
Liu et al. 
European Journal of Medical Research          (2023) 28:341  
https://doi.org/10.1186/s40001-023-01277-2

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

European Journal
of Medical Research

Development and validation of a kidney 
renal clear cell carcinoma prognostic model 
relying on pyroptosis‑related LncRNAs‑A 
multidimensional comprehensive 
bioinformatics exploration
Chang Liu1†, Shuxin Dai1†, Hao Geng1†, Zhiwei Jiang1, Xiangyu Teng1, Kun Liu1, Zhouting Tuo1, Longfei Peng1, 
Chao Yang1* and Liangkuan Bi1,2* 

Abstract 

Background  Renal cell carcinoma (RCC) is a malignant tumour that may develop in the kidney. RCC is one 
of the most common kinds of tumours of this sort, and its most common pathological subtype is kidney renal clear 
cell carcinoma (KIRC). However, the aetiology and pathogenesis of RCC still need to be clarified. Exploring the internal 
mechanism of RCC contributes to diagnosing and treating this disease. Pyroptosis is a critical process related to cell 
death. Recent research has shown that pyroptosis is a critical factor in the initiation and progression of tumour forma-
tion. Thus far, researchers have progressively uncovered evidence of the regulatory influence that long noncoding 
RNAs (lncRNAs) have on pyroptosis.

Methods  In this work, a comprehensive bioinformatics approach was used to produce a predictive model according 
to pyroptosis-interrelated lncRNAs for the purpose of predicting the overall survival and molecular immune specialties 
of patients diagnosed with KIRC. This model was verified from multiple perspectives.

Results  First, we discovered pyroptosis-associated lncRNAs in KIRC patients using the TCGA database and a San-
key diagram. Then, we developed and validated a KIRC patient risk model based on pyroptosis-related lncRNAs. We 
demonstrated the grouping power of PLnRM through PCA and used PLnRM to assess the tumour immune microen-
vironment and response to immunotherapy. Immunological and molecular traits of diverse PLnRM subgroups were 
evaluated, as were clinical KIRC patient characteristics and predictive risk models. On this basis, a predictive nomo-
gram was developed and analyzed, and novel PLnRM candidate compounds were identified. Finally, we investigated 
possible medications used by KIRC patients.

Conclusions  The results demonstrate that the model generated has significant value for KIRC in clinical practice.
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Background
There are approximately 210,000 new instances of renal 
cell carcinoma (RCC) diagnosed each year worldwide, 
accounting for between 2 and 3% of all tumour cases. 
The most prevalent kind of RCC is kidney renal clear cell 
carcinoma, which it accounts for approximately 85% of 
all RCC cases. Individuals diagnosed with KIRC almost 
always have poor prognosis, affecting both their health 
and life [1]. Patients with early-stage kidney cancer can 
be treated effectively with surgery. Nonetheless, after 
major surgery, approximately 30% of patients experience 
recurrence or metastasis, with poor prognosis for over-
all survival (OS) [2]. Typically, metastatic KIRC, a more 
advanced form of kidney cancer, is not entirely curable 
and has a short median survival. In recent years, immune 
checkpoint inhibitors, a new type of tumour therapy, 
have benefited some kidney cancer patients, especially 
PD-L1 and PD-1 inhibitors [3]. In reality, immunotherapy 
has a poor overall response rate of approximately 33%, 
and a significant minority of kidney cancer patients do 
not respond to this treatment [4, 5]. One explanation for 
the ineffectiveness of therapy, as shown by several study 
findings, is that some kidney cancer patients have limited 
sensitivity to immunosuppressive drugs; another cause is 
drug resistance and not the tumour per se. Consequently, 
to increase the chances of survival among patients with 
kidney cancer, it is crucial to investigate the molecular 
mechanisms responsible for the onset and development 
(as referred to as O and D) of this disease.

