhibited the 
remarkable heterogeneity among the three cuprop-
tosis subtypes (Fig.  4A–C). Of note, C3 had the high-
est mutation frequency of VHL (61%), followed by C1 
(57%) and C2 (54%). PBRM1 had the highest muta-
tion frequency in C1 (41%), intermediate in C3 (33%), 
and lowest in C2 (20%). Overall, C3 presented signifi-
cantly lower SNV neoantigens and TMB score relative 
to C1 (Fig.  4D, E). Next, we observed the heterogene-
ity of SCNA profiling in the three cuproptosis subtypes 
(Fig.  4F). Additionally, C1 presented higher SCNA, 
CTA score, homologous recombination defects, and 
intratumor heterogeneity (Fig.  4G–J). We computed 
mRNAsi for quantifying cancer stemness, and found 
that C3 had higher mRNAsi (Fig. 4K). Drug sensitivity 

Fig. 2  Multi-omics landscape of cuproptosis genes across ccRCC in TCGA cohort. A Circos plot shows the chromosome positions of cuproptosis 
genes. B Transcriptome profiling of cuproptosis genes in ccRCC versus normal specimens. Colors from blue to red denote low to high expression. 
C Comparison of cuproptosis genes in paired ccRCC and normal specimens. The center line indicates the median, and the upper and lower lines 
indicate the upper and lower quartiles. D Interactions between cuproptosis genes at the transcriptional level. Blue line, negative correlation; red 
line, positive correlation. E Methylation profiling of cuproptosis genes in ccRCC versus normal specimens. Colors from blue to red indicate low 
to high methylation. F Frequencies of copy number amplification and deletion of cuproptosis genes in ccRCC. Blue dot, amplification; yellow 
dot, deletion. G K-M curves for OS between groups separated by the median expression value of each cuproptosis gene. H PCA plots illustrate 
the discrimination of transcriptome profiling of cuproptosis genes between ccRCC and normal samples. Each dot denotes a sample. Blue dot, 
normal tissue; yellow dot, ccRCC tissue. I Associations of cuproptosis genes with 22 tumor-infiltrating immune cell types and two stromal cells 
within the tumor microenvironment. Colors from blue to red denote negative to positive correlation. J, K Comparison of the transcription levels 
of CDKN2A between groups separated by grade and stage. Each point indicates a sample; the center line indicates the median, and the upper 
and lower lines indicate the upper and lower quartiles. L GSEA shows the GO terms with significance differences between low and high CDKN2A 
expression groups. For asterisks, ns: p-value > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Construction and external verification of cuproptosis subtypes in ccRCC. A Consensus matrix depicts the consensus value k = 3 on a white 
to blue color scale based on the transcriptome profiling of cuproptosis genes in TCGA cohort. B Transcriptome profiling of cuproptosis genes 
in the three cuproptosis subtypes in TCGA cohort. Colors from blue to red display low to high expression. C PCA exhibits the discrimination 
of transcriptome profiling of cuproptosis genes among the three cuproptosis subtypes in TCGA cohort. D K-M curves for OS of the three 
cuproptosis subtypes in TCGA cohort. E Transcriptome profiling of up-regulated genes in each cuproptosis subtype in accordance with fold 
change > 1 and adjusted p < 0.05. F Transcriptome profiling of the template features in the cuproptosis subtypes in the E-MATB-1980 dataset. G 
Validation of OS difference among the three cuproptosis subtypes in the E-MATB-1980 cohort. H Validation of the discrimination of transcriptome 
profiling among the three cuproptosis subtypes via PCA in the E-MATB-1980 cohort. I Proportions of clinicopathological parameters in each 
cuproptosis subtype across TCGA ccRCC patients
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differences were also assessed among the three cuprop-
tosis subtypes. Consequently, C1 patients had the high-
est sensitivity to pazopanib, and sorafenib, while C2 
patients were most sensitive to sunitinib (Fig. 4L–N).

Three cuproptosis subtypes with distinct 
immunotherapeutic responses
Next, we observed the remarkable differences in 
the oncogenic hallmark pathways among the three 
cuproptosis subtypes, contributing to the intratumor 

