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Abstract 

Purpose  Traumatic brain injury (TBI) patients admitted to the intensive care unit (ICU) are at a high risk of infection 
and sepsis. However, there are few studies on predicting secondary sepsis in TBI patients in the ICU. This study aimed 
to build a prediction model for the risk of secondary sepsis in TBI patients in the ICU, and provide effective information 
for clinical diagnosis and treatment.

Methods  Using the MIMIC IV database version 2.0 (Medical Information Mart for Intensive Care IV), we searched 
data on TBI patients admitted to ICU and considered them as a study cohort. The extracted data included patient 
demographic information, laboratory indicators, complications, and other clinical data. The study cohort was divided 
into a training cohort and a validation cohort. In the training cohort, variables were screened by LASSO (Least abso-
lute shrinkage and selection operator) regression and stepwise Logistic regression to assess the predictive ability 
of each feature on the incidence of patients. The screened variables were included in the final Logistic regression 
model. Finally, the decision curve, calibration curve, and receiver operating character (ROC) were used to test the per-
formance of the model.

Results  Finally, a total of 1167 patients were included in the study, and these patients were randomly divided 
into the training (N = 817) and validation (N = 350) cohorts at a ratio of 7:3. In the training cohort, seven features were 
identified as key predictors of secondary sepsis in TBI patients in the ICU, including acute kidney injury (AKI), ane-
mia, invasive ventilation, GCS (Glasgow Coma Scale) score, lactic acid, and blood calcium level, which were included 
in the final model. The areas under the ROC curve in the training cohort and the validation cohort were 0.756 
and 0.711, respectively. The calibration curve and ROC curve show that the model has favorable predictive accu-
racy, while the decision curve shows that the model has favorable clinical benefits with good and robust predictive 
efficiency.
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Conclusion  We have developed a nomogram model for predicting secondary sepsis in TBI patients admitted 
to the ICU, which can provide useful predictive information for clinical decision-making.

Keywords  Traumatic brain injury, Sepsis, Intensive care unit, MICMIC database, Nomogram

Background
Traumatic brain injury (TBI) refers to impaired brain 
function or other brain pathological changes [1] caused 
by external forces, including concussion and traumatic 
brain hernia. At present, its incidence rate is the highest 
among all common nervous system diseases, and every 
year, 50 million to 60 million new TBI cases are reported 
worldwide, causing a huge public health burden [2]. In 
2016, the Third International Consensus Definitions for 
Sepsis and Septic Shock (Sepsis 3.0) defined sepsis as a 
physiologically, pathologically and biochemically abnor-
mal syndrome induced by infection, which is accompa-
nied by acute organ dysfunction [3]. In 2017, the number 
of sepsis patients was estimated to be 48.9 million, and 
the deaths of sepsis exceeded 11 million, accounting for 
19.7% of the annual death toll [4]. TBI patients in ICU 
need to receive more comprehensive treatment, including 
continuous intracranial pressure detection, decompres-
sive craniectomy, early enteral nutrition, auxiliary ven-
tilation, and fluid therapy to maintain arterial pressure 
and internal organ perfusion [5]. They are at a high risk 
of drug-resistant bacteria infection and secondary sep-
sis [6]. The high-risk factors for secondary sepsis among 
TBI patients in ICU are as follows: 1. hospital-acquired 
pneumonia (HAP) is the most common complication 
of long-term bed rest [7]; 2. because of long-term con-
sciousness disorder and neurological deficit, TBI patients 
in ICU require long-term nursing and various invasive 
operations, such as tracheotomy, mechanical assisted 
ventilation [8], emergency operation, nasogastric tube 
[9], urinary catheter and deep vein catheterization [10], 
all of which are all high-risk factors for infection; 3. sec-
ondary stress ulcer, early epilepsy, and deep vein throm-
bosis after TBI lead to disease progression and prolong 
hospitalization [11]. TBI patients admitted to ICU are in 
a state of consciousness disturbance for a long time and 
unable to feed back condition immediately. Therefore, 
the occurrence of infection and sepsis in these patients 
is usually insidious. As a result, it is usually delayed and 
challenging for clinicians to identify secondary sepsis in 
such patients.