A growing number of studies have shed light in 
recent years on the impact of pyroptosis on the O and 
D of malignancies. According to conventional wisdom, 
pyroptosis describes the cell necrosis caused by certain 
bacterial invasions carried out by the proteinase cas-
pase-1, which is specific for the amino acid cysteinyl 
aspartate. After the identification of inflammatory 
compounds in 2002 and discovery of nonclassical 
inflammasomes in 2011, pyroptosis has been regarded 
as a mechanism related to cell death and inflamma-
tory bodies [6–8]. It has never been thought that cas-
pase cleavage causes pyroptosis. Nevertheless, some 
research shows that the ability to cause pyroptosis may 
be achieved by expression of the N-terminal domain 
of Gasdermin D (GSDMD) or another Gasdermin [9–
12]. In addition, activation of caspase is not necessary 
for pyroptosis. For instance, granzyme A and B act as 
upstream molecules of GSDMB and GSDME to cleave 
them, which is irrelevant to the action of caspase [13, 

14]. Currently, pyroptosis has been redefined as apop-
tosis mediated by GSDM proteins. Pore-forming effec-
tor proteins comprise the GSDM family. For pyroptosis 
to occur, these proteins must first be cleaved and then 
have the capacity to create holes in the cell membrane 
[9, 15, 16].

An RNA that is 200 bp in length or more is referred 
to as long noncoding RNA (lncRNA). While lncRNAs 
are abundant in the cytoplasm and nucleus, they do not 
encode proteins [17]. The process of gene expression 
involves "noise", which has previously been thought 
to be lncRNAs [18]. The reality that synthesis of lncR-
NAs is comparable to that of coding genes was shown 
by DERRIEN et al. [19]. Splicing patterns, exon/intron 
organization, and histone modifications have all been 
discovered to be similar. Coding genes produce lncR-
NAs [20]. Presently, research suggests that lncRNAs 
play a critical role in the O and D stages of kidney can-
cer. OSRC-2 kidney cancer cells were found to overex-
press the oncogene BCL-W protein, and WANG [21] 
discovered that the more aggressive the cancer cells 
were, the more lncRNA-RP11-436H11.5 was overex-
pressed. After we treated these cells with the inhibitor 
ATB-737, the tumour cells became less aggressive, and 
the inhibitory effect became more distinct when the 
concentration of ATB-737 was increased. The content 
of the lncRNA GIHCG was clearly greater in 46 RCC 
patient tissue and plasma samples than in normal tis-
sues (P < 0.01), according to an analytical investigation 
by HE et  al. [22].In addition, there is increasing evi-
dence for the pre-target value of lncrnas in aging and 
aging-related diseases [23].

LncRNAs regulate proteins related to pyroptosis 
signalling through downstream pathways. MALA T1 
may considerably raise NLRP3 levels by upregulating 
production of ELA VL1 proteins, which would further 
cause pyroptosis to develop in renal cells and dam-
age in diabetic nephropathy model mice. Patients with 
uric acid kidney disease have increased expression of 
ANRIL, an opposing lncRNA at the INK4 locus. One 
study found that ANRIL might activate BRCC3, lead-
ing to production of NLRP3 and IL-1β/18, which is 
linked to renal disorders [24, 25]. Yi et  al. shed fur-
ther light on the processes involved in the elevation of 
NLRP3 expression triggered by lncRNA Gm4419 and 
subsequent release of IL-1β. Their research showed 
that in mouse mesangial cells cultivated with high glu-
cose, NF-κB (p50) acts as a promoter of the NLRP3 
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inflammasome [26]. LncRNAs might be considered 
possible biomarkers of kidney diseases because they 
often have a favourable correlation with pyroptosis in 
kidney diseases.

The prognosis of KIRC was examined in this work using 
bioinformatics tools to assess the impact of pyroptosis-
related lncRNAs. In addition, the application potential of 
a constructed prognostic model in tumour immunity and 
drug response was explored. Moreover, the accuracy of 
this model was verified in a separate cohort.

Materials and methods
Raw data
We used API v3.0.0 to download KIRC patient TCGA 
database mutation information, corresponding clini-
cal data, and transcriptome RNA-seq data available at 
https://​portal.​gdc.​cancer.​gov (Release date: October 29, 
2021). We used expression profile information from 91 
RCC samples in the ICGC database (https://​dcc.​icgc.​
org/) as our validation cohort.

pyroptosis‑related prognostic LncRNA identification
According to Additional file 1: Table S1, 52 genes relevant 
to pyroptosis were gathered from earlier research and 
papers. Using a screening process based on gene annota-
tion, 2876 lncRNAs were ultimately found in the TCGA 
cohort. The association study between 52 genes and 
lncRNAs associated with pyroptosis was conducted using 
the Pearson correlation coefficient. We identified lncR-
NAs associated with pyroptosis based on their absolute 
correlation coefficient (> 0.4) and P-value (< 0.001). As a 
consequence, 576 lncRNAs associated with pyroptosis 
were examined. After that, we performed univariate Cox 
regression analysis for OS, choosing lncRNAs with and 
without value in the process. P-values < 0.05 were used 
to determine whether lncRNAs are related to prognosis. 
Overall, 295 lncRNAs of prognostic relevance were found 
to be linked to pyroptosis.