Fig. 4  Genomic alterations, stemness, and drug sensitivity features across cuproptosis subtypes in TCGA cohort. A–C OncoPrint plots show 
the top 30 genes with mutation frequencies across cuproptosis subtypes. Row denotes mutated genes, and column denotes ccRCC samples. 
The left bar exhibits the mutation percentage, and the top bar exhibits the total number of mutations. Clinicopathological features are displayed 
at the bottom. D, E Differences in SNV neoantigens and TMB between cuproptosis subtypes. F OncoPrint plot exhibits the top 5 copy number 
amplifications and deletions across cuproptosis subtypes. Row denotes SCNA, and column denotes ccRCC samples. The left bar displays 
the percentage of SCNA, and the right bar displays the total number of SCNA. G–K Differences in SCNA, CTA score, homologous recombination 
defects, intratumor heterogeneity, and mRNAsi between cuproptosis subtypes. L–N Differences in IC50 of GDSC-derived compounds 
between cuproptosis subtypes. For violin plots, each point denotes a sample; the center line denotes the median, and the upper and lower lines 
denote the upper and lower quartiles. For asterisks, ns: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001
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heterogeneity of ccRCC (Fig. 5A). C1 subtype presented 
the highest expression of common immune checkpoint 
molecules (PDCD1, CTLA4, etc.) (Fig.  5B). Addition-
ally, the most abundant infiltration of immune cells was 
observed in C2, with intermediate for C1, and lowest for 
C3. In Fig. 5C, there were extensive genomic differences 
in immunomodulators across the three cuproptosis sub-
types. Of note, C3 had the highest frequencies of ampli-
fication (IFNG, CD27, LAG3, CD40, GZMA, etc.) and 
deletion (PDCD1LG2, CD274, BTN3A1, BTN3A2, TNF, 
VEGFA, IFNA1, IFNA2, MICA, MICB, TLR4, PRF1, 
ENTPD1, etc.) of several immunomodulators, followed 
by C1 and C2. Considering that the cuproptosis subtypes 
appear to correlate to the tumor immune microenviron-
ment, we inferred the immunotherapeutic responses 
of the three cuproptosis subtypes. Consequently, C1 
subtype exhibited the high expression similarity to 
response to anti-PD-1 therapy (Fig.  5D), proven in the 
E-MTAB-1980 dataset (Fig.  5E). Hence, patients in 
C1 subtype clinically benefited more from anti-PD-1 
immunotherapy.

Definition of the Cuscore for individual ccRCC patients
To assess the functional role of the three cuproptosis 
subtypes, 95 cuproptosis-related genes were determined 
(Fig.  6A; Additional file  7: Table  S6) through intersect-
ing DEGs between cuproptosis subtypes according to 
|fold change|> 1.5 and adjusted p < 0.05. Functional 
enrichment analysis revealed that they were remark-
ably enriched in diverse metabolism processes (Fig. 6B). 
Next, the prognostic value of cuproptosis-related genes 
was investigated. Consequently, all of them were signifi-
cantly linked with ccRCC patients’ OS (Additional file 8: 
Table  S7). Through PCA computational approach, the 
Cuscore was defined based on cuproptosis-related genes 
to quantify cuproptosis of individual ccRCC patients. 
Next, we investigated the clinical relevance of the 
Cuscore. ccRCC patients were classified as low and high 
Cuscore groups, with the prominent distinction of tran-
scriptome profiling (Fig. 6C). Patients with high Cuscore 
possessed a remarkable survival benefit (Fig.  6D), with 
1-, 3- and 5-year OS AUC values of 0.74, 0.69 and 0.70, 
respectively (Fig. 6E). The E-MTAB-1980 dataset proved 
the high reproducibility of this Cuscore (Fig. 6F–H).

Associations of the Cuscore with clinicopathological 
characteristics
Next, clinicopathological characteristics of low and high 
Cuscore groups were observed. In Fig. 7A, low Cuscore 
patients exhibited higher proportions of dead status, 
male, advanced stage, and grade. Additionally, male 
patients had lower Cuscore relative to female patients 
(Fig.  7B). With the increase in grade and stage, the 
Cuscore gradually lowered (Fig.  7C, D). Altogether, the 
Cuscore may reflect tumor progression and prognostic 
outcome.

Generation of the Cuscore‑based nomogram for predicting 
ccRCC prognosis
From uni- and multivariate Cox regression results, 
Cuscore served as an independent protective factor, with 
clinicopathological variables (age, stage, and grade) as 
independent risk factors (Fig. 7E, F). To facilitate the clin-
ical utility of the Cuscore in predicting the survival prob-
ability, we generated a nomogram that integrated above 
independent prognostic factors. Calibration curves of 1-, 
3- and 5-year OS displayed that the nomogram was close 
to the actual survival probability (Fig.  7G–I). Moreover, 
we found that the nomogram had the highest net benefit 
in clinical assessment based on decision curve analysis, 
suggesting the significance of the Cuscore in coordina-
tion with other clinicopathological variables for survival 
prediction (Fig. 7J–L).

