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Abstract 

Background Infection rate of varicella zoster virus (VZV) is 95% in humans, and VZV infection is strongly associated 
with ischemic stroke (IS). However, the underlying molecular mechanisms of VZV-induced IS are still unclear, and there 
are no effective agents to treat and prevent VZV-induced IS.

Objective By integrating bioinformatics, this study explored the interactions between VZV and IS and potential 
medication to treat and prevent VZV-induced IS.

Methods In this study, the VZV and IS datasets from the GEO database were used to specify the common genes. 
Then, bioinformatics analysis including Gene Ontology, Kyoto Encyclopedia Genes Genomes and Protein–Protein 
Interaction network analysis was performed. Further, the hub genes, transcription factor (TF) gene interactions, TF-
miRNA co-regulatory network and potential drug were obtained. Finally, validation was performed using molecular 
docking and molecular dynamics simulations.

Results The potential molecular mechanisms of VZV-induced IS were studied using multiple bioinformatics tools. Ten 
hub genes were COL1A2, DCN, PDGFRB, ACTA2, etc. TF genes and miRNAs included JUN, FOS, CREB, BRCA1, PPARG, 
STAT3, miR-29, etc. A series of mechanism may be involved, such as inflammation, oxidative stress, blood–brain barrier 
disruption, foam cell generation and among others. Finally, we proposed resveratrol as a potential therapeutic medi-
cine for the prevention and treatment of VZV-induced IS. Molecular docking and molecular dynamics results showed 
that resveratrol and hub genes exhibited strong binding score.

Conclusions Resveratrol could be an alternative for the prevention and treatment of VZV-IS. More in vivo and in vitro 
studies are needed in the future to fully explore the molecular mechanisms between VZV and IS and for medication 
development.
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Introduction
Stroke is the leading cause of death and disability, 
with nearly 100 million stroke patients worldwide [1]. 
Ischemic strokes (IS) account for more than 80% of these 
patients [2]. IS has shown a trend towards lower age in 
recent years. Younger IS patients accounted for 31% of 
all stroke patients in China, and were the major source 
of disease burden [3]. The risk factors of strokes include 
hypertension, diabetes mellitus, hyperlipidemia, etc. 
However, youth are often missing in these risk factors. 
Infection has recently been identified as a major factor 
for IS in youth [4]. Recent studies have found a 4.5-fold 
increased risk of IS when varicella zoster virus (VZV) is 
located in the intraocular distribution of the trigeminal 
nerve [5].

Owing to infections, such as COVID-19, syphilis, and 
human immunodeficiency virus (HIV), the risk of IS 
have received more attention. However, the insidious-
ness and mild symptoms of VZV were often ignored, the 
most serious consequence of VZV was generally consid-
ered by the public to be postherpetic neuralgia (PHN) 
[6]. Although VZV-induced IS was discovered as early as 
1896, the prevention of VZV-induced IS has still received 
less attention than COVID-19 [7]. VZV was latent after 
infection and reactivated when immunity was reduced. 
The prevalence of VZV infection is around 95%, much 
higher than COVID-19, the activation of latent viruses’ 
prevalence by VZV attacks in hospitalized patients over 
the age of 40 is 7.7% in China, and VZV is the only virus 
that replicates and produces disease in the arteries of the 
human brain [6, 8–10]. In the recent years, the research-
ers have gradually recognized the importance of prevent-
ing VZV-induced IS.

Vaccines have been introduced in many countries to 
prevent VZV and provide good protection against VZV-
induced IS. Studies have shown that VZV vaccines can 
reduce the incidence of VZV by up to 70% [8]. Vaccina-
tion is an effective prevention of VZV-induced IS, espe-
cially during the high incidence of IS in the first month 
following VZV infection. Moreover, a single shingles vac-
cination can reduce this risk. However, the VZV vaccine 
still has some drawbacks. Most of the current varicella 
vaccines use the vaccine Oka, which still has the ability 
to infect neurons and reactivate, resulting in vaccine-
induced VZV in some vaccinators [11]. In addition, some 
evidences have suggested that the immune response 
obtained from the vaccine diminishes over time [12]. In 
addition, the vaccine were not recommended for immu-
nocompromised people [13]. Unfortunately, the vaccina-
tion rate of VZV vaccine has been low due to the cost and 
the failure of the public to recognize the importance of 
VZV prevention [8]. In addition, the widely used tools 
for detecting neurological VZV infection in IS patients 

are VZV DNA assay and PCR assay for VZV IgG anti-
body, but the accuracy of VZV assay in IS patients is not 
high [6]. And these tests require the patient’s cerebro-
spinal fluid, which many patients do not accept. Thus, 
many patients admitted to hospital for IS have undiag-
nosed VZV. Despite more than 100 years of research, the 
molecular mechanism of VZV-induced IS has not been 
fully elucidated. Moreover, the vast majority of studies 
are reviews and case reports, and there has been little 
development in the mechanisms of VZV-induced IS and 
drug development. In addition, most importantly, there 
are still no effective drugs to prevent VZV-induced IS and 
to treat VZV-IS. Owing to the high prevalence, difficulty 
in diagnosis, high disease burden, and unclear mecha-
nisms [14], the development of drugs that are safe, inex-
pensive, and can be taken for long-term prevention and 
treatment may be an effective solution to this problem. 
Resveratrol is a natural product that is a polyphenol with 
anti-inflammatory and antioxidative effects [15]. Resver-
atrol has the ability to cross blood−brain barrier (BBB) 
and the BBB permeability of resveratrol is 5.9 ×  10−6 cm/s 
[16]. In addition, resveratrol has showed good protection 
against ischemic stroke and inhibited replication of VZV 
in experiments [17, 18].