Early identification of sepsis in TBI patients in the 
ICU is necessary. Clinical prediction models can pro-
vide effective information for clinicians to identify 
high-risk patients, make clinical decisions, and take 
countermeasures. However, there are few studies on 

the prediction of sepsis in TBI patients in the ICU. 
Hence, this study established a model for predicting 
the occurrence of sepsis in TBI patients in the ICU. The 
model has good prediction performance and can pro-
vide effective prediction information.

Methods
Data source
The data on patients diagnosed with TBI and admit-
ted to ICU were extracted from MIMIC-IV 2.0 database 
(https://​physi​onet.​org/​conte​nt/​mimic​iv/2.​0/), and the 
patients with intracranial injury in the database were 
identified based on ICD 9 and ICD 10 (ICD 10: S06; ICD 
9: 85). To improve the simplicity of the model, we chose 
variables that were readily available in the clinic. The col-
lected data include patient demographic data (gender, 
marital status, race, age), complications (acidosis, acute 
kidney injury, anemia, atrial fibrillation, depressive, dia-
betes, esophageal reflux, heart failure, hyperlipidemia, 
hypertension, thrombocytopenia, toxic encephalopa-
thy, urinary tract infection), drug treatment informa-
tion (dopamine, epinephrine, norepinephrine), operative 
procedure information (invasive ventilation, nasal gastric 
tube, urinary catheter), and laboratory indicators (lactate, 
basophils, eosinophils, lymphocytes, monocytes, neutro-
phils, anion gap, bicarbonate, calcium, creatinine, urea 
nitrogen, international normalized ratio, prothrombin 
time, activated partial thromboplastin time, hematocrit, 
hemoglobin, mean corpuscular hemoglobin, mean cor-
puscular hemoglobin concentration, mean corpuscular 
volume, platelets, red blood cell, red blood cell distribu-
tion width, white blood cells). For patients with multi-
ple admissions, the first hospitalization data were used. 
For data from multiple examinations, data from the first 
examination within 24 h of admission were used. To pre-
vent reverse causality, information on surgical proce-
dures and medications after a patient developed sepsis 
was considered invalid and was not included in the analy-
sis. Sepsis was diagnosed according to Sepsis 3.0 [3]. Sep-
sis events after 30 days of admission were not included in 
the analysis. Those cases that were not admitted to ICU 
or had sepsis before admission to ICU and whose data 
were missed were excluded. Informed consent of patients 
was not required for this study because the database was 
approved by the Institutional Review Committee of MIT 
and Beth Israel Deaconess Medical Center.

https://physionet.org/content/mimiciv/2.0/
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Statistical analysis
The ‘‘createDataPartition’’ function of the caret software 
package was used to group patients into the training and 
validation cohorts at a ratio of 7:3, so that the outcome 
events were randomly distributed in the two cohorts. In 
order to prevent over-fitting of the model, most of the 
data were used to train the model to ensure its accuracy, 
while a small part of the data were used for validation. 
Variables were described in the training dataset and vali-
dation dataset, respectively. Categorical variables were 
described as percentiles (%); continuous variables of non-
normal distribution were displayed as medians and quar-
tiles, and continuous variables of normal distribution 
were expressed as mean and standard deviation (mean 
(S.E.)). The chi-square test was used to compare the dif-
ferences between categorical variables, and the t-test or 
nonparametric test was used to compare the differences 
between two groups of continuous variables. In the train-
ing cohort, LASSO regression and stepwise Logistic 
regression based on AIC (Akaike Information Criterion) 
were used for feature selection. Statistically significant 
variables (P < 0.05) were identified as independent risk 
factors and were included in the final logistic regres-
sion model, and a corresponding nomogram was plot-
ted. The area under the ROC curve (AUC) was used to 
assess the prediction accuracy of the model; calibration 
curve was used to assess the consistency between the 
predicted value of the model and the actual value, and 
decision curve was used to analyze the clinical benefits 
of the model. Tableone software package was used for 
data description; glmnet software package was used for 
LASSO regression analysis; rms software package was 
used for plotting the nomogram and calibration curve, 
and pROC software package was used for plotting ROC 
curve. R 4.2.1 (https://​www.r-​proje​ct.​org) was used for all 
statistical analysis. A two-sided P value < 0.05 was consid-
ered statistically significant. This study was designed and 
analyzed with reference to the TRIPOD (Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis or Diagnosis) statement [12].

