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Abstract 

Adenosine N1 methylation (m1A) of RNA, a type of post-transcriptional modification, has been shown to play a signifi-
cant role in the progression of cancer. The objective of the current research was to analyze the genetic alteration and 
prognostic significance of m1A regulators in kidney renal clear cell carcinoma (KIRC). Genomic and clinicopathological 
characteristics were obtained from 558 KIRC patients in the Cancer Genome Atlas (TCGA) and Gene Omnibus Expres-
sion (GEO) databases. Alterations in the gene expression of ten m1A-regulators were analyzed and survival analysis 
was performed using the Cox regression method. We also identified three clusters of patients based on their distinct 
m1A alteration patterns, using integrated analysis of the ten m1A-related regulators, which were significantly related 
to overall survival (OS), disease-free survival (DFS) and tumor microenvironment (TME) immune cell infiltration cells 
in KIRC. Our findings showed that m1A alteration patterns have critical roles in determining TME complexity and its 
immune cell composition. Furthermore, different m1A expression patterns were significantly associated with DFS 
and OS rates in KIRC patients. In conclusion, the identified m1A RNA modification patterns offer a potentially effective 
way to classify KIRC patients based on their TME immune cell infiltration, enabling the development of more personal-
ized and successful treatment strategies for these patients.
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Introduction
Kidney cancer is one of the most prevalent types of can-
cer in both males and females. The number of patients 
with kidney cancer has increased in the past two dec-
ades, comprising up to 2–3% of all new occurrences of 
cancer [1]. Renal cell carcinoma (RCC), is  the most fre-
quent type of kidney cancer, accounting for up to 85% 
of all cases [2]. RCC affects approximately 400000 indi-
viduals annually worldwide [3]. It mostly affects males 
over the age of 60 [4]. Among different pathological sub-
types of RCC, kidney renal clear cell carcinoma (KIRC) is 
the most common subtype, comprising 75% of all renal 
cell cancer cases [5]. Surgical resection  is often the only 
effective treatment option for KIRC, since it is gener-
ally resistant to chemotherapy and radiotherapy [6]. 
However, even with early surgical intervention, 30% of 
patients with localized tumors will subsequently show 
metastasis [7]. Therefore, early identification of KIRC 
patients with high metastasis risk could be useful for a 
more accurate prediction of clinical outcome. Further-
more, effective tumor immunotherapy biomarkers will be 
advantageous to improve the response rate. In addition, 
determining patient subgroups that could benefit from 
certain targeted therapies requires urgent investigation 
of the factors involved in the carcinogenesis and progres-
sion of KIRC.

Moreover, omics approaches, encompassing genom-
ics, transcriptomics, proteomics, and metabolomics, 
have revolutionized the management of different cancer 
types as well as RCC [8]. Early detection and diagnosis 
benefit from omics-derived biomarkers, enabling timely 
intervention for improved outcomes [9]. Fujiwara et al.’s 
study underscores the significance of omics studies in 
cancer management, with a focus on early detection and 
diagnosis through omics-derived biomarkers. They high-
lighted that various biomolecules, including germline 
DNA polymorphisms, transcriptomic dysregulations, 
circulating molecules, and gut microbiota, contribute to 
predicting hepatocellular carcinoma (HCC) risk, enhanc-
ing the potential for accurate early diagnosis and timely 
intervention [10]. Furthermore, the study by Qu et  al. 
highlights the crucial role of omics studies in managing 
ccRCC. Through a comprehensive proteogenomic analy-
sis, the study reveals metabolic dysregulation, an ampli-
fied immune response, and molecular subtypes in ccRCC 
[11]. The identification of potential markers and drug tar-
gets emphasizes how omics approaches provide insights 
into disease complexity, enabling personalized treatment 
strategies and improved patient outcomes. In sum, omics 
transforms RCC management, driving us toward person-
alized therapeutic approaches, early interventions, and 
improved patient outcomes [12].