Our study sought to explore the underlying mechanism 
of VZV-induced IS. In this study, the datasets of VZV 
and IS were selected from the GEO database for analysis. 
First, we identified differentially expressed genes (DEGs) 
of VZV and IS, and the common DEGs served as the 
basis and raw data for the whole study. Further DEGs-
based analyses, including Kyoto Encyclopedia Genes 
Genomes (KEGG) and Gene Ontology (GO) enrichment 
analysis, were performed to understand the biological 
processes of genome-based expression studies. Subse-
quently, protein–protein interaction (PPI) networks were 
used to identify hub genes from DEGs. Further, potential 
therapeutic agents were searched by hub genes. Finally, 
we performed molecular docking and molecular dynam-
ics (MD) simulations of potential drugs and hub genes.

Material and methods
Data collection and DEGs identification
All data were obtained from the GEO database. VZV 
data was from GSE175797, IS data was from GSE173719, 
GSE16561, and GSE22255. In addition, the Genecards 
[19] (genecards.org/) and OMIM databasesx [19] (omim.
org/) were used as supplements.

DEGs for VZV were obtained from literature by 
Andrew N. Bubak et  al. [21]. The processing of the 
IS datasets was done in the same way as that used by 
Andrew N. Bubak et  al. Data were processed using the 
R project, where probes were mapped to genes and null 
probes were removed. If multiple probes were mapped 
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to the same gene, a randomly selected value from the 
duplicate gene was used as the expression level of that 
gene. DEGs were identified using the LIMMA software 
package and adjusted for P < 0.05 for significantly dif-
ferentially expressed genes. Owing to the small amount 
of sequencing data from VZV, we strictly screened the 
DEGs of IS to improve the accuracy of the study. Fur-
ther, the Genecards database and the OMIM database 
were searched for "ischemic stroke" as a search term. To 
improve the accuracy of the obtained DEGs, we retained 
genes that were repeated twice as the IS targets. Finally, 
we compared the VZV and IS targets with the Human 
Protein Atlas database [22] (proteinatlas.org/) to remove 
the genes that were not expressed in the brain. VZV and 
IS intersection genes obtained from Venny website (bio-
infogp.cnb.csic.es/tools/venny/). The flowchart for this 
study is shown in Fig. 1.

GO and KEGG enrichment analysis
VZV-IS targets were imported into the Metascape web-
site [23] (metascape.org/) for KEGG and GO enrich-
ment analysis. GO and KEGG enrichment were analyzed 
for potential biological pathways and functions associ-
ated with the targets. P < 0.05 is considered that GO and 
KEGG pathway was significantly enrichened [24].

Construction of the PPI and hub genes network
STRING [25] (https:// string- db. org/) was used to con-
struct a PPI network with a confidence score ≥ 0.4. The 
hub genes of the PPI network were identified using the 
Cytoscape plugin cytohubba’s degree algorithm and vis-
ualized using Cytoscape (v3.7.2) [26]. The top 10 genes 
were considered as hub genes [27].

TF gene interactions network
NetworkAnalyst [28] (networkanalyst.ca/) was used to 
find TF gene interactions with 10 hub genes.

TF‑miRNA coregulatory network
The identified hub genes were used to construct a TF-
miRNA co-regulatory network using the NetworkAnalyst 
tool.

Protein–chemical interactions
An important component of this study also included the 
use of the Comparative Toxicogenomics Database [29] 
(ctdbase.com/) to identify compounds that interact with 
hub genes. The top 20 drugs with the highest number 
of therapeutic targets were compiled for analysis based 
on the CTD database. Parameters of each drug were 
analyzed using PubChem [30] (pubchem.ncbi.nlm.nih.

Fig. 1 The workflow of this study. VZV and IS samples were obtained from GSE175797, GSE173719, GSE16561, and GSE22255. Common DEGs 
were identified from four datasets using the R language. GO identification, KEGG pathway, PPI network, hub genes, TF and miRNA analysis, 
and medication screening was performed based on the common DEGs. Finally, molecular docking and molecular dynamics simulations were used 
to validate the resveratrol and hub genes

https://string-db.org/
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gov), Swiss ADME (swissadme.ch/) [31], and ProTox-II 
database [32] (tox-new.charite.de). The aim was to find 
potential drugs for the prevention and treatment of VZV-
induced IS.

Molecular docking
We selected the best candidate drug suitable for the treat-
ment of VZV-IS (Resveratrol) for molecular docking. 
Potential hub genes for resveratrol are used for molecular 
docking. The 2D structure of resveratrol was downloaded 
from the PubChem database and crystal structures of 
core targets were downloaded from RCSB protein Data 
Bank (rcsb.org/) [33]. Chem3D software was used to 
convert resveratrol into a 3D structure to minimize the 
energy of the structure, and then AutoDockTools 1.5.6 
software was used to add hydrogen atoms to it and save 
it as a pdbqt file. The targets’ proteins preferably select 
a model with ligand binding smaller than 3 Å, and then 
imports into the Pymol 1.7.2 Software (pymol.org/2/) for 
dehydration, hydrogenation, and separation of ligands. 
Then crystal structures were imported into AutoDock-
Tools 1.5.6 to construct the docking grid box for res-
veratrol. Docking was completed by Autodock Vina 1.1.2 
software, and allowed semi-flexible docking of the mol-
ecule with the lowest binding score of resveratrol. Finally, 
the complexes were observed and plotted using Pymol 
software (such as hydrophobicity, hydrogen bonding, 
etc.) [34].