Results
Characteristics of the study cohort
A total of 5437 TBI patients were identified from 
the database. After those patients with missing data 
(N = 1681), not admitted to ICU (N = 2576), and diag-
nosed with sepsis before admission to ICU (N = 13) were 
excluded, 1167 patients (535 with secondary sepsis) were 
included in the study, including 817 (385 secondary sep-
sis) in the training cohort and 350 (150 with secondary 
sepsis) in the validation cohort. (Fig. 1) The study cohort 
was predominantly male (study cohort: 63.3%; training 

cohort: 64.1%; validation cohort: 61.4%). The median 
ages of the study cohort, training cohort, and validation 
cohort were 66, 65, and 66  years, respectively. Table  1 
summarizes the demographic and clinical data of the 
study cohort. The variables in the training cohort and 
validation cohort were comparable with no statistically 
significant difference (P < 0.05).

Results of feature selection
The feature selection was conducted by using LASSO 
regression and stepwise Logistic regression. Figure 2 and 
Table 2 show the results of LASSO regression screening 
variables, and the x-coordinate at the top of Fig. 2 indi-
cates the number of variables (dummy variables). The 
results showed that when λ was taken as the minimum 
value (0.02172893), 13 variables (Tables 2, 3) of 48 varia-
bles passed the screening and were included in the model 
(i.e., non-zero variables).

In order to ensure the simplicity of the model, these 13 
variables were further screened by using stepwise Logis-
tic regression based on AIC screening. The final results 
showed that AKI, anemia, invasive ventilation, GCS 

Fig. 1  Flowchart of the study

https://www.r-project.org
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Table 1  Characteristics description of patients

Overall Training set Validation set p

N 1167 817 350

Status = 1 (%) 535 (45.8) 385 (47.1) 150 (42.9) 0.202

Gender = Male (%) 739 (63.3) 524 (64.1) 215 (61.4) 0.416

Marital status (%) 0.239

 Divorced 54 (4.6) 31 (3.8) 23 (6.6)

 Married 409 (35.0) 288 (35.3) 121 (34.6)

 Other 223 (19.1) 163 (20.0) 60 (17.1)

 Single 319 (27.3) 225 (27.5) 94 (26.9)

 Window 162 (13.9) 110 (13.5) 52 (14.9)

Race (%) 0.069

 Asian 33 (2.8) 17 (2.1) 16 (4.6)

 Black 61 (5.2) 44 (5.4) 17 (4.9)

 Other 354 (30.3) 258 (31.6) 96 (27.4)

 White 719 (61.6) 498 (61.0) 221 (63.1)

