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Abstract 

Objective Oxidative stress is associated with the occurrence and development of lung cancer. However, the specific 
association between lung cancer and oxidative stress is unclear. This study aimed to investigate the role of oxidative 
stress in the progression and prognosis of lung adenocarcinoma (LUAD).

Methods The gene expression profiles and corresponding clinical information were collected from GEO and TCGA 
databases. Differentially expressed oxidative stress-related genes (OSRGs) were identified between normal and tumor 
samples. Consensus clustering was applied to identify oxidative stress-related molecular subgroups. Functional 
enrichment analysis, GSEA, and GSVA were performed to investigate the potential mechanisms. xCell was used 
to assess the immune status of the subgroups. A risk model was developed by the LASSO algorithm and validated 
using TCGA-LUAD, GSE13213, and GSE30219 datasets.

Results A total of 40 differentially expressed OSRGs and two oxidative stress-associated subgroups were identified. 
Enrichment analysis revealed that cell cycle-, inflammation- and oxidative stress-related pathways varied significantly 
in the two subgroups. Furthermore, a risk model was developed and validated based on the OSRGs, and findings 
indicated that the risk model exhibits good prediction and diagnosis values for LUAD patients.

Conclusion The risk model based on the oxidative stress could act as an effective prognostic tool for LUAD patients. 
Our findings provided novel genetic biomarkers for prognosis prediction and personalized clinical treatment for LUAD 
patients.
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Introduction
Lung cancer remains the leading cause of cancer-related 
mortality and incidence, and it is the second most com-
mon tumor in the world [1]. Lung adenocarcinoma 
(LUAD) is the most common subtype of lung cancer, 
accounting for approximately 40% of all lung cancer [2]. 
And the proportion of LUAD is increasing year by year 
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[3]. Despite some achievements have been made in the 
exploration of the pathogenesis and the development of 
novel therapies for LUAD patients. However, the 5-year 
survival rate for LUAD patients is still only 16% [4]. 
Immunotherapy and cancer immunology have gained 
popularity in cancer treatment in recent years [5]. It has 
been proposed to improve clinical outcomes in patients 
with LUAD [6, 7]. However, only about 20% of LUAD 
patients received satisfactory treatment [8]. Therefore, it 
is of great significance to understand the pathogenesis of 
lung cancer for the development of new targeted thera-
pies to prolong the overall survival of LUAD patients.

Oxidative stress and the resulting oxidative injury are 
the primary contributors to the initiation and develop-
ment of tumorigenesis [9]. Excessive reactive-oxygen 
species can cause genotoxicity and double-stranded DNA 
breaks, which result in genomic mutations and tumo-
rigenesis [10, 11]. In addition, oxidative stress-related 
genes play an important role in the occurrence and devel-
opment of several cancer types, including breast cancer, 
skin cancer, gastric cancer, cervical cancer, colorectal 
cancer, prostate cancer, etc. [12, 13]. Furthermore, oxida-
tive stress is also associated with the prognosis of cancer 
patients. For example, a systematic review indicated lipid 
peroxidation might be related to overall survival after 
breast cancer diagnosis [14]. Oxidative stress contrib-
utes to premature mortality in colorectal cancer patients 
[15]. The bioinformatics approach identifies oxidative 
stress-associated genes that were significantly associ-
ated with the prognosis of gastric cancer [16]. Oxidative 
stress-related biomarkers are related to a poor prognosis 

in pancreatic cancer patients [17]. About 90% of lung 
cancer patients are directly associated with smoking. 
There is increasing evidence that smoking-evoked oxi-
dative stress and reactive-oxygen species play an impor-
tant role in cancer and inflammation [18, 19]. Pulmonary 
cancer initiation and development are associated with 
DNA oxidative injury and a series of oxidative stress-
related pathways [20]. Recently, a study has indicated 
that the oxidative stress-related metabolic adaptation 
mediates radiation resistance in lung cancer cells [21]. 
Oxidative stress-associated lncRNAs are identified as 
potential markers to predict prognosis for LUAD patients 
[22]. Overall, these studies implied that oxidative stress 
is closely related to lung cancer development. However, 
the role of oxidative stress-related subtypes and genes in 
the prognostic prediction of lung cancer patients remains 
unclear, and the potential mechanism requires further 
investigation.