Major cellular functions, such as cell differentiation, 
critical cellular signaling pathways, and cell metabo-
lism are partly regulated at the post-transcriptional level 
through biochemical modifications of RNA [13]. To date, 
more than 170 post-transcriptional biochemical modifi-
cations of RNA have been reported in noncoding RNAs 
and mRNAs, generating functional differences [14]. The 
most common types of such alterations are N1-methyl-
adenosine (m1A) [15], N6-methyladenosine (m6A) [16], 
pseudouridine (Ψ) [17], and 5-methylcytosine (m5C) [18] 
modifications. m1A modification is a type of dynamic 
reversible methylation at the N1 position of adenosine in 
mammalian cells, contributing to RNA secondary struc-
ture stabilization and alteration in protein − RNA binding 
interactions [19]. Methyltransferases, binding proteins, 
and demethylases, the so called “writers” (TRMT6/61A, 
TRMT61B, and TRMT10C), “readers” (YTHDC1, 
YTHDF1, YTHDF2, and YTHDF3), and “erasers” (FTO, 
ALKBH1, and ALKBH3), respectively, are the major 
regulators of m1A modification [19]. In summary, “writ-
ers” and “erasers” methylate and demethylate, respec-
tively, while “readers” identify and bind to methylation 
spots [20]. The function of each "reader" determines the 
endpoint of the modified RNA including  splicing, sta-
bility  and/or translation [21]. The current studies sug-
gest that m1A regulators’ genetic mutation  may affect 
the transcription and translation processes, leading to 
abnormal cell proliferation and tumorigenesis [22]. In 
this case, according to Shi et al., m1A-related regulatory 
genes are essential for the tumorigenesis of hepatocellu-
lar carcinoma and have prognostic and diagnostic value 
[23]. Zheng et al. reported that dysregulation of the m1A-
related regulatory genes can be identified as prognostic 
biomarkers for pancreatic cancer [24]. Moreover, Gao 
et  al. revealed that different RNA modification patterns 
are correlated with tumor immune microenvironment 
characteristics in oral squamous cell carcinoma. Based 
on their results, two different clusters on the basis of 
m1A gene signature were identified, which were corre-
lated with prognosis and immune microenvironment fea-
tures [25]. With regard to KIRC, YTHDF2, a well-known 
m6a reader protein, has been shown to be an indicator 
of higher immune cell infiltration and its higher expres-
sion was associated with longer overall survival rate [26]. 
Nonetheless, the role of m1A modification is not com-
pletely understood in KIRC and  a  broader investigation 
of these regulators would aid in elucidating the possible 
functions of m1A modifications in different physiological 
and pathological processes.

In the present study, we analyzed the clinicopathologi-
cal data from a cohort of 558 KIRC patients from The 
Cancer Genome Atlas (TCGA-KIRC) and Gene Expres-
sion Omnibus (GEO) databases. We then analyzed the 
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alterations in the profiles of ten m1A-related regulatory 
genes and identified the associations between their modi-
fication patterns, expression data, somatic mutations, 
and clinicopathological characteristics including progno-
sis in KIRC patients. In addition, different m1A modifi-
cation patterns were identified and their correlation with 
immune infiltrating cells within the tumor microenviron-
ment (TME) was investigated. To further investigate the 
functions of the identified differentially expressed genes 
(DEGs), gene set enrichment analysis (GSEA) was carried 
out. To discover the putative signaling pathways Kyoto 
Encyclopedia of Genes (KEGG) and Genomes analyses 
were performed. Ultimately, we evaluated the association 
between the expression patterns of m1A regulators and 
disease-free survival (DFS) in KIRC patients.

Methods
Data acquisition
The Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases were used to download 
clinical information as well as gene expression and RNA-
sequencing data of KIRC patients. In summary, two eli-
gible KIRC cohorts (TCGA-KIRC and GSE22541) were 
identified suitable for our analysis. The data of the TCGA-
KIRC dataset was downloaded through the UCSC Xena 
portal (https:// xenab rowser. net/ hub/). Somatic muta-
tion data was further obtained from the TCGA-KIRC 
cohort for further analysis. “GEOquery” package of R was 
utilized to obtain the expression profiles of GSE22541 
patients. The final expression values were obtained after 
quantile normalization and log2(x + 1) transformation. 
When a single gene had numerous probes, the mean 
expression was calculated. Genes with no expression 
values  were excluded from the study. Patients without 
prognostic data were not included in the analysis. Table 1 
provides an overview of the clinical characteristics of the 
cohorts included in the present study.