 Acidosis = Yes (%) 194 (16.6) 131 (16.0) 63 (18.0) 0.459

 AKI = Yes (%) 273 (23.4) 190 (23.3) 83 (23.7) 0.925

 Anemia = Yes (%) 480 (41.1) 339 (41.5) 141 (40.3) 0.75

 Atrial fibrillation = Yes (%) 170 (14.6) 122 (14.9) 48 (13.7) 0.653

 Depressive = Yes (%) 210 (18.0) 145 (17.7) 65 (18.6) 0.801

 Diabetes = Yes (%) 281 (24.1) 200 (24.5) 81 (23.1) 0.678

 Esophageal reflux = Yes (%) 214 (18.3) 155 (19.0) 59 (16.9) 0.44

 Heart failure = Yes (%) 213 (18.3) 146 (17.9) 67 (19.1) 0.665

 Hyperlipidemia = Yes (%) 359 (30.8) 241 (29.5) 118 (33.7) 0.174

 Hypertension = Yes (%) 613 (52.5) 426 (52.1) 187 (53.4) 0.734

 Thrombocytopenia = Yes (%) 186 (15.9) 130 (15.9) 56 (16.0) 1

 Toxic encephalopathy = Yes (%) 135 (11.6) 89 (10.9) 46 (13.1) 0.317

 Urinary tract infection = Yes (%) 297 (25.4) 205 (25.1) 92 (26.3) 0.722

 Dopamine = Yes (%) 9 (0.8) 6 (0.7) 3 (0.9) 1

 Epinephrine = Yes (%) 13 (1.1) 10 (1.2) 3 (0.9) 0.808

 Norepinephrine = Yes (%) 70 (6.0) 51 (6.2) 19 (5.4) 0.688

 Invasive ventilation = Yes (%) 417 (35.7) 301 (36.8) 116 (33.1) 0.254

 NGT = Yes (%) 45 (3.9) 27 (3.3) 18 (5.1) 0.184

 Urinary catheter = Yes (%) 96 (8.2) 55 (6.7) 41 (11.7) 0.006

GCS score (%) 0.498

 13–15 692 (59.3) 490 (60.0) 202 (57.7)

 3–5 91 (7.8) 67 (8.2) 24 (6.9)

 6–8 147 (12.6) 103 (12.6) 44 (12.6)

 9–12 237 (20.3) 157 (19.2) 80 (22.9)

 Age (median [IQR]) 66.00 [49.00, 80.00] 65.00 [50.00, 80.00] 66.00 [47.25, 80.75] 0.732

 Lactate (mmol/L) (median [IQR]) 1.90 [1.40, 2.95] 2.00 [1.40, 3.00] 1.90 [1.40, 2.77] 0.296

 Basophils (%) (median [IQR]) 0.30 [0.20, 0.50] 0.30 [0.20, 0.50] 0.30 [0.20, 0.50] 0.216

 Eosinophils (%) (median [IQR]) 0.60 [0.10, 1.50] 0.60 [0.10, 1.70] 0.60 [0.20, 1.30] 0.615

 Lymphocytes (%) (median [IQR]) 12.20 [7.70, 19.70] 12.20 [7.60, 20.00] 12.45 [7.70, 18.40] 0.976

 Monocytes (%) (median [IQR]) 5.70 [4.05, 7.70] 5.70 [4.10, 7.60] 5.60 [4.03, 7.70] 0.857

 Neutrophils (%) (median [IQR]) 78.90 [69.70, 85.50] 78.60 [69.20, 85.60] 79.35 [70.73, 85.18] 0.917

 Anion gap (mEq/L) (median [IQR]) 16.00 [13.00, 18.00] 16.00 [13.00, 18.00] 15.00 [13.00, 18.00] 0.262

 Bicarbonate (mEq/L) (median [IQR]) 23.00 [21.00, 26.00] 23.00 [21.00, 26.00] 23.00 [21.00, 26.00] 0.722

 Calcium (mg/dL) (median [IQR]) 8.60 [8.10, 9.10] 8.60 [8.10, 9.10] 8.60 [8.20, 9.10] 0.606

 Creatinine (mg/dL) (median [IQR]) 0.90 [0.75, 1.20] 1.00 [0.80, 1.20] 0.90 [0.70, 1.10] 0.095
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score, lactic acid, and serum calcium levels were inde-
pendent predictors of secondary sepsis in TBI patients 
in the ICU. In addition, the results showed that patients 
with AKI, anemia, moderate and severe disturbance of 
consciousness (GCS score ≤ 12), and invasive ventilation 
had a higher risk of sepsis.