In the recent years, with the development of tumor 
genomic sequencing technology, exploring novel tumor 
typing patterns by bioinformatics analysis provides a new 
way for tumor prognosis assessment and treatment [23–
25]. In our study, the GEO and TCGA datasets were used 
to obtain the gene expression data of oxidative-related 
genes. Based on the oxidative stress-related genes, unsu-
pervised clustering was applied to reveal the heterogene-
ity among LUAD patients and an oxidative stress-related 
risk model was developed and validated to predict the 
prognosis and immune microenvironment in LUAD 
patients. Figure  1 showed the overall framework of this 
research.

Fig. 1 The flow chart presented the overall study design
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Materials and methods
Collection of datasets
Gene expression profiles and clinical information of 
LUAD patients were obtained from GEO and TCGA 
datasets. Only LUAD patients with pathologically con-
firmed and complete overall survival information were 
included in our study. Finally, a total of 226 LUAD cases 
obtained from the GSE31210 dataset, were used as the 
training cohort. Besides, we collected 522 cases from 
TCGA − LUAD, 79 cases from the GSE13213 dataset, 
and 57 cases from the GSE30219 dataset as public vali-
dation cohorts. For GEO datasets, we used “GEOquery” 
R package (2.34.0) to download the microarray data 
and the clinical information of LUAD cases. Then, the 
“sva” R package (3.18.0) and “limma” R package (3.26.9) 
were used to eliminate the batch effect and normal-
ize data, respectively [26]. The average value of multi-
probe genes was used as the gene expression value. For 
the TCGA − LUAD dataset, the “clusterProfiler” R pack-
age (3.10.1) was used to annotate the gene symbols [27]. 
The gene expression data were then handled by trimmed 
mean of M values normalization using the “edgeR” R 
package (2.6.12) [28]. When multiple expression values 
of the same gene, the average was used to represent the 
expression of that gene.

Collection of differentially expressed oxidative 
stress‑related genes (DEOSRGs) in LUAD patients
The differential expressed genes (DEGs) between the 
normal and tumor groups were identified with |log2 fold 
change (FC)|≥ 1 and p.adj < 0.05 using the “limma” pack-
age (3.26.9) of R [29]. The oxidative stress-related genes 
(OSRGs) were collected from the “GOBP RESPONSE TO 
OXIDATIVE STRESS” pathway in the Molecular Signa-
tures Database. Then, the expression of DEOSRGs was 
presented as a heatmap using the “ComplexHeatmap” 
package (1.0.0) of R [30].

Identification of oxidative stress‑related molecular 
subtypes in LUAD patients
We performed consensus clustering based on the gene 
expression profile of DEOSRGs using the “Consensus-
ClusterPlus” package (1.2.0) of R [31]. We then repeated 
the optimal number of clusters between k = 2–10 and 
1000 times to ensure the stability of the results. Then, 
the overall survival between the two subgroups was per-
formed by Kaplan − Meier analysis.

Identification of differentially expressed genes 
and characterization of immune cell infiltration 
between the subgroups
The differential expressed genes between the two sub-
groups were identified with |log2 fold change (FC)|≥ 1 

and p.adj < 0.05 using the “limma” package (3.26.9) of R. 
The expression of the differential expressed genes was 
presented as a heatmap using the “ComplexHeatmap” 
package (1.0.0) of R. xCell is a novel genetic characteriza-
tion method that enables comprehensive in silico assays 
to obtain 64 stromal and immune cells and compares 
them to cellular immune phenotypes [32]. Then, the rela-
tive abundance of 34 immune cell types was compared 
between the two subgroups by xCell algorithmic, and the 
results were presented as a histogram.

Functional enrichment analysis
Enrichment analysis was carried out using the “cluster-
Profiler” package (3.10.1) in R to display the pathways 
in Metascape (v3.5.20230501) [33]. Gene set variation 
analysis (GSVA) of signal pathway changes between the 
two subgroups was performed using the “GSVA” package 
(1.30.0) in R [34], based on the “GO Biological Process” 
gene sets downloaded from the Molecular Signature 
Library. Gene set enrichment analysis (GSEA) was per-
formed to evaluate whether there were significant dif-
ferences in the expressed gene sets between the two 
subgroups during the enrichment of the MSigDB data-
base (c2.cp.kegg.v7.4.symbols.gmt).