DEG identification, somatic mutation analysis, 
and prognostic study of the 10 m1A regulatory genes
To identify survival-related  regulatory genes among the 
10 m1A regulators, a univariate cox regression analysis 
was conducted. Forest plot and Kaplan–Meier curves 
were depicted to identify the prognostic significance of 
the studied RNA regulators. The Spearman correlation 
method was used to analyze the relationship  between 
the 10 m1A-related regulators. In order to obtain differ-
entially expressed m1A-related regulatory genes (m1A-
related DEGs) between the tumor and normal samples 
or between different subtypes, the “limma” package 
of R was used and the adjusted p value cutoff was set 
as < 0.05. Ultimately, the Maftools R package was used to 

investigate the tumor mutational burden related to the 
10 m1A regulatory genes.

Unsupervised hierarchical clustering of 10 m1A‑related 
methylation regulators in KIRC
The 10 m1A-related regulators including ALKBH1, 
ALKBH3, TRMT10C, TRMT6, TRMT61A, TRMT61B, 
YTHDC1, YTHDF1, YTHDF2, and YTHDF3 were 
selected to construct different modification patterns. 
Subsequently, unsupervised hierarchical clustering analy-
sis was performed using the R package. Accordingly, 558 
patients were classified into three distinct subgroups 
(“C1”, “C2”, and “C3”). The “pheatmap” package of R was 
implemented to visualize the heatmap of these three 
clusters.

Immune and stromal cell infiltration analysis
The ESTIMATE algorithm was applied to evaluate the 
degrees of immune cell infiltration among different clus-
ters. The immune, stromal, and ESTIMATE scores were 
calculated and then a gene set of human immune cell 
subtypes was retrieved from published references. The 
single-sample gene set enrichment analysis (ssGSEA) 
was performed to evaluate the relative abundance and 
levels of activity of each immune cell type in the TME 

Table 1 Clinical characteristics of the cohorts included in this 
study

TCGA‑KIRC (n = 534) GSE22541 (n = 24)

Sex

 Male 348 (64.1%) 13 (54.2%)

 Female 186 (35.9%) 11 (45.8%)

Age

 Median 61 –

 Range 26–90 –

TNM Stage

 I 268 (50.2%) 10 (41.7%)

 II 58 (10.9%) 9 (37.5%)

 III 123 (23.0%) 5 (20.8%)

 IV 82 (15.4%) 0 (0%)

 Not available 3 (0.5%) –

Grade

 G1 14 0

 G2 231 18

 G3 206 6

 G4 75 0

 Gx 8 0

Follow up

 Alive 361 (67.6%) –

 Death 173 (32.4%) –

 Median OS 38.8 72.5

https://xenabrowser.net/hub/
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of KIRC. Moreover, to evaluate the differences in the 
immune subtypes, the proportion of infiltrating immune 
cells in KIRC patients with their expression patterns were 
assessed using CIBERSORT.

Functional enrichment analysis
Gene ontology (GO) and KEGG pathway analysis were 
conducted using the clusterProfiler and ggplot2 R pack-
ages. The inclusion criteria were set as p < 0.01 and 
q < 0.05.

Construction and validation of m1A gene signature
A random forest classifier was constructed by random 
based m1A gene’s expression in TCGA-KIRC dataset. 
Using the same classifier, subtype labels of patients from 
independent cohorts were classified. Before classifier 
construction and validation, the expression values of all 
the cohorts were Z score normalized, respectively.

Results
The landscape of m1A‑related regulatory genes in KIRC
Briefly, 10 m1A regulatory genes were analyzed in 
the present study, including four writers (TRMT61A, 
TRMT61B, TRMT6, and TRMT10C), four erasers 
(YTHDF1, YTHDF2, YTHDF3, and YTHDC1), and 
two readers (ALKBH1 and ALKBH3). Initially, the rela-
tionship between the selected m1A regulatory genes 
were studied in the TCGA-KIRC dataset. As shown in 
Fig.  1A, TRMT61B-YTHDF3 and TRMT61A-YTHDF3 
had the strongest and weakest relationships among oth-
ers, respectively. In addition, a comparison of the expres-
sion  data revealed that 7 out of the 10  m1A regulators 
were dysregulated in the TCGA-KIRC patients, while the 
remaining three (TRMT61A,  YTHDC1, and YTHDF1) 
did not show significant changes.  Furthermore, clinical 
data from the TCGA-KIRC dataset  was extracted and 
univariate Cox analysis on the 10 regulatory  genes was 
implemented. The findings revealed that 2 out of the 10 
genes (TRMT6 and TRMT61A) were strongly associated 
with poor  prognosis of KIRC  patients (Fig.  1B). Among 
the regulatory genes, ALKBH1 and ALKBH3, which are 
methylation erasers, were upregulated and TRMT10C, 
TRMT6, TRMT61B, YTHDF2, and YTHDF3 were 
downregulated in tumor samples in comparison to 
normal tissues (Fig.  1C). In addition, we identified a 
strong  association between the ten m1A regulators and 
the present TME-infiltrating immune cells employing the 
Spearman’s correlation analysis and  GSEA method for 
infiltrated immune cells. Our results indicated that most 
of these regulators have varied degrees of association 
with immune cells.  Meanwhile, the regulator YTHDC1 
was positively associated with the infiltration of most of 
the immune cells (Fig.  1D). Based on these findings, it 