Immunogenomic features, and oncogenic hallmark 
pathways associated with Cuscore
To understand the immunogenomic features involved 
in the Cuscore, we evaluated the relationships of the 
Cuscore with immunogenomic signatures. Consequently, 
the Cuscore was negatively linked with aneuploidy score, 
CTA score, homologous recombination defects, and 
intratumor heterogeneity in ccRCC (Fig.  8A–D). Addi-
tionally, we observed the negative associations of the 
Cuscore with most immune cells (Fig.  8E), and most 
immune checkpoint molecules were up-regulated as the 
Cuscore increased (Fig. 8F). The fGSEA revealed that the 
Cuscore was prominently correlated to oncogenic hall-
mark pathways (Fig. 8G).

(See figure on next page.)
Fig. 5  Three cuproptosis subtypes with distinct immunotherapeutic responses. A The relative activity status of the 50 hallmark pathways 
in the three cuproptosis subtypes in TCGA cohort. Colors from blue to red denote low to high activity. B Landscape of immune score, and stromal 
score, mRNA expression of common immune checkpoints, relative abundance of 22 tumor-infiltrating immune cell types and two stromal 
components in TCGA cohort. C Multi-omics profiling (mRNA expression, DNA methylation level, and amplification/deletion frequency) of 75 
immunomodulators in TCGA cohort. D SubMap analysis shows the expression similarity between the three cuproptosis subtypes and responses 
to anti-PD-1 and anti-CTLA4 in TCGA cohort. E Validation of the expression similarity between the three cuproptosis subtypes and responses 
to anti-PD-1 and anti-CTLA4 in the E-MTAB-1980 dataset
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Fig. 5  (See legend on previous page.)
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Fig. 6  Definition of the Cuscore reliably predicting ccRCC prognosis. A Venn diagram shows the intersection of DEGs between cuproptosis 
subtypes in TCGA cohort. B GO and KEGG analysis results of cuproptosis-related genes. C PCA illustrates the discrimination of transcriptome 
profiling between low and high Cuscore groups in TCGA cohort. Each dot denotes a sample. D K-M curves of OS between groups in TCGA cohort. 
E ROC curves of 1-, 3- and 5-year OS based on the Cuscore in TCGA cohort. F Validation of the distinction of transcriptome profiling between low 
and high Cuscore groups in the E-MTAB-1980 cohort. G K-M curves of OS between groups in the E-MTAB-1980 dataset. H ROC curves of 1-, 
3- and 5-year OS for the Cuscore in the E-MTAB-1980 cohort
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Fig. 7  Associations of the Cuscore with clinicopathological features and definition of the Cuscore-based nomogram for prognostic prediction 
in TCGA cohort. A Clinicopathological features of low and high Cuscore groups. B–D Cuscore differences in distinct gender, grade, and stage. 
For asterisks, ns: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. E, F Uni- and multivariate Cox regression analysis of clinicopathological parameters 
and Cuscore on OS outcome. G–I Calibration curves show the consistency between the nomogram-predicted and actual prognostic outcome. J–L 
Decision curve analysis evaluates the net benefits of ccRCC patients from the nomogram, Cuscore and other clinicopathological parameters



Page 13 of 18Zhu et al. European Journal of Medical Research          (2023) 28:248 	

Fig. 8  Associations of Cuscore with immunogenomic features, oncogenic hallmark pathways, post-transcriptional mechanisms in TCGA 
cohort. A–D Spearman correlation analysis of Cuscore with aneuploidy score, CTA score, homologous recombination defects, and intratumor 
heterogeneity. E Relative abundance of 22 tumor-infiltrating immune cell types and two stromal components in ccRCC samples with low to high 
Cuscore. Colors from blue to red correspond to low to high cell abundance. F Transcriptome profiling of immune checkpoints across ccRCC 
samples with low to high Cuscore. Colors from blue to red correspond to low to high expression of immune checkpoints. G The fGSEA compares 
the activity of the hallmark pathways between low and high Cuscore groups. H Differences in miRNA-targeted pathways between low and high 
Cuscore samples. Red line denotes a down-regulated miRNA in high Cuscore group, and cyan line denotes an up-regulated miRNA. Red dot 
represents a miRNA-targeted mRNA up-regulated in high Cuscore group, and cyan dot represents a down-regulated miRNA-targeted mRNA. Circle 
corresponds to a pathway enriched by targeted mRNAs. For asterisks, ***p < 0.001
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Post‑transcriptional mechanisms involved in Cuscore
Next, this study analyzed miRNAs with differential 
expression between low and high Cuscore groups. 
Sixty-nine miRNAs that presented significant dif-
ferential expression were selected (Additional file  9: 
Table  S8), and KEGG pathway enrichment analysis of 
their targeted mRNAs was implemented. Consequently, 
pathways in cancer, cell adhesion molecules (CAMs), 
Hippo, FoxO and TGF-β signaling pathways were nota-
bly enriched (Fig.  8H). Most miRNA-targeted mRNAs 
in above pathways were up-regulated in high Cuscore 
group. Above evidence suggested that Cuscore was 
linked with post-transcriptional mechanisms and path-
way regulation.