MD simulation
We performed MD simulations for 100  ns according to 
the conformation of the optimal binding score for molec-
ular docking. The CHARMM36 force field was used to 
generate the parameters of the protein [35]. Force field 
parameters for resveratrol are generated by the acpype.py 
script in AmberTools [36].  Na+ and  Cl− ions were added 
into the protein surface to neutralize the total charges 
of the systems. The resulting systems were solvated in a 
rectangular box of TIP3P waters extending up to mini-
mum cutoff of 15 Å from the protein boundary [37]. The 
Amber ff14SB force field was employed for the protein in 
all of the MD simulations [38]. The system converged to a 
minimum energy level using the steepest descent method 
of 50,000 steps with a weak restraint of 10 kcal/mol force. 
The V-rescale temperature coupling method was used to 
control the simulation temperature to 300 K and the Ber-
endsen method to control the pressure to 1 bar. Then, the 
equilibration process was used 100 ps of NVT (number, 
volume, and temperature) and NPT (number of parti-
cles, pressure, and temperature) simulations with a time 
step of 2 fs. In the MD simulation process, the hydrogen 
bonds are constrained using the LINCS algorithm with 
an integration step of 2 fs. Finally, a productive MD run 

of 100 ns was performed for all the complex systems. The 
MD simulations were performed with Gromacs 2019.1 
[39].

Results
Identification of DEGs and overlap targets between IS and 
VZV
Finally removing the unexpressed genes in the brain, we 
obtained a total of 1647 IS targets and 302 VZV targets. 
Using Venny, 63 overlap targets were obtained and con-
sidered as VZV-IS common targets (Fig. 2).

GO and KEGG analysis
The 63 common targets of both VZC and IS were used 
for GO and KEGG analysis. GO analysis included bio-
logical process (BP), molecular function (MF) and cellu-
lar component (CC). These items were shown in Fig.  3, 
and included (1) MF: extracellular matrix binding, cell 
adhesion molecule binding, etc. (2) BP: regulation of 
extracellular matrix organization, regulation of biominer-
alization, blood vessel diameter maintenance, etc. (3) CC: 
collagen-containing extracellular matrix, focal adhesion, 
basement membrane, etc.

KEGG analysis showed that these VZV-IS shared tar-
gets were enriched in focal adhesion, PI3K-Akt signaling 
pathway, ECM–receptor interaction, regulation of actin 
cytoskeleton, FoxO signaling pathway, adipocytokine 
signaling pathway, vascular smooth muscle contraction, 
estrogen signaling pathway, MAPK signaling pathway, 
cGMP-PKG signaling pathway, etc. (Fig. 4).

PPI network analysis and hub genes identification
The PPI network includes 48 nodes (four idle nodes are 
removed) and 192 edges, as shown in Fig.  5. A higher 
degree value indicates that the node is more important 
in the network [40], the node is closer to the center, and 

Fig. 2 Intersection targets of VZV and IS
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the color is darker in the graph. We then used the cyto-
hubba plug-in to identify the 10 hub genes COL1A2, 
DCN, PDGFRB, ACTA2, PRDX1, FAP, SOD2, SPARC, 

ITGA1 and CDH11 (Fig.  6). Table  1 lists the specific 
information and full names of the 10 hub genes, includ-
ing gene symbol, protein name, and degree.

TF–gene interactions
Ten hub genes were identified for TF genes (Fig.  7). 
DCN is regulated by 15 TF genes, ACTA2 is regulated 
by 12 TF genes, FAP is regulated by 10 TF genes, SOD2 
is regulated by 9 TF genes, COL1A2 is regulated by 8 
TF genes, PDGFRB is regulated by 8 TF genes, SPARC, 
ITGA1, CDH11 is regulated by 6 TF genes, and multi-
ple TF genes regulate a common hub gene in the net-
work, indicating that TF genes are closely related to 
hub genes and there is a high degree of interaction.

TF‑miRNA network
The TF-miRNA network was analyzed and provided 
a common interaction between miRNA and TF gene. 
This interaction may be involved in the regulation of 
hub gene expression. The TF-miRNA network consists 
of 166 nodes and 380 edges. 63 TF genes and 103 miR-
NAs formed the TF-miRNA network. The TF-miRNA 
co-regulatory network is shown in Fig. 8.

Fig. 3 GO enrichment analysis of VZV and IS

Fig. 4 Top 10 enrichments of KEGG analysis with VZV and IS
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Fig. 5 The PPI network diagram of VZV-IS targets. The nodes closer to the center and the darker color represent that they may play more important 
role in the whole network. The higher the degree value, the larger the area of the node, and the redder the color, the closer to the center

Fig. 6 The network diagram of 10 hub genes

Table 1 The specific information of the 10 hub genes

Gene symbol Protein name Degree

COL1A2 Collagen alpha-2(I) chain 13

DCN Decorin 11

PDGFRB Platelet-derived growth factor receptor beta 10

ACTA2 Alpha-actin-2 10

PRDX1 Peroxiredoxin-1 8

FAP Prolyl endopeptidase FAP 5

SOD2 Superoxide dismutase [Mn] 7

SPARC Secreted protein acidic and rich in cysteine 7

ITGA1 Integrin alpha-1 7

CDH11 Cadherin-11 7
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Protein–chemical interactions
The specific information of 20 potential drugs for the 
treatment and prevention of VZV-IS is shown in Addi-
tional file 1: Table S1, including Formula, Lipinski’s rule, 
toxicity and targets, etc. According to the characteristics 
of VZV-IS, preventive and therapeutic drugs should have 
low toxicity, small side effects, low price, and suitable for 
long-term use. After the final screening, resveratrol was 
considered to be the most promising drug. See the dis-
cussion section for specific reasons.

Molecular docking
By calculating binding score, the molecular docking 
results of resveratrol and targets’ proteins were predicted 
to be less than − 5.0 kcal/mol, indicating that these com-
pounds had strong binding effect on key proteins. In 
other words, the lower the binding score of the ligand 
to the receptor, the more stable the binding conforma-
tion. It can be seen from Table 2 that the binding score 

of all docking results is lower than − 5 kcal/mol. The free 
binding score of the docking results ranged from − 6.3 
to − 7.51  kcal/mol, indicating that resveratrol was sta-
ble in binding to the protein. The lowest binding score 
was found between PRDX1 and resveratrol. Binding 
score were attributed to hydrogen binding with LEU-46, 
PHE-48, THR-49, and VAL-51 residues, and hydropho-
bic interactions with TRP-87, PRO-53, and GLU-55. 
The other docking information of hydrogen bonds in 
Fig. 9 showed the docking situation between resveratrol 
and targets’ proteins. The molecular docking results for 
the other three drug candidates are shown in Additional 
file 2: Table S2.