Construction and validation of nomogram
Based on the screened features, a logistic regression 
model was constructed, and a nomogram was plotted 
(Fig. 3). Total points can be obtained by adding the scores 
of each variable in the nomogram, and the probability 
corresponding to the total score of the nomogram in the 
predictor (‘‘Sepsis Risk’’) is the probability of secondary 
sepsis in the patient. ROC curve, calibration curve, and 
decision curve were plotted to verify the model. ROC 
curve analysis results show that the AUC was 0.756 and 
0.711 in the training cohort and the validation cohort 

(Fig.  4), respectively, indicating that the model had 
good discrimination ability. In the calibration curve, the 
y-coordinate indicates the actual incidence probability in 
the study cohort, and the x-coordinate indicates the esti-
mated probability of the model. As shown in Fig. 5, the 
estimated probability has a high coincidence with the 
actual values, suggesting good consistency. In the clini-
cal decision curve, the gray diagonal line indicates that 
all patients have received interventions; gray parallel line 
indicates that no patients have received intervention, and 
red (Fig. 6A) and blue curves (Fig. 6B) indicate the clini-
cal benefits of the nomogram in the training cohort and 
validation cohort respectively. As shown in Fig.  6, our 
model has considerable net benefits in both cohorts.

Discussion
The study subjects in this study were TBI patients admit-
ted to ICU. Based on these patients’ demographic infor-
mation, laboratory test indicators, and complications, 
a nomogram for predicting the risk of secondary sepsis 
in TBI patients was plotted. The results of feature selec-
tion showed that AKI, anemia, invasive ventilation, GCS 
score, lactic acid, and serum calcium level were impor-
tant predictors of secondary sepsis in TBI patients in the 
ICU. The AUC of the nomogram model based on the 
above variables is greater than 0.7 in both training valida-
tion cohorts, indicating favorable prediction accuracy.

Sepsis is a life-threatening organ dysfunction caused 
by disordered body responses to infection [3]. The sever-
ity of a patient’s condition can be assessed in a stand-
ardized manner by using the Sequential Organ Failure 
Assessment (SOFA), which can reveal the direct relation 
between sepsis and mortality [13, 14]. It is estimated that 

AKI acute kidney injure, INR international normalized ratio, PT prothrombin time, PTT activated partial thromboplastin time, MCH mean corpuscular hemoglobin, 
MCHC mean corpuscular hemoglobin concentration, MCV mean corpuscular volume, RBC red blood cell, RDW red blood cell distribution width, WBC white blood cells, 
GCS Glasgow coma scale, NGT nasal gastric tube

Table 1  (continued)

Overall Training set Validation set p

 Urea nitrogen (mg/dL) (median [IQR]) 17.00 [12.00, 23.00] 17.00 [13.00, 23.00] 16.00 [12.00, 22.00] 0.271

 INR (median [IQR]) 1.10 [1.00, 1.30] 1.10 [1.00, 1.30] 1.10 [1.00, 1.20] 0.324

 PT (s) (median [IQR]) 12.30 [11.40, 14.05] 12.40 [11.40, 14.20] 12.30 [11.40, 13.60] 0.24

 PTT (s) (median [IQR]) 27.60 [24.90, 31.30] 27.80 [25.00, 31.70] 27.20 [24.83, 30.67] 0.114

 Hematocrit (%) (median [IQR]) 38.00 [33.80, 41.70] 37.80 [33.40, 41.60] 38.40 [34.92, 42.00] 0.104

 Hemoglobin (g/dL) (median [IQR]) 12.70 [11.20, 14.00] 12.70 [11.10, 14.00] 12.90 [11.60, 14.00] 0.057

 MCH (pg) (median [IQR]) 30.80 [29.50, 32.20] 30.70 [29.40, 32.20] 30.85 [29.52, 32.10] 0.851

 MCHC (g/dL) (median [IQR]) 33.40 [32.40, 34.30] 33.40 [32.40, 34.30] 33.50 [32.50, 34.38] 0.464

 MCV (fL) (median [IQR]) 92.00 [88.00, 96.00] 92.00 [88.00, 96.00] 92.00 [89.00, 96.00] 0.76