Identification of Cuscore‑related compounds
We further understood the effects of the Cuscore on 
drug response. The associations of the Cuscore with 
the response to GDSC-derived compounds were then 
assessed. The sensitivity to nine drugs (AGI-6780, topote-
can, gefitinib, erlotinib, sapitinib, ibrutinib, Eg5_9814, 
palbociclib and KRAS (G12C) Inhibitor-12) correlated to 
the high Cuscore, with the correlation between P22077 
resistance and the high Cuscore (Fig. 9A). Next, we inves-
tigated the pathways involved in these drugs. As illus-
trated in Fig. 9B, drugs whose sensitivity was linked with 
the high Cuscore were mainly targeting cell cycle, DNA 
replication, EGFR and ERK MAPK signaling. In addition, 
the CTRP and PRISM databases were utilized to predict 
potential compounds for ccRCC. CR-1-31B, leptomy-
cin B, paclitaxel, vincristine, ouabain, BI-2536, metho-
trexate, combretastatin-A-4, cabazitaxel, vincristine, 
PHA-793887, romidepsin, dolastatin-10, gemcitabine, 
and YM-155 were more suitable for patients with low 
Cuscore (Fig.  9C, D). Altogether, our findings implied 
that cuproptosis was correlated to drug response. There-
fore, the Cuscore might be a potential biomarker for for-
mulating appropriate therapeutic schedule.

Identification of potential druggable targets for patients 
with low Cuscore
Potentially druggable targets for patients with low 
Cuscore were identified. Firstly, correlation between the 
Cuscore and protein expression of druggable targets was 
computed, and 23 protein targets were selected accord-
ing to correlation coefficient < −0.5 and p < 0.05 (Fig. 9E). 
Then, we conducted correlation analysis of CERES score 
with the Cuscore, and further screened 486 targets based 
on correlation coefficient > 0.75 and p < 0.05 (Fig.  9F). 
Two genes (NMU, RARRES1) were finally determined as 
potential therapeutic targets by above methods.

Discussion
Copper is a trace metal in cells that is indispensable for 
maintaining the function of proteins. Nonetheless, excess 
copper can result in cytotoxicity [38]. Zvetkov et al. firstly 
proposed a copper accumulation-dependent cuproptosis, 
which is distinct from other cell death mechanisms [12]. 
Renal cell carcinoma (RCC) is essentially a metabolic 
disease characterized by a reprogramming of energetic 
metabolism [39–42]. In particular the metabolic flux 
through glycolysis is partitioned [43–45], and mitochon-
drial bioenergetics and OxPhox are impaired, as well as 
lipid metabolism [43, 46–48]. Moreover, accumulative 
researches have been demonstrated that cuproptosis 
play an important role as regulators of cell metabolism 
[49–51]. Therefore, this study conducted comprehen-
sive analysis of the role of cuproptosis in ccRCC. We 
described the genomic and transcriptional alterations of 
10 cuproptosis genes in ccRCC relative to normal tissues, 
and observed that methylation and SCNA might result 
in the aberrant expression of cuproptosis genes. Con-
sistent with previous research [13, 52], most cuproptosis 
genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, 
MTF1, and GLS) correlated to more favorable OS out-
come of ccRCC, with opposite effect of CDKN2A, indi-
cating their critical implications in ccRCC prognosis.

Based on the transcriptome profiling of cuproptosis 
genes, we defined the three cuproptosis subtypes (C1 
(moderate cuproptosis), C2 (low cuproptosis), and C3 
(high cuproptosis)) in ccRCC. NTP approach demon-
strated that the cuproptosis-based classification could be 
effectively repeated in the TCGA dataset and externally 
verified in the E-MTAB-1980 dataset, proving that this 
classification was highly repeatable. OS was best in C3, 
moderate in C1, and worst in C2, indicating that cuprop-
tosis might contribute to favorable survival outcome of 
ccRCC. Large-scale genomics research has characterized 
global somatic alteration features in ccRCC, and their 
relationships with prognosis [53]. Chromosome 3p loss 
leads to inactivation of several tumor suppressor genes 
(VHL, PBRM1, etc.), which has been defined as an early 
driver event in ccRCC [54]. The heterogeneity in genomic 
alterations occurred in the three cuproptosis subtypes. 
C1 exhibited higher SCNA, CTA score, homologous 
recombination defects, and intratumor heterogeneity 
than others.