MD simulation
To further study the interaction between resveratrol and 
the targets, we used MD to simulate the protein–resvera-
trol complex for 100 ns. The root-mean-square deviation 
(RMSD) from the average structure of backbone atoms 

Fig. 7 The network diagram of hub and TF genes
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for each MD trajectory was calculated as well for explor-
ing the "position stability" for each complex. Figure 10A, 
B was plotted the RMSD of backbone atoms of the com-
plex system and the result showed that after 12  ns, the 
conformation of all systems has reached a steady-state 
because the RMSD value fluctuates for the original struc-
ture of complex within 0.2 nm which indicates the stabil-
ity of the structures. As shown in Fig.  10C, D, the root 
mean square fluctuation (RMSF) has provided details 
about the structural flexibility of individual residues in 

Fig. 8 The network diagram of hub, TF genes and miRNAs

Table 2 Specific information on molecular docking parameters 
and binding free energy

Targets PDB/APSD ID Box center (x, y, z) Affinity/
(kcal/mol)

ACTA2 AF-P62736-F1 0.225, 1.098, 0.906 − 6.88

DCN AF-P07585-F1 − 3.941, 5.231, − 2.655 − 6.38

ITGA1 5HGJ 7.768, − 0.060, 23.447 − 6.49

PDGFRB 1AYA 23.003, 31.218, 27.749 − 6.22

PRDX1 3HY2 − 2.195, − 7.798, − 12.535 − 7.51

SPARC 1SRA 38.303, 17.827, 30.274 − 6.30
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a protein. The fluctuations of these systems in a small 
region were relatively high. On the contrary, most of 
the residues had low fluctuation values in other regions, 
which indicated that the residues are stable in binding 
to the protein. The above results indicated that the res-
veratrol is structurally stable with these proteins in MD 
simulations.

Discussion
VZV infection is a major risk factor for IS, especially in 
young adults without underlying disease [41, 42]. Pre-
vious studies have suggested that VZV causes IS by the 
following process: VZV virus infects cerebral arteries, 
causing acute endothelial damage, and chronic inflamma-
tion promotes cytokine secretion, leukocyte recruitment, 
and vascular smooth muscle cell proliferation, inducing 
atherosclerotic plaque formation. And the risk factors 
for atherosclerosis (i.e. diabetes mellitus, hypertension, 
and hyperlipidemia) exacerbate plaque formation. IS is 
the final event, which is caused by plaque rupture and 
thrombus block vessels. However, the process of plaque 
formation is still unknown. This study was conducted 
with a view to exploring the mechanism of VZV leading 

to IS and its potential therapeutic agents through bioin-
formatics. Firstly, 63 DEGs were identified in the VZV 
and IS datasets, followed by KEGG, GO and PPI network 
analysis of the 63 DEGs. Subsequently, 10 hub genes were 
identified, including COL1A2, DCN, PDGFRB, ACTA2, 
PRDX1, FAP, SOD2, SPARC, ITGA1, and  CDH11. Fur-
ther, TF-gene interactions, TF-miRNA co-regulatory 
network and drug candidate analysis were performed by 
hub genes. Finally, the potential drug (resveratrol) were 
performed by molecular docking and MD simulations to 
the disease targets.

The ten hub genes are strongly associated with the 
occurrence and development of IS. (1) Heterozygous 
COL1A2 were found to be associated with IS [43]. 
COL1A2 is associated with cranial vascular integrity and 
can lead to vascular malformations. COL1A2 affects the 
function of collagen and perivascular fibroblasts in vas-
cular stabilization [44]. COL1A2 polymorphism desta-
bilizes collagen protofibrils in a Chinese population [45]. 
(2) DCN is a small leucine-rich proteoglycan that medi-
ates the formation, organization and tensile strength 
of collagen fibers. In abdominal aortic aneurysm, DCN 
is reduced in the extravascular membrane, leading to 

Fig. 9 Molecular docking diagram of VZV-IS targets and resveratrol
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vessel wall instability and consequent vessel rupture. 
CAR-DCN treatment increases DCN and collagen levels 
in the vessel wall [46]. DCN expression correlated with 
IS severity, and DCN expression was significantly lower 
in patients with IS [47]. (3) PDGFRB plays an important 
role in vascular development by promoting the prolifera-
tion of pericytes and smooth muscle cells to endothelial 
cells, neointima formation at sites of vascular injury, and 
contributes to the rearrangement of the actin cytoskel-
eton. Recent studies have found PDGFRB to be closely 

associated with thrombosis and IS [48]. Pericytes may 
enhance peri-infarct oligodendrocyte formation and 
astrocyte proliferation to promote intra-infarct fibrotic 
repair after IS, possibly mediated by PDGFRB [49]. (4) 
ACTA2 encodes smooth muscle actin and is involved 
in vasoconstriction and blood pressure homeostasis. 
Mutations in this gene could cause a variety of vascular 
diseases including IS. ACTA2 triggers cerebral artery 
disease with abnormal internal carotid circulation cou-
pled with proximal segmental dilatation, distal segmental 