can be concluded that m1A regulators are among critical 
role players  in the continuous dynamics of the immune 
microenvironment as KIRC progresses. Finally, mutation 
frequency of the selected m1A regulators were analyzed 
in TCGA-KIRC. Our findings revealed that 7 out of 558 
KIRC samples carried m1A-related regulatory mutations, 
which ranged from 14 to 43% for 5 genes (YTHDC1, 
ALKBH1, TRMT61B, YTHDF2, and YTHDF3) and 
YTHDC1 was the top-ranked gene with 43% mutation 
among others (Additional file 1: Figure S1).

Unsupervised hierarchical clustering based on the m1A 
modification patterns and its correlation with different 
tumor infiltrating cells
Five hundred and thirty-four KIRC  patients from the 
TCGA dataset (the Cancer Genome Atlas-Kidney Renal 
Clear Cell Carcinoma) were included in unsupervised 
clusters for categorizing the various m1A modification 
patterns based on the expression levels of the ten  m1A 
regulators. Finally, we identified three distinct m1A 
modification patterns, which were classified as ‘‘C1, C2, 
and C3’’. These clusters are depicted in a dendrogram in 
Fig. 2A as well as in a heatmap in Fig. 2B. Subsequently, 
the expression differences of the ten m1A-related regu-
lators between the identified clusters was visualized and 
most of the regulators were upregulated in the C3 cluster 
(Fig.  2C). Subsequently, we performed a comprehensive 
assessment of the landscape of tumor infiltrating cells 
between the three clusters with the results revealing that 
the C3 and C2 clusters had higher abundance of differ-
ent immune cells, while the C1 cluster only displayed 
endothelial cells as the most abundant cells. (Fig.  2D) 
We also performed differentially expressed gene analysis 
using whole-transcriptomic data. A clear pattern could 
be found by heatmap for differentially expressed genes at 
transcriptomic level (Additional file 2: Fig. S2B).