Construction and assessment of the risk prognostic model 
based on DEOSRGs
Based on the DEOSRGs, we performed the least abso-
lute shrinkage and selection operator (LASSO) regression 
analysis to construct a risk score model using the “glmnet” 
package (4.1.7) of R. A risk score was calculated for each 
LUAD patient in the training and verification cohorts based 
on the following calculation formula: risk score = expres-
sion value of EZH2×(−  0.0524) + expression value of 
ECT2×0.1908 + expression value of HYAL1×0.0371 + expres-
sion value of TLR4×(−  0.1355) + expression value of 
GPX8×0.1043 + expression value of GJB2×0.0722 + expres-
sion value of CDK1×0.005 + expression value of 
GPR37×0.1081 + expression value of GPX2×0.0203 + expres-
sion value of GPX3×(− 0.0332) [23, 24, 35]. Besides, we used 
TCGA-LUAD, GSE13213, and GSE30219 datasets to con-
firm the prognostic value of the risk score model. We also 
used the Kaplan − Meier method to determine the probabil-
ity of survival between two risk score groups, and the area 
under the curve (ROC) was applied to determine the speci-
ficity and sensitivity of the risk score model. Cox regression 
was then used to determine whether risk score was a reliable 
predictor for LUAD patients. In addition, the “rms” R pack-
age (6.3.0) was used to generate a nomogram for the predic-
tion of 3- and 5-year survival rates for LUAD patients.
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Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)
In 2021–2022, ten pairs of cancerous tissue/peritumoral 
tissue were taken from lung cancer patients who had 
surgery at the Department of Thoracic Surgery, Peking 
University Shenzhen Hospital. The ethics committee 
of Peking University Shenzhen Hospital approved this 
research. The identification of LUAD patients was con-
ducted using the following inclusion criteria: (1) LUAD 
patients diagnosed between 2021 and 2022 in China; (2) 
pathologic diagnosis of LUAD and (3) surgical treatment. 
The exclusion criteria were as follows: (1) any unknown 
clinical information and epidemiology; (2) age at diag-
nosis < 18; (3) presence of multiple primary cancers; (4) 
presence of other pathology; (5) neoadjuvant treatment. 
A total of 10 patients were enrolled. The characteristics 
of the patients are presented in Additional file 1: Table S1. 
With TRIzol reagent (Invitrogen, CA, USA), total RNA 
was taken out of the tissue. The reverse transcriptase 
(Invitrogen, CA, USA) was used to make cDNA. Relative 
expression of the gene was analyzed by SYBR green qRT-
PCR assay (Sigma, MO, USA) on an ABI 7900HT System 
(Applied Biosystems). The primers used in the present 
study were presented in Additional file 1: Table S2.

Statistical analysis
All analyses were performed in R software (3.4.1). The 
Wilcoxon’s test was used to compare between two 
groups. p < 0.05 was considered statistically significant.

Results
Identification of DEOSRGs in LUAD patients
A total of 2016 (Additional file  2: Table  S3) and 13,747 
DEGs (Additional file  3: Table  S4) were identified in 
GSE31210 and TCGA-LUAD databases, respectively. 
436 OSRGs were collected from the Molecular Signa-
tures Database. Then, 40 DEOSRGs were obtained by the 
intersection of DEGs and OSRGs (Fig. 2A). The expres-
sion pattern of DEOSRGs in normal and tumor sam-
ples was also analyzed. As showed in Fig.  2B, ARG1, 
PPARGC1B, TLR4, SNCA, MGAT3, HYAL1, HYAL2, 
EPAS1, CD36, SLC1A1, AQP1, DUOX1, LRRK2, CA3, 
FBLN5, GPX3, KCNA5, SCGB1A1, NR4A3, IL6, KLF2, 
HBB, ANGPTL7, EDN1, CRYAB, and MSRB3 were 
down-regulated in LUAD patients, while GPX2, NQO1, 
SLC7A11, ECT2, CDK1, EZH2, MELK, MMP3, MMP9, 
GPX8, GJB2, GPR37, FUT8, and PYCR1 were up-regu-
lated in LUAD patients. The protein − protein interac-
tion of 40 DEOSRGs was constructed by the STRING 
database to further exhibit the interconnections between 
those genes (Fig. 2C).