Fig. 10 Profiles of molecular dynamics simulations between target proteins and resveratrol. a RMSD of resveratrol–ACTA2 complex, RMSD 
of resveratrol–DCN complex and RMSD of resveratrol–ITGA1 complex. b RMSD of resveratrol–PDGFRB complex, RMSD of resveratrol–PRDX1 
complex, and RMSD of resveratrol–SPARC complex. c RMSF of resveratrol–ACTA2 complex, RMSF of resveratrol–DCN complex, and RMSF 
of resveratrol–ITGA1 complex. d RMSF of resveratrol–PDGFRB complex, RMSF of resveratrol–PRDX1 complex, and RMSF of resveratrol–PRDX1 
complex
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occlusive disease and prolonged dilatation, predisposes 
children to IS [50]. Vascular pathology analysis of smooth 
muscle cells and myofibroblasts extracted from patients 
with ACTA2 mutations showed that increased prolifera-
tion of smooth muscle cells led to occlusive disease, indi-
cating that ACTA2 mutations predispose to early-onset 
of IS [51]. (5) PRDX1 is a stress-inducible macrophage 
redox protein that plays a role in cellular resistance to 
oxidative stress and may contribute to the antiviral activ-
ity of CD8(+) T cells. PRDX1-dependent antioxidant 
microglia increase transcriptional levels of protective 
molecules in IS [52]. PRDX1 is involved in inflamma-
tion and cellular injury in IS by interacting with TLR4 
[53]. Previous studies found a protective effect of PRDX1 
against endothelial hyperactivation and atherosclerosis 
[54]. The recent studies have found that PRDX1 levels 
are positively correlated with the severity of IS and the 
severity of prognosis of patients [55]. (6) FAP is involved 
in the control of epithelial–mesenchymal interactions 
in the process of fibroblast growth or development, and 
tissue repair. The recent studies have found that patients 
with reduced FAP activity have more severe IS and worse 
short-term prognosis [56]. (7) SOD2 has a protective 
effect against oxidative stress and endothelial dysfunc-
tion in carotid arteries [57]. It was found that SOD2 
overexpressing mice had a reduced chance of bleeding, 
suggesting that SOD2 has a protective effect on vascular 
integrity [58]. (8) SPARC plays important functions in 
the central nervous system, such as synapse stabilization 
and axonal regeneration, and is associated with IS sever-
ity [58]. SPARC induces angiogenesis after cortical injury 
[59], and SPARC expression is increased in patients with 
atherosclerosis and calcified plaques [60]. Recent studies 
have found that SPARC deficiency reduces the inflam-
matory response in IS and increases the integrity of BBB 
[61]. (9) ITGA1 may control the exit or persistence of 
macrophages in inflamed tissues to regulate the inflam-
matory response [62]. Knockdown of ITGA1 reduces 
inflammation and angiogenesis [63]. (10) CDH11 has 
the ability to regulate collagen and elastin, affecting the 
mechanical properties and contractile function of blood 
vessels [64], and its expression is upregulated in vascular 
calcification diseases [65]. Inhibition of the CDH11 sign-
aling pathway attenuates the migration and proliferation 
of vascular smooth muscle, which is a pathological hall-
mark of endothelial proliferation [66]. CDH11 is required 
for the differentiation of mesenchymal stem cells into 
smooth muscle cells and affects the contractile func-
tion of blood vessels [67]. Recent studies have found that 
CDH11 is associated with vascular malformations [68]. 
CDH11 is critical in the pathology of IS. These above evi-
dences suggest that 10 hub genes are important in VZV-
IS. This suggests these hub genes were closely associated 

with the pathological process and prognosis of IS, and the 
changes in these hub genes were involved in the develop-
ment of IS after VZV activation.

Furthermore, regulatory biomolecules are potential 
biomarkers for a variety of diseases, including IS. The 
miRNA and TF genes of hub gene were used to ana-
lyze the regulatory network, and a total of 103 miRNAs 
and 63 TF genes were identified. Among the TF genes 
with the strongest interaction, the degree values were 
JUN, FOS, CREB, BRCA1, PPARG, STAT3, JUND, SRF, 
FOXC1, Sox10, and ELK1. These TF genes also play an 
important role in IS. JUN plays an important role in neu-
rodegeneration, cell death and repair after IS [69]. CREB 
is a transcription factor that plays a key role in neuronal 
excitability, improves motor recovery after IS, and pre-
vents recurrence of IS [70]. BRCA1 is a tumor suppressor, 
and a recent study found that overexpression of BRCA1 
reduced reactive oxygen species production and lipid 
peroxidation after IS to increase DNA repair [71]. Recent 
studies have found that PPARG polymorphisms may be 
an independent risk factor for IS [72]. STAT3 can treat 
IS through several mechanisms [73]. JUND can inhibit 
IS inflammation [74]. SRF acts as a major transcriptional 
regulator of vascular endothelial junction stability and 
ensures the physiological function of the cerebrovascular 
system [75]. FOXC1 is known to regulate skull and brain 
developmental processes and can modulate inflamma-
tory responses after IS [76]. Sox10 is a transcription fac-
tor that plays a central role in glial cell development and 
maturation, enhancing oligodendrocyte production and 
white matter repair [77]. ELK1 is related to inflammatory 
response, endothelial dysfunction and atherosclerosis in 
IS [77, 78]. The highest miRNA degree value was miR-
29. Previous studies have found that arterial wall tissue 
injury may be related to up-regulation of miR-29 expres-
sion [79]. This suggested that these miRNA and TF genes 
are also extensively involved in the development of IS.

We further revealed more complex pathological pro-
cesses based on GO and KEGG enrichment analysis of 
DEGs of VZV-IS and other findings. The GO and KEGG 
enrichment results can be mainly classified into the fol-
lowing categories: (1) inflammation and oxidative stress 
response, (2) regulation of vascular morphology and 
function, (3) regulation of extracellular matrix (ECM), 
(4) regulation of ion transport, and (5) regulation of cell 
adhesion. It is suggested that there are extremely com-
plex regulatory mechanisms of VZV-induced IS. We have 
addressed these possible mechanisms.