Construction and evaluation of the prognostic model
The training set served as the basis for construction of 
the prognostic model, and the test set and the whole 
TCGA set were used to evaluate the model’s prediction 
performance. The training set was analyzed using mul-
tivariate Cox regression, revealing six pyroptosis-related 
lncRNAs. The model, named "PLnRM", uses the follow-
ing formula to calculate the risk score: risk score = coef 
(lncRNA1) × expr (lncRNA1) + coef (lncRNA2) × expr 
(lncRNA2) + …… + coef (lncRNAn) × expr (lncRNAn). In 
this equation, "coef" represents coefficients. Specifically, 
"coef (lncRNAn)" refers to the survival-related coefficient 
of lncRNAs, and "expr (lncRNAn)" refers to expression of 
lncRNAs.

Functional analysis
To verify differentially expressed genes (DEGs), we car-
ried out Gene Ontology (GO) analysis using R-pack 
cluster profilers. Since P < 0.05 shows that functional 
annotations are enriched, this threshold is defined by the 
p-value.

Analysis of the model for immunotherapeutic therapy
We evaluated and calculated abrupt change data using 
maftools of the R package, and we estimated the tumour 
mutation burden (TMB) by tumour-specific mutation 
genes. In addition, we used tumour immune dysfunction 
and exclusion (TIDE) computation to estimate immuno-
therapy response probability [27].

PCA with Kaplan‒Meier survival analysis
Six pyrogenic lncRNAs, as well as genes and lncRNAs 
associated with pyroptosis, were studied by examining 
expression patterns [28]. In addition, differences in OS 
between the two models were assessed using Kaplan‒
Meier survival analysis.

Investigation of possible PLnRM‑targeting compounds 
for therapeutic use
Using the GDSC website, we were able to identify the 
semimaximum inhibitory concentration (IC50) of medi-
cations to locate therapeutic chemicals for KIRC patients 
and enhance clinical effectiveness. To calculate the IC50 
for KIRC patients, we employed a pRophetic formula 
found in the R package.

PLnRM independence
Cox regression models, including single- and multiple-
variable models, were utilized to show that individuals 
with KIRC do not have a prognostic pattern that is dis-
tinct from or unrelated to other clinical characteristics 
[29].

Establishing and verifying the predictive nomogram
We created a graph throughout the procedure to predict 
OS at 1, 3, and 5 years for KIRC patients to improve prac-
ticability and make the findings clear. We use the Hos-
mer‒Lemeshow test to demonstrate the consistency of 
the corrective curve.

Molecular and immune characteristics and ICI therapy 
in PLnRM risk groups
During signalling pathway analysis, we first analyzed 
differential expression of gene samples with R’s limma 
package to assess samples with high (n = 285) and low 
(n = 245) PLnRM scores. Enrichment analysis was con-
ducted to identify signalling pathways in which differ-
entially expressed genes are involved using the gene set 

https://portal.gdc.cancer.gov
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enrichment analysis (GSEA) approach. The KEGG and 
HALLMARK gene sets were used, along with the cluster 
profile package of R. A significance threshold of P < 0.05 
and FDR < 0.25 was applied. For a few common gene 
sets, we next conducted single-sample GSEA (ssGSEA). 
Differences in patient survival were then explored using 
Kaplan‒Meier survival curves. The cBioPortal database 
provides information on gene changes for gene mutation 
research. Using the R package Maftools, we examined 
the quantity and quality of mutations in two PLnRM risk 
groups. Correlation analysis was performed on expres-
sion of PD1, PDL1, CTLA4, BTLA, and CD24 between 
the two PLnRM risk groups. We imported expression 
data from 530 KIRC samples into CIBERSORT (https://​
ciber​sort.​stanf​ord.​edu/). After 1000 iterations, we esti-
mated the relative percentage of 22 categories of immune 
cells to identify their immunological features. Addition-
ally, the matching proportions of 22 different kinds of 
immune cells as well as clinicopathological variables were 
compared between the two PLnRM risk groups, and the 
findings are shown in a landscape map. ssGSEA was con-
ducted on specific gene signatures to better elucidate the 
immunological and molecular functions between the two 
PLnRM risk groups, and the resulting scores were also 
compared [30–33].