Identification of two oxidative stress‑related subgroups
In the GSE31210 dataset, the LUAD patients were 
divided into two subgroups based on the 40 DEOSRGs 
by the consensus clustering analysis (Fig. 3A–C). Besides, 
Fig. 3D represented the expression pattern of DEOSRGs 
between the two subgroups, and significant expression 
differences were observed between the C1 and C2. In 
addition, LUAD patients in C1 exhibited adverse clinical 
outcomes compared with LUAD patients in C2 (p = 0.028, 
Fig. 3E). Our findings revealed that the DEOSRGs could 
divide LUAD patients into two subgroups with different 
survival rates.

Identification of differentially expressed genes 
and characterization of immune cell infiltration 
between the subgroups
As shown in Fig. 4A, a total of 754 abnormal expressed 
genes were identified, including 239 up-regulated genes 
and 515 down-regulated genes in C1, as compared to C2. 
Figure  4B represented the expression pattern of the top 
200 differentially expressed genes between C1 and C2. 
Furthermore, the xCell algorithm revealed that LUAD 
patients have different immune statuses and tumor 
immune microenvironments in the C1 and C2. As shown 
in Fig.  4C, the cell abundance of B cells, CD8+ naive T 
cells, macrophages, macrophages M1, memory B cells, 
naive B cells, pro B cells, Tgd cells, Th1 cells, and Th2 cells 
in C1 subgroup was higher than C2 subgroup (p < 0.05), 
while the cell abundance of basophils, CD4+ naive T 
cells, CD4+ Tcm, cDC, eosinophils, iDC, and mast cells 
in C2 subgroup was lower than C2 subgroup (p < 0.05).

Functional enrichment analyses
As shown in Fig.  5A, functional enrichment analysis 
indicated that differentially expressed genes between 
C1 and C2 were mainly enriched in cell cycle-related 
pathways, such as the mitotic cell cycle process, regu-
lation of cell cycle process, and negative regulation of 
cell population proliferation, etc. In addition, we car-
ried out GSEA and GSVA analyses to further assess 
the expression difference of potential pathways in two 
subgroups. As shown in Fig. 5B, GSEA results revealed 
that MAPK signaling pathway, ADORA2B-mediated 
anti-inflammatory cytokines production, regulation of 
TP53 activity through phosphorylation, cell cycle, and 
cell cycle checkpoints were differentially enriched path-
ways between two subgroups. In comparison to the C2 
subgroup, cell cycle phase transition, mitotic cell cycle, 
cell cycle NDA replication, regulation of cytokinesis, 
cell activation involved in immune response, cytokine 
production involved in inflammatory response, acti-
vation of innate immune response, intrinsic apoptotic 
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signaling pathway in response to oxidative stress, cell 
death in response to oxidative stress, and oxidative 
RNA demethylation were activated in C1 subgroup 
(Fig.  5C). These findings revealed that expression of 
oxidative stress-related was associated with dysregu-
lation of immune and oxidative stress, which may be 
implicated in the poor prognosis of LUAD patients.

Construction and validation of a prognostic risk score 
model for LUAD patients
We performed LASSO Cox regression analysis to develop 
an oxidative stress-related risk score model based on 40 
DEOSRGs (Fig.  6A, B). Then, 10 DEOSRGs were selected 
for the construction of risk score model according to fol-
lowing calculation formula: expression value of EZH2× 