Inflammation and oxidative stress are the initial path-
ological processes after VZV activation. Multiple GO 
and KEGG items suggested that inflammation and oxi-
dative stress played an important role in the process of 
VZV-IS, including antioxidant activity, oxidoreductase 
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activity, hydrogen peroxide metabolic process, PI3K–
Akt signaling pathway, FoxO signaling pathway, MAPK 
signaling pathway, cGMP–PKG signaling pathway, etc. 
VZV is first activated in the outer arterial membrane and 
early on there are neutrophils involved in the immune 
response, generating reactive oxygen species, leading 
to an imbalance in oxidative stress, inducing apoptosis, 
and loss of vascular smooth muscle cells [80–82]. Over 
time, VZV gradually invades the mid and inner mem-
branes. Cell adhesion and migration is also an important 
factor in the process of  VZV leading to atherosclerosis. 
When endothelial cells are activated, many cells adhere 
and migrate, and release cytokines involved in binding to 
endothelial cells and penetrating the arterial wall to exac-
erbate inflammation.

Subsequently, low-density lipoprotein (LDL) under-
goes oxidation and accumulates in the vessel lining, and 
monocytes differentiate into macrophages that phago-
cytose oxidized LDL deposits and transform into foam 
cells, leading to the formation of atherosclerotic plaques 
[83]. In the late stage of atherosclerosis, a large number 
of inflammatory cytokines infiltrate the vessel wall, and 
the synergistic effect of all pro-inflammatory signals 
within the plaque not only enhances inflammation but 
also secretes matrix metalloproteinases (MMPs). MMPs 
could degrade collagen fibers in the ECM of the plaque 
and impede the mechanical stability of inflamed tissue 
to support renewal of structural elements [84], lead-
ing to plaque rupture, hemorrhage, and thrombosis. 
The enrichment results of GO and KEGG include Focal 
adhesion, cell adhesion molecule binding, glycosamino-
glycan binding, calcium ion binding, G protein-coupled 
receptor binding, cadherin binding, positive regulation 
of fibroblast migration and other processes. These results 
indicate that the cell adhesion and migration are involved 
in the pathological process of arteriosclerosis.

The ECM is an important component of the BBB struc-
ture. Immune thrombosis in COVID-19 is dominated by 
pulmonary venous and microvascular thrombosis [85–
87]. VZV differs from COVID-19 in that directly infects 
cerebral arteries, unlike other parts of the vasculature, 
an important barrier exists in the blood vessels within 
the brain that is the BBB. ECM disrupted by MMPs, 
which leads to increased BBB permeability, further 
allows peripheral immune cells to enter the endothelium, 
exacerbating the inflammatory response and oxidative 
stress. Severe cases can trigger hemorrhagic transfor-
mation, often with much more severe consequences 
than IS. Exacerbated cellular inflammation secretes 
cytokines that further promote vascular smooth mus-
cle death, leading to intimal thickening with myofibro-
blast accumulation. The whole process enters a vicious 
cycle. Results of KEGG and GO enrichment analysis are 

widely enriched in ECM–receptor interaction, regula-
tion of actin cytoskeleton, ECM binding, ECM structural 
constituent, collagen-containing ECM, focal adhesion, 
protein complex involved in cell adhesion, basement 
membrane, and other items. This suggests that the dis-
ruption of the ECM is involved in the VZV-IS pathologi-
cal process.

Over time, vascular calcifications can occur in the 
intima or mesoderm of the arterial wall, increasing arte-
rial stiffness [88]. Calcification is usually considered ben-
eficial in that it makes the plaque stable, but this also 
correlates with the nature of the plaque, spotty calcifi-
cations on the contrary, in other words the calcification 
effect of the plaque is bidirectional [89]. However, the 
outcome of this VZV-induced plaque calcification may 
be harmful in terms of the increased risk of IS within one 
year of VZV activation. As plaque enlarges and the elastic 
layer disrupts, it eventually leads to atherosclerosis. There 
are no studies focusing on atherosclerosis due to VZV. 
Determining the mechanism of plaque calcification due 
to VZV will need to be confirmed in future studies. Sev-
eral items in GO enrichment are related to biominerali-
zation, including calcium ion binding, cadherin binding, 
regulation of calcium ion transport, positive regulation of 
biomineralization, etc. This suggests that atherosclerosis 
due to biomineralization is involved in the pathological 
process of VZV-IS.

KEGG and GO enrichment analysis are enriched in 
vascular smooth muscle contraction, vasculogenesis, 
blood vessel diameter maintenance, cGMP-PKG signal-
ing pathway, and other items. This suggests that nitric 
oxide (NO) is also an important pathological process 
involved in VZV-IS. The suppression of VZV immunity 
that may result from NO production during inflam-
mation is mediated by T cells [90]. Regulation of actin 
cytoskeleton and NO are closely related, and these mech-
anisms may reduce vascular resistance by increasing 
secretion of MMPs to depolymerize actin [91, 92]. How-
ever, this is associated with the accumulation of more 
damaging ECM by MMPs released through inflammation 
and oxidative stress, which exacerbates BBB and vascu-
lar structural damage and causes more severe inflamma-
tion. Not only inflammatory and immune responses, 
but also vascular regulation receives regulation by NO, 
such as contraction of vascular smooth muscle. Human 
defense regulatory mechanisms may play a deleteri-
ous role in the VZV-IS process. Contraction of vascular 
smooth muscle narrows the internal diameter of the ves-
sel, increasing the flow rate and exacerbating atheroscle-
rosis with destruction of elastic and collagen fibers, and 
rupture of the internal elastic layer. Sclerotic arteries 
and plaques reduce the elasticity and diameter of arter-
ies, which in turn causes a decrease in blood flow rate. 