 Platelets (K/µL) (median [IQR]) 211.00 [168.50, 267.00] 213.00 [169.00, 269.00] 208.00 [166.25, 254.75] 0.145

 RBC (m/µL) (median [IQR]) 4.13 [3.64, 4.56] 4.11 [3.60, 4.56] 4.18 [3.73, 4.53] 0.169

 RDW (%) (median [IQR]) 13.60 [12.90, 14.60] 13.60 [12.90, 14.60] 13.50 [12.90, 14.60] 0.409

 WBC (K/µL) (median [IQR]) 10.70 [7.80, 14.80] 10.80 [7.80, 15.00] 10.50 [7.73, 14.47] 0.318

Fig. 2  Lasso regression variable trajectories
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sepsis affects 19–48.9 million individuals and leads to 
over 20% global deaths as a main killer every year [4, 15, 
16]. Early identification and treatment of sepsis can sig-
nificantly reduce in-hospital mortality [17, 18]. In recent 
years, some prediction models for the risk of secondary 
sepsis in patients have been studied. Epic Sepsis model 
(ESM) is a sepsis early warning system widely used in the 
US. Andrew Wong et  al. [19] conducted external verifi-
cation based on a cohort of 27,697 people, but the final 
AUC was 0.63, showing poor discrimination and calibra-
tion ability. Their results suggested that more specific 
predictors, including onset time, should be included in 
such models. At present, various machine learning mod-
els for sepsis prediction have been constructed [20]. Dong 
Wang et al. developed a prediction model based on 4449 
infected patients in ICU by supervised learning method 

Table 2  The screening results of Lasso regression

Coefficients

(Intercept) 3.0307

Gender Female 0.0000

Male 0.0000

Marital status Divorced 0.0000

Married 0.0000

Other 0.2493

Single 0.0000

Window 0.0000

Race Asian 0.0000

Black 0.0000

Other 0.0000

White 0.0000

Acidosis No 0.0000

Yes 0.0000

AKI No − 0.1842

Yes 0.0000

Anemia No − 0.2749

Yes 0.0000

Atrial fibrillation No 0.0000

Yes 0.0000

Depressive No 0.0000

Yes 0.0000

Diabetes No 0.0000

Yes 0.0000

Esophageal reflux No 0.0000

Yes 0.0000

Heart failure No 0.0000

Yes 0.0000

Hyperlipidemia No 0.0000

Yes 0.0000

Hypertension No 0.0000

Yes 0.0000

Thrombocytopenia No 0.0000

Yes 0.0000

Toxic encephalopathy No − 0.0049

Yes 0.0000

Urinary tract infection No − 0.0411

Yes 0.0000

Dopamine No 0.0000

Yes 0.0000

Epinephrine No 0.0707

Yes 0.0000

Norepinephrine No 0.0000

Yes 0.0000

Invasive ventilation No -0.2918

Yes 0.0000

NGT No 0.0000

Yes 0.0000

Urinary catheter No 0.0000

Yes 0.0000

Table 2  (continued)

Coefficients

GCS 13–15 − 0.8031

3–5 0.5318

6–8 0.6161

9–12 0.0000

Age − 0.0008

Lactate 0.0455

Basophils − 0.0954

Eosinophils 0.0000

Lymphocytes 0.0000

Monocytes 0.0004

Neutrophils 0.0000

Anion gap 0.0000

Bicarbonate − 0.0262

Calcium − 0.2159

Creatinine 0.0000

Urea nitrogen 0.0000

INR 0.0000

PT 0.0000

PTT 0.0000

Hematocrit 0.0000

Hemoglobin 0.0000

MCH 0.0000

MCHC 0.0000

MCV 0.0000

Platelets 0.0000

RBC 0.0000

RDW 0.0000

WBC 0.0000
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to predict the occurrence of sepsis, and the AUC of this 
model can reach 0.91 [21]. Alireza Rafiei et al. developed 
a sepsis prediction model by using the convolution neural 
network, which included the onset time of sepsis, with an 
AUC of greater than 0.8 [22]. However, machine learn-
ing models have a ‘‘black box’’ effect, because it neither 
clearly shows the prediction process nor quantifies the 
prediction efficiency of each index. As such, clinicians 
do not trust these prediction results [23]. Many previous 
studies have utilized ICD code as sepsis diagnosis criteria 

[20], but this practice may produce unreliable results [24, 
25].