Fig. 2 Identification of OSRGs in LUAD patients. A Venn diagram for the identification of DEOSRGs in GSE31210 and TCGA datasets. B The heatmap 
represented the 40 DEOSRGs expression pattern in the normal and LUAD groups. C PPI network among the 40 DEOSRGs
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(−  0.0524) + expression value of ECT2×0.1908 + expres-
sion value of HYAL1×0.0371+ expression value of TLR4× 
(−  0.1355) + expression value of GPX8×0.1043 + expres-
sion value of GJB2×0.0722 + expression value of 
CDK1×0.005 + expression value of GPR37×0.1081 + expres-
sion value of GPX2×0.0203 + expression value of 
GPX3×(− 0.0332). As shown in Fig. 6C, we also found the 
number of dead statuses in the high-risk group was higher, 
when compared with those in the low-risk group. EZH2, 
ECT2, GPX8, GJB2, CDK1, GPR37, and GPX2 exhib-
ited lower expression levels in the low-risk group, whereas 
HYAL1, TLR4, and GPX3 exhibited lower expression levels 
in the high-risk group. The high-risk score group exhibited 

a poor prognosis for LUAD patients (Fig. 6D, p = 0.009). In 
addition, the risk model presented certain sensitivity and 
specificity, with the area under the curve (AUC) values of 
1, 3, and 5  years were 0.72, 0.632, and 0.673, respectively 
(Fig. 6E). The risk score model was also validated by external 
datasets. As shown in Fig. 7A–C, survival analysis indicated 
that the high-risk LUAD patients exhibited worse progno-
sis in TCGA-LUAD (p < 0.01), GSE13213 (p = 0.023), and 
GSE30219 (p = 0.006) datasets. Furthermore, the ROC analy-
sis indicated that the risk score model had certain prediction 
accuracy for LUAD patients (Fig. 7D–F).

We also performed univariate and multivariate Cox 
analyses to evaluate the independence of the predictive 

Fig. 3 Identification of oxidative stress-related subgroups in the GSE31210 dataset using consensus clustering. A–C K = 2 was considered 
the optimal clustering stability. D The heatmap represented the 40 DEOSRGs expression pattern in the C1 and C2 subgroups. E Kaplan − Meier 
curves in the two subgroups
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value of the risk score. As presented in Table  1, we 
found that only risk score (HR = 3.298, p = 0.002) pre-
sented a good predictive ability of prognosis. In addi-
tion, multivariate Cox analysis revealed the risk score 
was an independent predictor for LUAD patients 
(HR = 2.111, p = 0.047).

Construction and verification of the nomogram
As presented in Fig.  8A, a nomogram contained some 
important clinical features and a risk score was con-
structed. In addition, we also found the predicted and 
actual overall survival was consistent by drawing the 
calibration curve (Fig. 8B).

Analysis of immune cell infiltration between the low‑ 
and high‑risk score groups
We used the xCell algorithm to assess the difference of 
34 immune cell types in the lung cancer microenviron-
ment. The differential levels of immune cell infiltration 
between the two groups were presented in Fig.  9A, B. 
We found that the proportion of basophils, CD4+ naïve 
T cells, CD4+ T cells, CD4+ Tcm, CD4+ Tem, CD8+ T 
cells, cDC, class-switched memory B cells, DC, eosino-
phils, iDC, macrophages M2, mast cells, and Tregs in 
high-risk score group was lower than low-risk score 
group (p < 0.05), while the proportion of CD8+ naïve T 
cells, macrophages, macrophages M1, memory B cells, 
neutrophils, pro B cells, Tgd cells, Th1 cells, and Th2 

Fig. 4 Identification of differentially expressed genes and characterization of immune cell infiltration between the subgroups. Volcano plot (A) 
and heatmap (B) present the distribution and expression of differentially expressed genes between the C1 and C2 subgroups. The green dots are 
the down-regulated genes and red dots are the up-regulated genes. C Box plots visualize the immune cell infiltration levels between the C1 and C2 
subgroups. *p < 0.05, **p < 0.01, and ***p < 0.001
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cells in the high-risk score group was higher than low-
risk score group (p < 0.05). In addition, the correlation 
between the risk score and immune cell infiltration was 
also assessed. As shown in Fig. 9C, risk score had a sig-
nificant negative correlation with basophils, CD4+ naïve 
T cells, CD4+ T cells, CD4+ Tcm, CD4+ Tem, CD8+ T 
cells, CD8+ Tcm, cDC, class-switched memory B cells, 
DC, eosinophils, iDC, macrophages M2, mast cells, and 
Tregs. The risk score had a significant positive correlation 

with CD8+ naïve T cells, macrophages, macrophages 
M1, neutrophils, pro B cells, Tgd cells, Th1 cells, and Th2 
cells.