Results
Discovery of pyroptosis‑associated LncRNAs in KIRC 
patients
Figure  1 illustrates the precise procedure for build-
ing the risk model and subsequent analyses. The TCGA 
database was used to derive matrix expression of 52 
pyroptosis genes and 2,876 lncRNAs. We classified 
pyroptosis-related lncRNAs as those strongly linked to at 
least one of the 52 pyroptosis genes (|Pearson R|> 0.4 and 
P < 0.001). The pyroptosis-lncRNA coexpression network 
is depicted using a Sankey diagram (Fig. 2A). The results 
revealed 576 lncRNAs to be associated with pyropto-
sis. Figure  2B shows the relationship between pyropto-
sis genes and pyroptosis-related lncRNAs in the whole 
TCGA dataset.

KIRC patient risk model development and validation based 
on pyroptosis‑related LncRNAs
We conducted univariate Cox regression analysis on 2876 
pyroptosis-related lncRNAs in the KIRC dataset included 
in the TCGA database to identify prognostic lncRNAs. 
The TCGA database contains 295 pyroptosis-related 
lncRNAs with a strong correlation with the OS of KIRC 
patients (Fig. 3A). Multiple regression analysis often uses 
LASSO-penalized Cox analysis. It may concurrently per-
form selection and regularization of variables in addi-
tion to improving the statistical model’s capacity for and 

accuracy at making predictions. This technique has been 
used widely to choose the best features in data in high 
dimensions with little connection and a strong projected 
value to prevent overfitting. As a result, this technique 
can efficiently identify the best predictive markers and 
provide a prognostic indicator to predict clinical out-
comes. The value of log l that ranks first is shown on the 
dashed perpendicular line with the least bias in segment 
probability. Hence, Fig. 3B and C shows that 10 lncRNAs 
associated with pyroptosis were chosen for further mul-
tivariate analysis. Based on this, autocephalous prognos-
tic proteins were identified using multivariate Cox ratio 
hazard regression analysis. To create a risk model for 
assessing the prognosis of KIRC patients, we utilized 6 
pyroptosis-related lncRNAs (listed in Additional file  2: 
Table S2) that were independently associated with OS in 
the training set (as shown in Additional file 3: Table S3).

We conducted Kaplan‒Meier survival analysis on 
KIRC samples, dividing them into low-risk and high-risk 
groups using median prognostic risk scores. Figure 3D–F 
displays the survival status of patients in both groups 
across the full TCGA set, training set, and test set. The 
results showed a significant (P < 0.001) difference in out-
comes between the high-risk and low-risk groups. Fig-
ure  4 A1 and 4A2 displays the patient survival status, 
survival time, and risk level distribution for both groups. 
The six lncRNAs associated with pyroptosis and their rel-
ative expression standards in each patient are shown in 
Fig. 4A3.

We used the same formula to calculate each patient’s 
risk score in both the training and test sets. This allowed 
us to assess how effective our model is at predicting 
prognosis. Figures 4B, C depict expression of pyroptosis-
related lncRNAs in the training set (Fig. 4B1–B3) and test 
set (Fig. 4 C1–C3). Additionally, they illustrate the distri-
bution of risk grades, survival status patterns, and sur-
vival times (Fig. 4C1–C3).

To confirm the precision and applicability of the model, 
we verified expression profile data for 91 RCCs in the 
ICGC database. The results demonstrate the model’s con-
tinued effectiveness in predicting survival time, particu-
larly long-term survival (Fig. 5).

We compared differences in OS between low- and 
high-risk groups across the entire TCGA dataset, strati-
fying by common clinicopathologic characteristics. The 
low-risk group’s OS remained superior to that of the 
high-risk group across subgroups categorized by age, sex, 
stage, and grade (see Additional file 4: Figure S1).