Page 13 of 19Wang et al. European Journal of Medical Research          (2023) 28:400  

To maintain blood flow rate, vascular smooth muscle 
contraction causes an increase in blood pressure, and 
high blood pressure further leads to atherosclerosis. Ath-
erosclerosis eventually leads to complete blockage of the 
vessel causing IS in two ways, including plaque rupture 
and nonrupture. Atherosclerosis without rupture leads 
to vascular occlusion due to atherosclerotic plaques that 
continue to expand until they completely block the ves-
sel, which does not need to be elaborated. When athero-
sclerotic plaque ruptures, it leads to platelet aggregation, 
thrombosis, and vascular occlusion. In pathophysiology, 
platelets and activated endothelial cells can be associ-
ated with the secretion of protein disulfide isomerases. 
Protein disulfide isomerases can react with free radicals 
and promote thrombosis. Healthy arterial endothelial 
cells limit clot formation by activating eNOS to release 
NO, thereby controlling clot size. Endothelial cells can 
also limit thrombus formation by blocking platelet acti-
vation through the release of adenosine and acting as 
anti-inflammatory mediators through their receptors 
[93]. Owing to impaired function, NO release is inhib-
ited and endothelial cells located around atherosclerotic 
lesions lose their ability to regulate clot propagation [94, 
95]. Several other factors exacerbate this process, includ-
ing estrogen, LDL, and calcium ions.

Estrogen pathway was found in KEGG enrichment of 
VZV-IS. We suggest that the estrogen protection against 
VZV in women is bidirectional. Studies have shown that 
the risk of VZV-induced atherosclerosis is higher in men 
than in women [82]. 50.7% of VZV infections in men 
occurred before 45 years of age, but only 23.5% in women, 
while in the total population, infections were more com-
mon in women than in men, suggesting that postmeno-
pausal women with abrupt changes in estrogen levels 
are exposed to VZV [96]. It is clear that estrogen plays a 
crucial role in the pathogenesis of VZV-IS, although this 
mechanism is not clear. Because the protective effects of 
estrogen are broad, including positive effects on blood 
pressure, lipids, and glucose, it is noteworthy that estro-
gen is equally protective against IS. Studies have found 
that the expression of calcium-related genes and intracel-
lular calcium content are increased after VZV infection 
of cells [97].

GO enrichment results were enriched in calcium ion 
binding, regulation of calcium ion transport, regulation 
of calcium ion transport, and other items. It is suggested 
that the mechanism of VZV leading to atherosclerosis 
may be related to the regulation of calcium. Unlike the 
normal slow progression of atherosclerotic plaques, ath-
erosclerosis due to infection is rapid and unstable. In par-
ticular, VZV directly invades the outer membrane of the 
cerebral arteries and then the inner membrane leading to 
atherosclerosis and stenosis within the cerebral arteries. 

In addition, due to the intense inflammation and immune 
response, this process is more rapid and intense than 
normal atherosclerotic plaque formation. Therefore, the 
year of VZV outbreak is a high-risk period for IS.

Hyperlipidemia is one of the risk factors for VZV-
induced IS. However, the study found that the lipid-low-
ering drug statin increased the risk of VZV development, 
a result that is clearly confusing [98, 99]. This may be 
related to immunothrombosis. The response to blood-
borne pathogens and tissue damage is a coordinated 
intravascular coagulation, recently termed immuno-
thrombosis, which allows platelets and immune cells to 
form a physical barrier that prevents pathogen trans-
mission and activates the immune system. In contrast, 
platelets carry transcripts of all pathogen-sensitive toll-
like receptors. During certain bacterial infections, plate-
lets are able to induce prothrombotic events, secrete 
cytokines, chemokines and antimicrobial peptides, 
leading to bacterial isolation and destruction [100]. It is 
unclear whether thrombosis in viral infections is defense 
system reactive or similar to the function during bacte-
rial infections. Immunothrombosis is mainly associ-
ated with neutrophils, platelets, coagulation factors, 
fibrinogen and monocytes [101]. The main process is 
such that endothelial activation causes platelet and leu-
kocyte attachment due to the activation of inflamma-
tory venous endothelium and increased expression of 
surface selectins. The attached leukocytes are activated 
and initiate the expression of tissue factor, which in turn 
activates the coagulation cascade. The protective antico-
agulant effect of the endothelial surface is counteracted 
by low blood flow. Low blood flow may lead to hypoxic 
conditions, which have been described to increase the 
expression of endothelial adhesion molecules and the 
consequent leukocyte adhesion that occurs. Therefore, 
the treatment of atherothrombosis includes prevention 
of platelet activation and aggregation, and prevention of 
atherosclerotic plaque rupture. According to common 
sense statin instead has a plaque stabilizing effect that 
protects against VZV-IS. However, on the contrary, statin 
increases the spread of VZV, and this is puzzling.

We propose a possible mechanism by which the body’s 
defense mechanisms are activated after VZV infection, 
inducing plaque to accumulate at the VZV-infected site, 
form plaques that wrap around the infected area, and 
prevent VZV transmission. The increased risk of VZV 
development by statin treatment may be due to that it is 
the body’s defense mechanisms that induce the conver-
sion of high-density lipoprotein cholesterol (HDL-C) to 
LDL, and statin treatment causes a lack of raw material 
for the formation of plaques covering the infected area, 
leading to an increased risk of plaque shedding. This 
also exposes a drawback of most drugs that they are too 
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homogeneous in their therapeutic mechanisms, which is 
a fatal drawback in complex diseases. It suggests that we 
should adopt a multi-targeted therapy for the treatment 
and prevention of VZV-IS.

The treatment of VZV-IS is now mainly based on the 
antiviral, hormonal, and symptomatic therapies [102, 
103]. There are some potential risks associated with these 
treatments, for example: hormonal therapy has been 
found to be associated with an increased risk of stroke 
in the first years of treatment [100]. A recent cross-sec-
tional study of 2,787 postmenopausal women receiving 
hormone therapy suggested that both estradiol and sex 
hormones promoted prothrombotic events [104]. The 
complex pathological mechanism of VZV-IS makes it 
difficult to study its specific molecular mechanism in a 
short time. However, it is urgent to develop a safe drug 
with few side effects and adverse reactions to protect 
VZV patients from developing IS as soon as possible.