As shown in Fig. 10A–C, the results of the ESTIMATE 
algorithm showed that high-risk score group had a lower 
ESTIMATE score, immune score, and stromal score, as 
compared with the low-risk score group (p < 0.01). Fur-
thermore, we also found some human leukocyte anti-
gen (HLA) genes and immune checkpoints genes were 

Fig. 5 Functional enrichment analyses. A Bar diagram presented the potential pathways. B Multipeaked maps visualized the results of GSEA. C Heat 
map presented the differential signaling pathways between C1 and C2 subgroups
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down-regulated in the high-risk score group, including 
HLA-DRA, HLA-DPB1, HLA-DPA1, CD160, and CD48 
(Figs. 10D, E). These findings implied that the prognosis 
of different LUAD risk score subtypes might be influ-
enced by the tumor immune microenvironment.

Immune cell infiltration was associated with poor 
prognosis in LUAD patients
In the present study, the association between survival 
time and immune cell infiltration was also analyzed. As 
presented in Additional file 1: Figures S1A–F, our results 

indicated that high levels of macrophages, macrophages 
M1, Tgd cells, pro B cells, Th1 cells, and Th2 cells were 
associated with shorter survival times (p < 0.05).

Analysis of the prognostic value of risk model‑related 
genes
As shown in Additional file  1: Figure S2, CDK1, ECT2, 
EZH2, GJB2, GPR37, GPX2, and GPX8 mRNA expres-
sion was up-regulated in the tumor group (p < 0.001), 
whereas GPX3, HYAL1, and TLR4 mRNA expression was 
down-regulated in the tumor group (p < 0.001) compared 
with those in the normal group. The Kaplan − Meier 

Fig. 6 Development of risk score model based on 40 oxidative stress-related genes. A–B The LASSO analysis identified 10 prognostic genes 
for LUAD patients. C The distribution of survival status and the expression of 10 prognostic genes between the low and high-risk groups. D 
Kaplan − Meier curves for the low and high-risk groups in the GSE31210 dataset. E Time-dependent ROC curves of the risk score model
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analysis indicated that high expression of CDK1, ECT2, 
GJB2, GPR37, GPX2, and GPX8 was associated with poor 
prognosis in LUAD patients; low expression of TLR4 was 
associated with poor prognosis in LUAD patients (Addi-
tional file  1: Figure S3). Therefore, CDK1, ECT2, GJB2, 

GPR37, GPX2, GPX8, and TLR4 were potential prognos-
tic biomarkers for LUAD patients.

In the present study, we collected clinical samples 
to validate the expression of these prognostic genes. 
The expression of CDK1, ECT2, GJB2, GPR37, GPX2, 
and GPX8 gene was up-regulated in the tumor group 

Fig. 7 Validation of the risk score model by the independent datasets. Kaplan − Meier curves for the low and high-risk groups in the TCGA-LUAD (A), 
GSE13213 (B), and GSE30219 (C) datasets. Time-dependent ROC curves of the risk score model in the TCGA-LUAD (D), GSE13213 (E), and GSE30219 
(F) datasets

Table 1 Univariate and multivariate analysis of risk score and clinical features

Bold indicates statistically significant differences

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Gender 226

Male 105 Reference

Female 121 0.658 (0.338–1.281) 0.219

Age (years) 226 1.025 (0.977–1.075) 0.306

Smoking status 226

Never-smoker 115 Reference

Ever-smoker 111 1.637 (0.837–3.201) 0.150

Risk score 226 3.298 (1.553–7.006) 0.002 2.111 (0.950–4.692) 0.047
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(p < 0.001), whereas the expression of TLR4 was down-
regulated in the tumor group (p < 0.001) when com-
pared with those in the normal group (Fig.  11). These 
findings were consistent with the bioinformatics analy-
sis results.