The mutational pattern and immune landscape 
of the three identified clusters
Our results revealed that the three identified clusters dis-
played different enrichment mutations. In this regard, 
PBRM1 and PBRM were the top-ranked significant genes 
with higher mutation frequencies in the C1 and C3 clus-
ters, respectively (Additional file  2: Figure S2A). Next, 
using the ESTIMATE method, we determined the abun-
dance of immune and stromal cells present in the KIRC 
samples. As per the results, the C1 cluster was character-
ized by a higher stromal score, while the C3 cluster had a 
lower immune score (Additional file 2: Fig. S2B).
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Fig. 1 The landscape of m1A-related regulators in KIRC. A Crosstalk and relationship of the ten m1A regulators in the TCGA-KIRC patients. B 
Univariate cox analysis of the ten m1A-related regulatory genes C Differentially expressed genes of the ten m1A-related regulators between tumor 
and normal samples of the TCGA-KIRC cohort. D Correlation of the ten m1A-related regulators with tumor infiltration of immune cells 
in the TCGA-KIRC patients
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Fig. 2 m1A modification patterns. A Dendrogram of hierarchical clustering of the ten m1A-related regulators in the TCGA-KIRC cohort. B Heatmap 
of the identified modification patterns in the TCGA-KIRC cohort. C Distribution of the ten m1A-related regulators in the three distinct modification 
patterns. D The proportion and abundance of the 7 tumor infiltrating cell types in the identified modification patterns
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Association between different identified clusters 
with clinicopathological characteristics, enriched 
pathways, and distinct gene signatures
Given the importance of m1A-related regulators  in 
cancer progression, we subsequently assessed the rela-
tionship between modifications of the m1A-related 
regulatory genes and patient clinicopathological char-
acteristics. The associations between m1A modification 
patterns and the clinicopathological features are illus-
trated in distinct heatmaps (p values of hypergeometric 
test were shown) in Fig. 3A–C. As shown in Fig. 3A–B, 
patients in the C2 cluster showed higher tumor grades, 
while the C1 cluster had more tumor-free patients 
across other clusters indicating the critical roles of m1A 
regulators in the progression of KIRC. In terms of gen-
der, the C1 and C3 clusters were mostly comprised of 
males and females, respectively. Furthermore, func-
tional enrichment analysis revealed that “oxidative 
phosphorylation”, “ribosome”, “complement and coagu-
lation cascades”, “primary immunodeficiency”, “spliceo-
some”, “cytokine − cytokine receptor interaction”, and 
the “mRNA surveillance pathway” were among the top 
pathways, which were significantly different between the 
three clusters (Fig.  3D). Finally, we identified the gene 
signatures of each of the three clusters. Our gene signa-
ture results showed that, in the C2 cluster, the expression 
level of PD-1 was higher, while its ligand, PDL-1, showed 
a lower expression, as compared to the other clusters.

Subtype of m1A regulators was associated with KIRC drug 
resistance and prognosis
Given our findings that the identified clusters exhibit 
different compositions of immune cells, we checked 
whether these differences correlate with response to 
treatment in these patients. Seven common chemother-
apy drugs for which the required data was available were 
selected and the AUC values were calculated to predict 
sensitivity to each drug. Based on the results, patients 
within certain clusters show higher levels of resistance to 
certain chemotherapy drugs as indicated by their higher 
AUC values (Fig.  4A). To further investigate the pos-
sible correlation of different immune populations with 
response to these drugs, Spearman`s correlation test 
was performed, and the data was presented as a heat-
map (Fig. 4B). Our analysis unveiled noteworthy associa-
tions, indicating that specific immune cell types exhibited 
varying degrees of infiltration following exposure to 
chemotherapy drugs. Particularly, endothelial cells and 
cancer-associated fibroblasts demonstrated increased 
infiltration subsequent to treatment with BRD-1835 and 
Sotrastaurin. On the other hand, CD8 + T-cells, T-cells, 
and B-cells displayed enhanced infiltration in response 
to the chemotherapy agent, BRD-k96431673. These 

findings offer valuable insights into the intricate interplay 
between chemotherapy agents and immune cell popula-
tions within the tumor microenvironment. The observed 
variations in immune cell infiltration may be indicative of 
drug-specific effects on the immune response, potentially 
contributing to the differential therapeutic outcomes of 
these agents. The heightened presence of endothelial cells 
and cancer-associated fibroblasts could be suggestive of 
their potential roles in the response to BRD-1835 and 
Sotrastaurin, possibly influencing the tumor’s vascular 
microenvironment and fibrotic interactions. Conversely, 
the increased infiltration of CD8 + T-cells, T-cells, and 
B-cells following treatment with BRD-k96431673 might 
point towards an enhanced immunogenic response, 
implying the drug’s impact on modulating the immune 
cell composition to facilitate a more robust antitumor 
immune activity.

To assess the prognostic significance of the three dis-
tinct clusters in KIRC, we performed a univariate cox 
regression analysis on both the TCGA − KIRC and 
GSE22541 cohorts to identify survival-associated clus-
ters. As shown in Fig. 5A, B, the clusters C3 and C2 in the 
TCGA-KIRC cohort showed better and worse DFS and 
overall survival (OS) rates, respectively. Similarly, among 
the GSE22541 patients, the C3 cluster had a better DFS 
rate, while the C2 cluster showed a poorer DFS as com-
pared to the other clusters (Fig.  5C). Taken together, 
these findings indicate the fact that the expression pat-
terns of m1A regulators are associated with prognosis in 
KIRC patients.