We screened 20 drugs based on the hub genes of 
VZV-IS. However, as a drug to protect or prevent VZV-
induced IS, it should have several characteristics: (1) 
conform to Lipinski’s rule of five, (2) have good bioavail-
ability, (3) be able to cross the BBB, (4) have low toxicity, 
(5) be affordable, (6) be multitarget therapeutic, (7) have 
low adverse effects when used with other drugs, and (8) 
preferably already in wide use. Resveratrol, Melatonin, 
Menthol, and Aspirin conform all these characteristics.

Resveratrol is the best choice among these four alterna-
tive drugs. Resveratrol is a natural product, widely avail-
able in grapes, easy to extract, and inexpensive [105]. 
It can act on 8 out of 10 hub genes, which is the largest 
number of hub genes among the 20 alternatives, while 
the remaining three alternatives act on only 2 hub genes. 
Resveratrol has been shown to inhibit VZV virus and IS 
protection in experiments [18, 106–117].

The recent studies have also found a protective effect 
of resveratrol in older females [107], with the main 
mechanism being the protection of older female IS 
patients through the estrogen pathway [108]. This sug-
gests that resveratrol is a natural, alternative drug to 
estrogen. Resveratrol also reduces the levels of MMPs 
[109] and improves the integrity of the BBB, which is 
destroyed for multiple reasons [110–112]. Resveratrol 
also regulates intestinal flora [113], increases T regu-
latory cells [114], and possesses vascular endothelial 
protection [115], antioxidative stress [116], anti-inflam-
mation [117], hypoglycemic effect [118], hypotensive 
effect [119], hypolipidemic effect [120], vasodilator 
[121], antiplatelet aggregation [122], anticoagulation 
[123], antiatherosclerosis [124], and other functions. 
Together, these protective functions may reduce the 
incidence of IS after VZV. No resveratrol-related 
adverse effects and toxicity were reported in volunteers 

after oral administration of 500  mg/day of resveratrol 
[125]. Moreover, resveratrol is safe and well tolerated at 
doses up to 5  g/d and there is no increase in toxicity 
with long-term intake [126, 127]. Although polyphenols 
(resveratrol) are generally safe, there is still a need to be 
aware that higher doses and prolonged use may cause 
gastrointestinal adverse effects, such as upset stomach, 
muscle relaxation and sedation [128].

Melatonin, a hormone secreted by the pineal gland in 
response to photoperiodic responses, has shown prom-
ising results in the treatment of several diseases, includ-
ing IS and VZV [129, 130]. Recent studies have found 
it to have excellent antioxidative stress, anti-inflam-
matory and antiviral effects [131]. Hence, melatonin is 
also an alternative to VZV-IS drugs. Menthol also has 
therapeutic effects on VZV and IS [132, 133]. Men-
thol is poor water soluble and prone to be side effects 
when taken orally, and is more suitable as a topical 
agent that can exert analgesic, antipruritic and antivi-
ral effects on herpes on the skin surface [134]. Aspirin, 
the well-known nonsteroidal anti-inflammatory drug, 
has a variety of effects such as anti-inflammatory and 
anticoagulant effects [135]. Previous studies have found 
that aspirin can inhibit VZV activity [136], and aspi-
rin is one of the drugs used for secondary prevention 
of IS. However, aspirin has the disadvantage of induc-
ing asthma and upper gastrointestinal bleeding. It can 
be used as an adjuvant therapy for patients without 
contraindications.

It is unclear whether the atherosclerotic changes 
result from a linear progression due to ongoing damage 
triggered by chronic infection with VZV or from peri-
odic endothelial damage and incomplete healing due 
to reactivation of chronic infection to acutely activated 
infection. One view is that residual vascular inflam-
matory changes following an acute infection episode 
may persist and be further exacerbated by reactivation 
of new infection stimuli, and subsequent acute infec-
tions produce further damage to previously damaged 
and incompletely repaired vessel walls until this pro-
cess develops into mature atherosclerotic lesions [137]. 
However, regardless of the mechanism, anti-inflam-
matory, antiviral, antioxidative and anti-atheroscle-
rotic effects are important therapies and prevention of 
VZV-IS. Because these mechanisms are involved in the 
onset and development of IS. Resveratrol is certainly 
a good choice. To validate the role of resveratrol and 
hub genes, molecular docking and 100 ns molecular 
dynamics simulations were performed. The results of 
resveratrol and hub genes with molecular docking and 
molecular dynamics simulations showed good binding 
activity and stable interaction between resveratrol and 
hub genes. It is suggested that resveratrol may have the 
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potential to play a therapeutic and protective role in 
VZV-induced IS.

Conclusion
In terms of sequencing, there are no studies on VZV-IS. 
We have found the potential mechanism of VZV-IS by 
identifying DEGs between VZV and IS datasets. KEGG 
and GO enrichment results include regulation of inflam-
mation and oxidative stress response, regulation of 
vascular morphology and function, regulation of extracel-
lular matrix, regulation of ion transport, regulation of cell 
adhesion. Resveratrol is reasonably suggested as a drug 
because it is obtained by identifying hub genes, and it is 
a promising drug to become a therapeutic and preventive 
agent for VZV-IS. However, there is still no reliable ani-
mal model capable of simulating the VZV-IS pathological 
process. Simple animal models of VZV-infected middle 
cerebral artery occlusion do not representative of human 
VZV-IS pathological processes. Future development of 
stable animal models of VZV-IS is the basis for exploring 
the molecular mechanisms of VZV-IS and pharmacologi-
cal experiments.
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