Discussion
LUAD is the most common subtype of lung cancer, lots 
of scholars have focused on the occurrence, progres-
sion, prognosis, and treatment of LUAD in recent years 
[36–38]. A growing number of reports have revealed 
that different subtypes of lung cancer exhibited dif-
ferent clinical outcomes and characteristics [39–41]; 
therefore, it is important to classify LUAD and per-
sonalized therapeutic interventions. The imbalance 
between the antioxidant defense system and reactive-
oxygen species causes oxidative stress. Oxidative stress 
has been increasingly considered an important con-
tributor to aging, and various forms of etiopathogenesis 
are commonly associated with aging [42]. Meanwhile, 
oxidative stress could also contribute to a variety of 
chronic diseases, including cancer, Alzheimer’s disease, 
atherosclerosis, etc. [43]. In addition, oxidative stress-
related research has attracted the attention of many 
tumor fields. For example, reactive-oxygen species-
mediated oxidative stress plays an important role in 
the pathogenesis of breast cancer through epigenetic/
genetic mutations, which lead to uncontrolled cell pro-
liferation [44]. Oxidative stress-driven autophagy plays 
a vital role in the onset and development of hepatocel-
lular carcinoma [45]. 13 oxidative stress-related genes 
were associated with the development of gastric cancer 
[16]. The colorectal cancer-integrated oxidative stress 

score showed better predictive performance in colo-
rectal cancer patients compared to the TNM stage [46]. 
However, the role of oxidative stress in the progression 
of LUAD is still poorly studied, and the research on the 
pathological mechanisms and prognostic markers of 
LUAD patients associated with oxidative stress-related 
genes is still scarce. Therefore, we aimed to develop 
a risk score model based on oxidative stress-related 
genes.

In the present study, 40 DEOSRGs were identified from 
TCGA-LUAD and GSE31210 datasets to investigate the 
prognostic value of oxidative stress-related genes. In 
addition, we revealed that the oxidative stress-related 
subtypes were closely associated with the prognosis and 
tumor immune microenvironment of LUAD. There is 
compelling evidence indicating that oxidative stress plays 
a critical role in causing an imbalanced immune system 
[47]. A recent study reveals that reactive-oxygen species 
serve dual roles in tumor development, acting not only 
as mediators of oxidative stress, but also as active partici-
pants in immune regulation [48]. Furthermore, chronic 
inflammation, caused by excessive production of reac-
tive-oxygen species, is a contributing environmental fac-
tor that aids in tumor immunosuppression [49].

Next, we performed GSEA and GSVA to investigate 
the biological mechanisms underlying the two sub-
types. The GSEA and GSVA results showed that the 
C1 subtype exhibited activation of pathways related to 
oxidative stress, inflammatory response, and immune 
response. The consensus among experts is that the 
tumor microenvironment is a long-term inflamma-
tory setting that plays a crucial role in the formation 
and advancement of most tumors. Increasing evidence 

Fig. 8 Construction and assessment of nomogram for the risk score model. A Nomogram for the prediction of the prognosis in LUAD patients. B 
Calibration for the 3- and 5-year overall survival in LUAD patients
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suggests that mitochondrial reactive-oxygen species 
have a key role in the inflammatory tumor micro-
environment, ultimately exacerbating the growth of 
cancer [50, 51]. A research has demonstrated that 

oxidative stress not only influences the proliferation 
of cancer cells but also plays a pivotal role in modify-
ing the immune microenvironment [52, 53]. The func-
tion of Tregs in the tumor microenvironment has been 

Fig. 9 Immune cell infiltration analysis between the low and high-risk groups. A The heatmap visualized the differential levels of immune cells. B 
The histograms presented the differential levels of immune cells between low and high-risk groups. C The correlation analysis between 34 immune 
cells and risk score. *p < 0.05, **p < 0.01, and ***p < 0.001
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extensively studied, however, recent findings highlight 
a new mechanism of immune suppression that is asso-
ciated with oxidative stress. In their investigation, Maj 
et  al. examined the involvement of oxidative stress 

in inducing apoptosis of Treg cells within the tumor 
microenvironment [54]. A high level of reactive-oxygen 
species can suppress T cell responses by hindering the 
formation of the MHC and TCR antigen complex. This 