Therefore, we took a specific population (i.e., TBI 
patients) as subjects, whose onset risks were predicted 
specifically by using up-to-date international consensus 
as the diagnosis criteria in this study. Besides, we con-
structed a nomogram model based on stepwise Logis-
tic regression. As a visualized model, a nomogram can 
quantify the influence of each prediction variable on the 
results and offer practical explanations [26]. The nomo-
gram model is simple and applicable and facilitates better 
and more efficient clinical decisions.

Our results showed that AKI, anemia, invasive ventila-
tion, GCS score, lactic acid, and serum calcium level were 
significant predictors of secondary sepsis in TBI patients 
in the ICU. Furthermore, TBI patients with AKI have a 
higher risk of sepsis. For TBI patients, post-traumatic 
sympathetic nervous system activation, increased plasma 
catecholamine level, elevated systolic blood pressure, low 
blood volume, cytokine cascade reaction, and osmotic 
therapy of intracranial hypertension will bring a higher 
risk of kidney injury [27, 28]. The changes in intrathoracic 
pressure related to mechanical ventilation disrupt the 
systemic hemodynamics, resulting in biological damage 
such as decreased glomerular filtration rate, decreased 
creatinine clearance rate, and apoptosis of renal epithe-
lial cells [29]. AKI leads to metabolic dysfunction such as 
electrolyte disorder and acid–base disorder, thus impair-
ing neutrophil functions and weakening infection-elimi-
nating ability in patients [29]. Animal experiments have 
confirmed that the lung recruitment of neutrophils with 
renal insufficiency is significantly weakened compared 
with that of normal neutrophils [30]. The insufficiency 

Table 3  Multivariate regression model based on LASSO 
regression and stepwise logistic regression analysis results

1 CI confidence interval

Characteristic OR 95% CI1 p-value

AKI

 No – –

 Yes 1.09 1.01, 1.17 0.033

Anemia

 No – –

Yes 1.09 1.02, 1.17 0.008

Invasive ventilation

No – –

Yes 1.11 1.03, 1.19 0.003

GCS

 13–15 – –

 3–5 1.47 1.30, 1.65  < 0.001

 6–8 1.50 1.36, 1.65  < 0.001

 9–12 1.21 1.12, 1.32  < 0.001

 Lactate 1.02 1.01, 1.04 0.005

 Calcium 0.93 0.89, 0.96  < 0.001

Fig. 3  The predictive nomogram for the incidence of sepsis in patients with traumatic brain injury
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is associated with the change of surface expression of 
L-selectin, directly leading to higher bacterial loads and 
impaired pulmonary oxygenation function and thus dete-
riorating bacterial pneumonia.

The risk of acute lung injury and infection in TBI 
patients is increased due to post-traumatic autoimmune 
and lung immune damage, neurogenic pulmonary edema, 
and impaired lung protective mechanisms following dis-
turbance of consciousness [31]. Studies have shown that 
20–25% of TBI patients have respiratory failure, which 
is related to an increased oxygen demand or the ratio 
of arterial oxygen partial pressure to respiratory oxygen 

partial pressure (PaO2/FiO2 < 300) [26]. Ventilator-associ-
ated pneumonia (VAP) is one of the most common com-
plications in TBI patients, with an incidence rate ranging 
from 23 to 60%. Tracheal intubation, tracheotomy, and 
ventilation support will increase the incidence of VAP 
[32]. The use of antibiotics increases the likelihood of 
drug-resistant bacteria infection, thereby resulting in a 
higher risk of secondary sepsis in TBI patients.