Validation of the PLnRM grouping capability through PCA
Comprehensive gene expression profiles, 52 pyroptosis 
genes, lncRNAs related to pyroptosis, and a risk model sep-
arated by lncRNA expression profiles all contributed to this 

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
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Fig. 1  Comprehensive research workflow
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model, which was then subjected to principal component 
analysis (PCA) to validate the distinction between low-risk 
and high-risk groups (Fig. 6A–D). As shown in Fig. 6A–C, 
there was absolutely no uniformity in the distribution of 
the high-risk and low-risk groups. Nonetheless, the find-
ings from this model showed that the two groups’ distribu-
tions were significantly different (Fig. 6D). Based on these 
findings, it seems that there is a difference in the prognostic 
signature between the two groups.

PLnRM to assess the tumour immune microenvironment 
and response to immunotherapy
PLnRM was utilized to analyze the enrichment and activ-
ity levels of various immune cells, pathways, and activi-
ties in 530 KIRC patients. The findings showed that most 
immunological indicator expression levels between the two 
groups were significantly different (Fig. 7B). A GO enrich-
ment study was performed to explore the putative molec-
ular mechanisms related to PLnRM. Regarding BP, the 
model genes are related to a variety of biological functions 
relevant to the immune system (Fig. 7A). The relationship 
between PLnRM and the effectiveness of immunotherapy 
was, therefore, investigated. PLnRM can predict TIDE by 
indicating that the high-risk group will be more responsive 
to immunotherapies than the low-risk group, as hypothe-
sized (Fig. 7H). In addition, maftools of the R package were 
used to investigate and assemble the data associated with 
mutations, and the consequences of mutation were used 
for stratification. Figure 7C and D displays the top 20 driver 
genes that show the greatest frequency change across all 
categories. TMB scores were then computed on the basis 
of the TGCA somatic mutation data. The findings indicate 
no significant difference in tumour mutation between the 
high-risk and low-risk groups, as shown in Fig. 7E. Kaplan‒
Meier survival analysis of TMB was conducted using 
tumour tissues. The results (Fig. 7F) indicated that the low-
mutation group had a higher chance of surviving than the 
high-mutation group. Furthermore, it was found that the 
prognosis for those in the high-mutation and high-risk 
groups was worse than that for those in the low-mutation 
and low-risk groups. Even when there were two groups 
with either a high or low mutation risk (Fig. 7G), individu-
als in the high-risk group still had a poorer prognosis than 
those in the low-risk group. This risk model seems to be 
reliable and stable based on these findings and our earlier 
findings.

Immunological and molecular traits of diverse PLnRM 
subgroups
The Wilcoxon test was used to examine the immune 
cell distribution in various PLnRM subgroups with the 
intention of examining the immune cell composition in 
various PLnRM subgroups. According to the results, 
the group with PLnRM-high risk had a higher preva-
lence of regulatory T cells (Tregs), activated memory 
CD4 T cells, CD8 T cells, memory B cells (MBCs), 
and macrophages (M0). Resting dendritic cells, mac-
rophages (M2), resting NK cells, gamma delta (γδ) T 
cells, T follicular helper (Tfh) cells, resting memory 
CD4 T cells, plasma cells, naïve B cells, and activated 
dendritic cells were more prevalent in the PLnRM-low 
risk group, as shown in Fig.  8A, B. Figure  8C displays 
traits connected to the immunological landscape.

The gene sets enriched in various PLnRM subgroups 
were determined using GSEA. The P53 signalling path-
way, ribosome, cytokine receptor interaction, systemic 
lupus erythematosus, and taste transduction pathways 
were enriched in the gene sets for samples with signifi-
cant levels of PLnRM (Fig. 8D). However, according to 
Fig. 8E, the PLnRM-low samples showed gene sets that 
were enriched in pathways related to tumour metas-
tasis (P < 0.05, FDR < 0.25). To further investigate how 
the two groups’ responses to immunotherapy differed, 
variations in immune checkpoint expression and cor-
relation were evaluated. As shown in Fig. 8F–J, CD47, 
B- and T-lymphocyte attenuator (BTLA), cytotoxic T 
lymphocyte-associated antigen (CTLA), PD ligand 1 
(PD-L1), and programmed cell death (PD-1) were all 
higher in the high-risk group.