Fig. 10 Immune analyses between low and high-risk score groups. The ESTIMATE algorithm was used to calculate the ESTIMATE score (A), immune 
score (B), and stromal score (C). The histograms presented the differential levels of HLA genes (D) and immune checkpoints genes (E) between low 
and high-risk groups. *p < 0.05, **p < 0.01, and ***p < 0.001

Fig. 11 Validation of the expression of prognostic genes. The CDK1 (A), ECT2 (B), GJB2 (C), GPR37 (D), GPX2 (E), GPX8 (F), and TLR4 (G) gene 
expression levels were validated using clinical samples. *p < 0.05, **p < 0.01, ***p < 0.001. T test was used to analyze the differences between the two 
groups
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action allows cancer cells to evade immune responses 
and facilitates cancer progression [55]. In addition, the 
activation of the mitochondrial Lon-induced mtROS-
NF-κB pathway triggers the release of inflammatory 
cytokines from cancer cells, leading to the establish-
ment of immune suppression in the tumor microenvi-
ronment [56]. In summary, these results indicated that 
oxidative stress can regulate the infiltration of immune 
cells via diverse immune signaling pathways, ultimately 
leading to enhanced prognosis for individuals with 
LUAD.

To evaluate the predictive value of DEOSRGs in deter-
mining the prognosis of LUAD, 10 DEOSRGs were 
selected to develop a risk score model to predict the 
overall survival of LUAD patients. Interestingly, previous 
studies have reported these genes to play important roles 
in cancer progression: up-regulation of EZH2 was related 
to poor prognosis for lung cancer patients, accompanied 
by potential damage of viability and migration in lung 
cancer cells [57]. ECT2 accelerated LUAD development 
through focal adhesion signaling pathways and extracel-
lular matrix dynamics [58]. HYAL1 inhibited colorectal 
cancer metastasis via the regulation of TIMPs/MMPs 
balance, further suppressing migration and invasion of 
colon cancer cells [59]. TLR4 expression was associ-
ated with poor prognosis in patients with nonsmall cell 
lung cancer [60]. GPX8 could impact the prognosis and 
tumorigenesis of nonsmall cell lung cancer patients via 
the regulation of epithelial characteristics [61]. GJB2 was 
associated with early-stage breast cancer development 
through the regulation of cancer stemness [62]. CDK1 
positively regulated the lung cancer cell’s stemness via 
interacting with Sox2 [63]. Downregulation of GPR37 
significantly suppressed the migration and proliferation 
of LUAD [64]. GPX2 contributed to malignant devel-
opment and cisplatin resistance of Kirsten rat sarcoma 
viral oncogene homolog-driven lung tumorigenesis [65]. 
GPX3 inhibited lung cancer cell proliferation by regulat-
ing redox-mediated signals [66]. Although the regulation 
effects of these DEOSRGs had been investigated in vari-
ous cancers, few researchers have systematically assessed 
their prognostic values in LUAD. Subsequently, mul-
tivariate Cox regression analysis revealed that the risk 
score model was an autocephalous prognostic predictor 
for LUAD patients. In addition, a predictive nomogram 
implied a better prediction of overall survival at 3- and 
5-year compared with the ideal model. Overall, we first 
investigated the significance of “response to oxidative 
stress” for the prognosis of LUAD patients and were the 
first to develop a risk score model based on oxidative 
stress-related genes.

Another interesting finding of our study indicated that 
the oxidative stress-related risk score was significantly 
associated with immune cell infiltration, which further 
revealed the fact that oxidative stress is involved in the 
tumor immune microenvironment: oxidative stress could 
control regulatory T cells behavior and impact the efficacy 
of targeting cancer immune checkpoints [54]. Generation 
and regulation of reactive-oxygen species levels in tumor 
immune microenvironment-related cancer and stromal 
cells play a decisive role in cancer progression [52, 53].

Conclusions
Two molecular subtypes were identified in LUAD based on 
the DEOSRGs through consensus clustering. These sub-
types showed distinct survival times and immune statuses. 
Furthermore, a prognostic model related to oxidative stress 
was developed and validated, enabling a comprehensive 
study of LUAD progression and a deeper understanding of 
its underlying mechanisms.
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