Discussion
RNA modification has been emerged as a hot topic of 
“RNA epitranscriptomics”, also known as “RNA epige-
netics”, defined as different types of biochemical modi-
fications in different coding and noncoding RNAs [27]. 
Generation of a N1-methyladenosine, the so-called m1A 
methylation, is among the post-transcriptional RNA 
modifications and has been shown to play an essential 
role in cancer progression [28]. As a new study focus, 
m1A RNA methylation has been attributed to a number 
of key biological processes, including protein translation 
[29] and RNA metabolism [30]. Nevertheless, investi-
gations on RNA modifications in KIRC patients have 
mostly focused on a few RNA modification regulators, 
particularly m6A-related regulators, with the functions of 
other types of RNA modifications and their interactions 
remaining unexplored.

In the present study, we aimed to analyze the altera-
tions in m1A-related regulators in KIRC and its relation-
ships with clinicopathological characteristics, using the 
TCGA-KIRC and GSE22541 databases. The differential 
expression, crosstalk, and potential prognostic values of 
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Fig. 3 Clinicopathological characteristics and biological pathways of the three modification patterns. A Neoplasm histologic grades (G1, G2, 
G3, G4, GX) of three distinct clusters. B Cancer status of the different modification patterns (“Tumor free” and “With tumor” subgroups). C Gender 
of the three identified clusters. The significance of hypergeometric distribution test was shown in each cell. D Biological and KEGG pathway 
enrichment analysis of the three m1A modification patterns based on GSEA. D Immune checkpoint gene signature of the three identified clusters. 
KEGG Kyoto Encyclopedia of Genes and Genomes; GSEA Gene set enrichment analysis
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the ten m1A-related regulatory genes in KIRC patients, 
as well as the associated biological activities and signal-
ing pathways, were investigated. Ultimately, certain m1A 
modification patterns among KIRC patients were identi-
fied and through this classification, immune cell infiltra-
tion, gene signature, clinicopathological features, drug 
resistance and prognostic values of each cluster was 
investigated.

We first evaluated RNA expression of the ten m1A-
related regulators in the TCGA-KIRC cohort and 
identified that 5 out of the 10 studied genes includ-
ing TRMT10C, TRMT6, TRMT61B, YTHDF2, and 

YTHDF3 were up-regulated in these patients, compared 
to the healthy tissues. Unlike previous genes, which are 
categorized as readers and writers, both eraser genes 
(ALKBH1 and ALKBH3) were shown to be downregu-
lated in KIRC patients. Demethylation by ALKBH1 has 
been shown to enhance the stability of tRNAs lead-
ing to decreased tRNA usage in the translation process 
[31]. In addition, individuals with pancreatic adeno-
carcinoma (PAAD),  whose expression of the ‘‘eraser’’ 
gene ALKBH1 is low, have a worse prognosis in com-
parison to high expressers [24]. Furthermore, recent evi-
dence  has shown that demethylation by ALKBH3 may 

Fig. 4 Correlation between immune cell infiltration and chemotherapy response; A Assessment of chemotherapy drug sensitivity was performed 
using Area Under the Curve (AUC) values derived from predictive modeling. The analysis was conducted for seven common chemotherapy drugs 
(Tanespimycin, ML162, BRD1835, 3-CIAHPC, ABT-737, BRD-K96431673, and Sotrastaurin), and patients were stratified based on their clustering 
profiles. The higher AUC values observed within specific clusters suggest a heightened resistance to certain chemotherapy drugs. B To explore 
the potential correlation between immune cell populations and drug response, Spearman’s correlation analysis was conducted and represented 
as a heatmap. The heatmap illustrates the associations between immune cell infiltration and chemotherapy response, providing insights 
into the interplay between immune populations and drug efficacy. Notably, distinct immune cell types exhibited varying degrees of infiltration 
in response to different chemotherapy agents
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Fig. 5 Association of the m1A expression pattern with disease free survival and overall survival. A Association of the three identified modification 
patterns and DFS in TCGA-KIRC cohorts. B Correlation of m1A expression pattern and OS in the TCGA-KIRC cohort. C Association of the m1A 
expression pattern and DFS in the GSE22541 patients. DFS Disease free survival, OS Overall survival