Lactic acid is a commonly used biological marker for 
the diagnosis and prognosis of sepsis [33], and serves 
as a sign of tissue hypoxia. For sepsis patients with nor-
mal blood pressure, lactic acid of more than 4  mmol/L 
is independently associated with higher mortality. 
The patients who have moderate hyperlactacidemia 
(2–4  mmol/L and even high value (1.4–2.3  mmol/L) in 
the normal range) have a worse prognosis than those 
with normal lactic acid [34]. Acidic extracellular environ-
ment will reduce myocardial contractility, cardiac output, 
blood pressure, and tissue perfusion, thereby leading to 
arrhythmia and weakening cardiovascular response to 
catecholamine [35], while high-dose catecholamine will 
aggravate hyperlactacidemia by reducing tissue perfusion 
or over-stimulating β2-adrenergic receptor. Therefore, 
tissue perfusion should be restored in the early stage of 
hyperlactacidemia to prevent further progression of the 
disease.

Due to fluid dilution caused by intravenous fluid 
resuscitation and traumatic bleeding (preoperative and 
perioperative periods), anemia is very common in TBI 
patients, especially in moderate and severe TBI patients 
[36]. It also aggravates tissue hypoxia and is more likely 
to lead to acute bacterial infection, especially Gram-pos-
itive bacterial infection [37]. Higher blood oxygen satura-
tion and hemoglobin level and lower lactic acid level can 

Fig. 4  The results of ROC curve analysis in the training set 
and the validation set

Fig. 5  A The results of the calibration curve analysis in the training set; B The results of the calibration curve analysis in the validation set
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significantly reduce the risk of death in patients with sep-
sis or septic shock [17].

Moreover, our results show that consciousness distur-
bance is one of the risk factors for sepsis, which is consist-
ent with our hypothesis. TBI patients face an increased 
risk of HAP due to changes in mental state, dysphagia, 
vomiting, cough reflex, and secretion clearance disor-
der [31]. Lower GCS scores are also associated with the 
incidence of VAP in TBI patients [32, 38], which may be 
related to the fact that patients with moderate and severe 
TBI require open surgery, and respiratory support, and 
are susceptible to urinary tract infection. A single-center 
prospective cohort study including 900 patients found 
that lower GCS scores and higher APACHE (Acute Phys-
iology and Chronic Health Evaluation) II scores are inde-
pendent risk factors for secondary sepsis in TBI patients 
after operation [39].

Furthermore, the blood calcium level is included in 
many machine learning models for sepsis prediction 
[20]. Critical diseases themselves are correlated with 
decreased serum total calcium and ionic calcium lev-
els, and hypocalcemia also worsens with the increase in 
infection severity [40], which may be due to the increased 
sensitivity of parathyroid cells to blood calcium con-
centration [41]. This indicates the role of blood calcium 
levels in predicting the risk of sepsis among infected 
patients.

With an AUC of greater than 0.7, our prediction model 
demonstrated favorable prediction efficiency and filled 
the gap in tools for predicting sepsis in TBI patients 

admitted to the ICU. Our prediction model enables cli-
nicians to identify the risk of secondary sepsis in TBI 
patients at an early stage and develop targeted treatment 
plans according to risk factors, thus reducing the inci-
dence of sepsis and improving the prognosis of patients.

However, this study has several limitations. First of all, 
our model has not been verified in an external cohort, 
and we will carry out further research in the future. Sec-
ondly, due to the limited types of variables in the public 
database, some variables of interest, such as cerebrospi-
nal fluid examination and brain imaging data, were not 
included in the study.

Conclusion
AKI, anemia, invasive ventilation, GCS score, lactic 
acid, and serum calcium levels are significant predic-
tors. We have developed a nomogram model for predict-
ing secondary sepsis in TBI patients admitted to ICU. 
The model has a favorable prediction performance and 
can provide useful predictive information for clinical 
decision-making.
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