Clinical KIRC patient features and evaluation 
of the predictive risk model
This investigation utilized univariate and multivari-
ate Cox regression analyses to determine whether the 
risk model incorporates independent prognostic fac-
tors for KIRC. Multivariate Cox regression analysis 
showed a hazard ratio (HR) of 1.067 and a 95% confi-
dence interval (CI) of 1.050–1.085, with a significance 
level of P < 0.001 (Fig. 9A). In univariate Cox regression 
analysis, the odds ratios (HRs) were found to be 1.034, 
with a corresponding CI of 1.014–1.054, and signifi-
cant results at P < 0.001 (Fig. 9B). The findings support 
the notion that the risk model can predict progno-
sis regardless of other clinical variables. We evaluated 

Fig. 2  Discovery of lncRNAs associated with pyroptosis in KIRC patients. A Fifty-two pyroptosis genes and lncRNAs are represented by a Sankey 
diagram. B Heatmap depicting the relationship between 52 pyroptosis genes and 6 prognostic pyroptosis-associated lncRNAs

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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the distinctiveness and sensitivity of risk scores in 
predicting KIRC patient outcomes using the concord-
ance index and area under the receiver operating char-
acteristic (ROC) curve (AUC), as shown in Fig. 9D, E. 
Longer follow-up periods resulted in a greater concord-
ance index of risk ratings, which ultimately trumped 
other clinical criteria and increased risk severity. Thus, 
the prognosis of KIRC patients may be accurately pre-
dicted using this model’s risk score (Fig.  9C). Moreo-
ver, the AUC representing the risk level rose to a point 
where it exceeded that of the vast majority of other 
clinicopathological characteristics. Our results tended 
to support the idea that PLnRM is a viable option for 
incorporation into the predictive risk model that is cur-
rently being used for KIRC patients (Fig. 9C).

Development and analysis of the predictive nomogram
The 1-, 2-, and 3-year OS of KIRC patients can be pre-
dicted using a nomogram that takes into account both 
risk levels and clinical risk factors. The nomogram 

revealed that the prediction model’s risk level has high 
predictive power when compared with clinical parame-
ters (Fig. 10A). The 1-, 2-, and 3-year OS observation and 
prediction rates were all shown to be in good agreement 
by means of appropriate diagrams (Fig. 10B).

Identification of novel PLnRM candidate compounds
We used the prediction approach to evaluate treatment 
response for KIRC patients by analyzing the IC50 of 
each sample in Genomics of Drug Sensitivity in Cancer 
(GDSC). Our goal was to identify potential medications 
for PLnRM. There were 110 discovered compounds in all, 
and the predicted IC50 values between the two groups 
varied significantly. Partially sensitive chemicals are 
shown in Additional file 5: Figure S2.

Investigation of possible medicines for patients with KIRC
Several possible therapeutic medications for KIRC were 
evaluated using the connection map (CMAP) database to 
elucidate a new therapy plan for the disease. The top 10 

Fig. 3  The risk model for KIRC patients based on pyroptosis-related lncRNAs. A The identified lncRNAs have a substantial correlation with clinical 
prognosis, as indicated by univariate Cox regression analysis. B The LASSO coefficient profile of ten OS-related lncRNAs and imaginary perpendicular 
lines were drawn at the value determined by tenfold cross-validation. C Tuning parameters (logλ) of OS-related proteins were selected for error 
curve cross-validation. At the ideal value, perpendicular fictitious lines were drawn in accordance with the minimum criteria and 1-se criterion. D–F 
OS Kaplan‒Meier survival curves for high- and low-risk patient populations (the entire TCGA, training, and test sets)
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closely related molecules of medications were chosen to 
depict the three-dimensional structure (Additional file 6: 
Figure S3).

Discussion
The third most common tumour in the urinary system by 
incidence, RCC, is a kind of cancer that develops from the 
epithelium that lines the renal tubules, and its prevalence 
is growing [34]. Although surgical resection is the most 
effective treatment for RCC, many patients receive their 

diagnosis in the middle or late stage. Furthermore, these 
tumours are unresponsive to chemotherapies, immuno-
therapies, and radiotherapies. Targeted treatments may 
also lead to temporary drug resistance. RCC patients 
often have poor prognosis as a result [35, 36]. RCC is 
influenced by a number of different variables that may 
impact its onset and progression, as well as by a num-
ber of different genes. Another significant contributor 
to RCC is abnormal alterations in the network that con-
trols gene expression [37]. Control of gene expression is 