Page 11 of 15Zhou et al. European Journal of Medical Research          (2023) 28:321  

increase translation performance. Therefore, suppressing 
ALKBH3 may inhibit protein synthesis by increasing the 
quantity of m1A in tRNAs [15]. Moreover, mutation fre-
quency analysis revealed that the mutation burden varied 
from 14 to 43% in 7 samples of the analyzed cohorts, and 
YTHDC1 had the highest mutation burden among the 
other m1A-related regulators. Zheng et al. also reported 
that the clinical stage of patients with pancreatic cancer 
is correlated with genetic variants in the m1A regula-
tors, and copy number variations (CNVs) are strongly 
correlated with the expression of m1A regulators [24]. 
Li et al. conducted a thorough analysis of the correlation 
between the clinical information from 33 different can-
cer types from the TCGA and the molecular alterations 
of m1A-reated  regulators. Their team discovered that 
m1A-related regulatory gene expression was associated 
with a number of carcinogenic pathways and patient OS, 
suggesting that m1A regulators may be used to predict 
prognosis in a variety of cancers and may possibly give 
rise to novel therapeutic targets [32]. In our analysis, we 
identified that TRMT6 and TRMT61A were associated 
with a poor prognosis in TCGA-KIRC patients based on 
the univariate cox regression analysis. Similarly, Wang 
et al. demonstrated that the deregulation of m1A regula-
tors was significantly correlated with glioma tumorigen-
esis  and progression. Moreover, their findings indicated 
that TRMT6 may be a potent biomarker for glioma prog-
nosis [33]. In another parallel study, Wang et  al. con-
firmed that TRMT6 and TRMT61A are overexpressed 
in advanced hepatocellular carcinoma (HCC) tumors 
and correlate adversely with HCC  patient survival. In 
brief, they confirmed that TRMT6/TRMT61A increases 
m1A methylation in a subset of tRNAs to enhance PPAR 
translation, which in turn induces cholesterol production 
to activate Hedgehog signaling pathway, ultimately pro-
moting self-renewal of liver cancer stem cells and HCC 
tumorigenesis [34]. Moreover, the relationship between 
m1A regulators and TME-infiltrating immune cells has 
remained poorly understood. We discovered a substan-
tial correlation between the ten  m1A regulators and 
the TME-infiltrating immune cells using the GSEA algo-
rithm, suggesting the possible function of m1A regula-
tors in the immunological TME and eventual progression 
of KIRC.

Here, we also identified three m1A modification pat-
terns on the basis of the ten studied m1A regulators in 
the TCGA-KIRC patients, which we labeled as Cluster 
“C1”, Cluster “C2”, and Cluster “C3”. Growing evidence 
suggests that m1A modification patterns may impact 
different clinicopathological features including the infil-
tration of immune cells, tumor grade, cancer status, and 
prognosis of the patients [35]; consequently, the asso-
ciations between RNA modification imposed by m1A 

methylation and the such characteristics has been emerg-
ing as a hot topic in cancer field. In this context, Liu 
et al. discovered three distinct m1A alteration patterns in 
ovarian cancer that may forecast patient survival, tumor 
grade, and stage [36]. Within the distinguished clusters, 
patients in the C2 cluster displayed the poorest prognosis 
and the highest tumor grades among other clusters in the 
KIRC cohorts. Meanwhile, C1 showed a higher stromal 
score, while Cluster C3 had lower immune score based 
on the ESTIMATE algorithm. Regarding the poor prog-
nosis of the C2 cluster, TME immune cell infiltration data 
revealed that this cluster has the highest abundance of B 
lymphocytes and neutrophils. Tumor-suppressive effects 
of B lymphocytes  are highlighted by a number of stud-
ies, which have established a correlation of B lympho-
cytes with longer survival rates in multiple malignancies 
[37–39]; however, in other tumors, the relationship 
between B lymphocytes and prognosis was less evident, 
and some investigations have even linked B lymphocytes 
to a worse prognosis [40]. Interestingly, as an indicator of 
inflammation, tumor-infiltrating neutrophils (TINs) have 
been correlated with poor prognosis in different types of 
malignancies. With regard to KIRC, Tessier-Cloutier 
et al. reported that TINs can act as independent indica-
tors of poor prognosis, which can be clinically utilized in 
the biopsy or fine-needle aspiration [41]. Paradoxically, 
based on the ESTIMATE algorithm, C2 had the highest 
immune score in comparison to C1 and C3 clusters. As 
previously reported, the presence of numerous immune 
cells preserved in the stroma around tumor cell nests may 
activate the stroma of TME, hence hindering an effec-
tive immune response [42]. Consequently, we hypothe-
sized that the activation of stromal cells in the C2 cluster 
decreased the antitumor activity of immune cells. Fur-
thermore, GSEA analysis demonstrated that the three 
m1A modification patterns followed statistically distinct 
pathways. C3 with the best OS included spliceosome and 
mRNA surveillance pathways, C1 with the poorer prog-
nosis included proteoglycan in cancer, actin cytoskeleton 
control, and cell adhesion molecules, and C2 with the 
worst prognosis was mainly enriched in oxidative phos-
phorylation and ribosome pathways.