The tumor microenvironment is a complex ecosystem 
comprising heterogeneous cell types. The complex inter-
action between renal cancer cells and the surrounding 
tumor microenvironment results in the remarkable intra-
tumoral heterogeneity of ccRCC. In addition, renal cell 
carcinoma is one of the most immune-infiltrated tumors 
[55, 56]. Emerging evidence suggests that the activation 
of specific metabolic pathway have a role in regulating 
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angiogenesis and inflammatory signatures [57, 58]. Fea-
tures of the tumor microenvironment heavily affect 
disease biology and may affect responses to systemic 

therapy [59]. Accumulating evidence proves the essential 
role of cuproptosis in tumor immunity [60–62], but the 
mechanisms of cuproptosis molecules in ccRCC remain 

Fig. 9  Recognition of Cuscore-relevant compounds and druggable targets. A Associations of Cuscore with estimated IC50 values of compounds 
from GDSC. B Pathways underlying GDSC-derived compounds. C Associations of Cuscore with estimated AUC values of compounds from CTRP 
(left), and comparison of AUC values of compounds between low and high Cuscore groups (right). D Spearman correlation analysis on Cuscore 
and estimated AUC values of PRISM-derived compounds (left), and comparison of AUC values of compounds between low and high Cuscore 
groups (right). E Relationships of Cuscore with protein expression of druggable targets. Red dot denotes a significant negative correlation 
(correlation coefficient < −0.5 and p < 0.05). F Relationships of Cuscore with CERES score of druggable targets. Blue dot denotes a significant 
negative correlation (correlation coefficient > 0.75 and p < 0.05)
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indistinct. Our evidence indicated the high correlation of 
cuproptosis subtypes with the tumor microenvironment. 
For example, subtype C1 and C2 were corresponding to a 
high immune cell infiltration, while C3 accompanied by 
an immune-desert type.

Moreover, patients in C1 benefited more from anti-
PD-1 immunotherapy. Additionally, C1 patients were 
most sensitive to pazopanib, and sorafenib, and C2 
patients had the highest sensitivity to Sunitinib. Alto-
gether, this cuproptosis-based classification might assist 
therapeutic options for ccRCC patients.

To improve prognostic outcome of ccRCC, under-
standing of the molecular underpinnings within the 
spectrum of ccRCC progression is required. We defined 
the Cuscore system to quantify cuproptosis of individ-
ual ccRCC patients. High Cuscore group presented the 
remarkable survival advantage. Additionally, the Cuscore 
was highly associated with immunogenomic features, 
and post-transcriptional events that contributed to 
ccRCC development. Several potential compounds and 
druggable targets (NMU, RARRES1) were determined for 
patients with low Cuscore. NMU is a neuropeptide impli-
cated in energy homeostasis and tumor progression. VHL 
inactivation leads to remarkable upregulation of NMU in 
renal cancer cells, and NMU facilitates renal cancer pro-
gression through an autocrine effect [63]. RARRES1 can 
regulate podocyte function, and its expression is up-reg-
ulated in glomerular diseases and correlated to disease 
progression [64]. Highly expressed RARRES1 results in 
podocyte apoptosis by autocrine and paracrine effects 
[65]. Of note, RARRES1 expression is stronger in high 
grade versus low-grade RCC, and RARRES1-positive 
patients have poorer OS [66]. Combining the existing 
evidence, NMU and RARRES1 might be potential drug-
gable targets of ccRCC patients with low Cuscore.

Of course, we recognize some limitations of this study. 
This is a retrospective study. Although we observed the 
heterogeneity in cuproptosis in as many ccRCC patients 
as possible, multicenter clinical cohorts are required for 
further analysis and validation. Our data suggested that 
cuproptosis may play a crucial role in ccRCC, but the 
molecular mechanisms involved are still understudied. 
This is a study of basic research and more in  vitro and 
in vivo studies are necessary in the future.

Conclusion
Altogether, our findings proposed three different cuprop-
tosis subtypes that provided a novel insight into the rela-
tionships of cuproptosis with clinical, molecular, and 
immune characteristics of ccRCC. In addition, we gen-
erated the reliable Cuscore that enabled to accurately 
predict the survival outcomes and immunotherapeutic 
response in patients with ccRCC. This work provides a 

roadmap for patients’ stratification, and may help inform 
personalized follow-up and individualized decision-mak-
ing strategies for ccRCC immunotherapy, and advance 
the development of precision immuno-oncology.
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