Fig. 4  Assessment of the predictive value of PLnRM risk patterns in the TCGA dataset. A1 Distribution of PLnRM-based risk scores. A2 Both groups 
exhibit distinct survival status and duration patterns. A3 The heatmap resulting from clustering analysis displays expression levels of PLnRM in each 
patient. B–C Relevant findings from both the training and test sets

Fig. 5  Independent cohort validation. A OS Kaplan‒Meier curves for high-risk and low-risk patient groups. B Model-based risk score distribution 
for m6A-related lncRNAs in the validation set. C ROC curves for clinical characteristics (3 and 5 years)
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influenced by various factors, including the level of genes 
and their regulation at different stages, such as transcrip-
tion, translation, and protein degradation. Understanding 
lncRNA roles and identification allows for new perspec-
tives on how gene expression is regulated.

Pyroptosis is a type of cell death that involves rapid 
rupture of cell membranes, resulting in release of cellular 
contents and proinflammatory substances such as inter-
leukin (IL), IL-1β, and IL-18. This process is character-
ized by cell swelling and the formation of large bubbles in 
the cytoplasm [38, 39]. The consequences of pyroptosis 
on several inflammation-related disorders, such as heart 
disease, sepsis, diabetes, nephropathy, and atherosclero-
sis, are mostly due to release of these distinctive inflam-
matory factors [40–42].

In recent years, there have been many breakthroughs 
in understanding the mechanisms, molecules, and path-
ways related to pyroptosis. Pyroptosis has been shown 

to be related to the incidence, growth, prognosis, and 
treatment of a number of cancers [43, 44]. In addi-
tion, pyroptosis has been verified to participate in chi-
meric antigen receptor T-cell immunotherapy (CAR-T 
therapy), cytokine release syndrome (CRS), and chemo-
therapy [45–47]. In macrophages, certain factors induce 
the release of DNA to trigger the cGAS-STING induced 
IFN response, thereby regulating pyroptosis and inflam-
mation, which provides further evidence for the regula-
tion of pyroptosis [48–50]. Exploring the mechanism of 
pyroptosis and its correlation with tumours from a com-
prehensive perspective is conducive to broadening our 
understanding of tumours, which might indicate a new 
direction for cancer therapy.

The process of pyroptosis may be directly regulated by 
lncRNAs, as previously indicated, in addition to having 
an indirect effect. LncRNAs have been shown to directly 
control pyroptosis, according to recent studies. For 

Fig. 6  We conducted principal component analysis on four different datasets: A entire gene expression profiles, B 52 pyroptosis genes, C 576 
lncRNAs associated with pyroptosis, and D a risk model using six pyroptosis-related long noncoding RNAs from the entire TCGA dataset
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Fig. 7  Estimation of the tumour immune microenvironment and immunotherapy response using PLnRM for the full TCGA dataset. A GO 
enrichment analysis. B The specified requirements for each patient’s immunity index. C, D The waterfall plot shows gene mutation data for high-risk 
and low-risk groups, specifically highlighting genes with high mutation rates. E TMB was different between the patients in the two groups. F–G 
Patient mutation status (high or low) and their PLnRM were taken into account for the Kaplan‒Meier analysis of their OS. H Differences in TIDE 
prediction for patients between the two groups

Fig. 8  Molecular and immune features of several PLnRM subgroups. A A bar graph depicting the relative proportion of 21 immune cells 
infiltrating tumours in the high-risk and low-risk groups. B The violin plot illustrates the disparity in the proportions of each type of immune cell 
in the two risk groups. C Qualities associated with the immune system. D and E Gene set enrichment analysis using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) for the low-risk group and high-risk group. F–J The two groups differ in expression and associations of common 
immunological checkpoints

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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example, it was found that the lncRNA Neat1 stabilizes 
mature caspase-1 tetramers (p20: p10)2 and (p33: p10)2 
in mouse bone marrow-derived macrophages (BMEMs) 
treated with flagellin and poly(I:C) after induction with 
LPS. This study found that lncRNA directly binds to 

pro-caspase-1, promoting assembly of NLRP3 and AIM2 
inflammasomes. Additionally, it was discovered that 
lncRNAs play a regulatory role in the pyroptosis signal-
ling pathway affecting the inflammasome. Hence, a KIRC 

Fig. 9  Evaluation of the clinical characteristics of KIRC as well as the prognostic risk model using the whole TCGA dataset. A–B Assessments 
of the clinical features and risk scores linked with OS using both univariate and multivariate methods. C Concordance indicators for the risk score 
and clinical features. D–E ROC curves of various clinical parameters and risk scores

Fig. 10  A predictive nomogram was constructed and evaluated. A The nomogram predicts the probability of 1-, 2-, and 3-year overall survival. B 
The nomogram calibration plot was created using the OS probabilities for 1, 2, and 3 years
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predictive model produced using lncRNAs associated 
with pyroptosis would be valuable.

In this work, we built an independent prognostic model 
based on lncRNAs associated with pyroptosis in KIRC, 
considering the functions of both, and whether there are 
any medications that may be useful for treating KIRC is 
thus being explored. It is possible to investigate the prog-
nostic role of pyroptosis-related lncRNAs using the 576 
pyroptosis-related lncRNAs in the TCGA database. The 
TCGA database findings show that 10 pyroptosis-related 
lncRNAs have predictive significance and that a model 
including these lncRNAs may be useful to predict the 
overall survival rate in KIRC patients after utilizing these 
6 lncRNAs. The median prognostic risk score was used 
to classify KIRC patients as having high or low risk. The 
high-risk group had poorer prognosis, as indicated by 
outcomes. Multivariate Cox regression analysis revealed 
that the lncRNA model associated with pyroptosis is an 
autologous risk factor for OS. According to the findings 
of ROC analysis, this model is superior to the major-
ity of common clinical characteristics in predicting the 
overall survival of individuals with KIRC. In addition, a 
nomogram was shown to illustrate the degree to which 
the observed and predicted OS rates correspond over the 
first, third, and fifth years of follow-up. The prediction 
rates for the first, third, and fifth years all agreed quite 
well. The risk model built using 10 pyroptosis-associated 
lncRNAs that are independently related to KIRC OS has 
greater accuracy. This prediction model can help to iden-
tify new biomarkers for future research.

The TIDE method is also used to predict the prob-
ability of an immunotherapeutic response, revealing that 
the high-risk group had a higher immune response rate 
than the low-risk group. This suggests that immune-
related medications may be more effective in predicting 
outcomes for the high-risk group. This discovery may be 
applied to guidelines for immune-related medications.

Furthermore, the model was used to analyze the immu-
nological and biochemical traits of various subgroups. 
According to the findings, there are some variations 
between the high-risk and low-risk groups in terms of 
immune cell enrichment and infiltration. While analyzing 
expression and connection of popular immune-related 
genes such as PD1 and PD-L1, significant differences 
in their expression between the high-risk and low-risk 
groups were found. Moreover, there was an inverse rela-
tionship between the risk score and expression of these 
genes.

This model was validated using datasets found in the 
TCGA database. The ICGC RCC dataset is integrated 
as an external cohort so that the accuracy of this model 
and its application may be evaluated. The findings of 

the survival research indicate that there is a significant 
gap between the high-risk and low-risk groups. As a 
result, our model is capable of accurately predicting the 
chances of survival for KIRC patients. With the help of 
AI and deep learning models, we can well utilize radio-
genomics combined with the prediction model of KIRC 
reported in this paper [51].

The prognosis of KIRC patients is largely determined 
by the pathological stage and grade, yet tumours with 
the same clinical stage and grade may not always have 
the same prognosis [52]. Exploring more detailed and 
focused prediction signs or biomarkers is thus very 
important. The pyroptosis-related lncRNA model that 
was developed is intended to provide a novel strategy 
for predicting the prognosis of KIRC patients. These 
results offer a new approach to studying lncRNAs asso-
ciated with pyroptosis and modification processes. Sev-
eral approaches are used in this work to validate the 
new model, making it possible to choose and imple-
ment the best model. Due to the lack of external data 
verification, it may be presumed that this prediction 
model is appropriate.

However, this research still has several shortcom-
ings. For example, some questions about the biologi-
cal mechanism of lncRNAs associated with pyroptosis 
remain. Investigating lncRNA function and how lncR-
NAs interact with genes involved in pyroptosis is thus 
crucial. As a whole, the conclusions provide fresh per-
spectives for predicting KIRC patient survival and 
prognosis, which may help to shed light on the mecha-
nism behind pyroptosis-related lncRNAs. As a result 
of the development of this immunotherapy-sensitive 
model, several preliminary medication candidates were 
also found that may be useful, impacting the therapeu-
tic approach used for KIRC patients.
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