Our comprehensive analysis revealed significant find-
ings through functional enrichment assessment, with 
prominent involvement of key pathways such as ‘‘oxida-
tive phosphorylation’’ and ‘‘complement and coagulation 
cascades.’’ These results align notably with the underlying 
nature of RCC, which fundamentally manifests as a met-
abolic disorder marked by the strategic reprogramming 
of energetic metabolism [43]. Of note, this metabolic 
reprogramming equips tumor cells with the means to 
endure conditions of energy scarcity and hypoxia, foster 
the synthesis of essential biomolecular (such as proteins, 
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DNA, and membranes) to facilitate rapid proliferation, 
and elude host immunosurveillance while concurrently 
mitigating oxidative stress [44]. A consequential aspect 
of this metabolic shift is an alteration in levels of vari-
ous biochemical entities, including enzymes, substrates, 
metabolic intermediates, and ultimate products. These 
altered metabolomic profiles offer compelling pros-
pects as diagnostic biomarkers, enabling refined assess-
ments of tumor behavior encompassing aggressiveness, 
prognostic markers, and responsiveness to therapeutic 
interventions.

In a study conducted by Torsello et al., it was demon-
strated that high glucose levels induce notable alterations 
in mesenchymal markers, including Snail1, miRNA210, 
and Vimentin, within primary tubular cells. This coin-
cides with reduced N-cadherin expression and migration 
capabilities, coupled with altered inflammatory cytokine 
secretion, effectively modulating the proliferation and 
migration of fibroblasts. This mechanism evokes an acti-
vated state of partial epithelial − mesenchymal transition 
(EMT), a process implicated in the pathogenesis of dia-
betic nephropathy [45]. The work of Bianchi et al. corrob-
orates the grade-dependent prominence of the Warburg 
effect and fatty acid oxidation in ccRCC [46].

Furthermore, Ragone et al. observed notable increases 
in levels of creatine, alanine, lactate, and pyruvate, cou-
pled with decreases in hippurate, citrate, and betaine 
across all patients diagnosed with ccRCC. Within their 
study, an intricate network analysis established con-
nections between the majority of these metabolites and 
critical aspects, such as glomerular injury, renal inflam-
mation, and renal necrosis/cell death. Notably, through 
an intersection of metabolomic data with transcriptomic 
information extracted from CD133 + /CD24 + tumoral 
renal stem cells, isolated from ccRCC patients, the study 
identified a shared subset of genes and metabolites that 
showcased distinct regulatory patterns in ccRCC cases. 
These regulations were found to be associated with sig-
nificant pathways, including HIF-α signaling, methionine 
and choline degradation, and acetyl-CoA biosynthesis 
[47].

By exploring glycolytic enzyme levels, Lucarelli et  al. 
associate elevated levels with reduced survival outcomes 
in ccRCC patients, signifying the influence of onco-
genic signaling pathways in driving the glucose metabo-
lism shift [48]. Another study by Lucarelli et  al. further 
unveiled an amplified glucose uptake and utilization sig-
nature in ccRCC, accompanied by perturbations in the 
pentose phosphate pathway. The central role of NADH 
dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 
2 (NDUFA4L2) is highlighted in sustaining angiogen-
esis, chemoresistance, and mitochondrial dysfunction. 
Notably, inhibiting NDUFA4L2 engenders changes in cell 

viability, mitochondrial mass, and ROS generation under 
hypoxic conditions [49].

Regarding lipid metabolism, Bombelli et  al. reported 
that ccRCC exhibits a distinctive gene expression profile 
indicative of adipogenesis. Notably, their investigation 
highlighted the down-regulation of the phospholipid-
binding protein annexin A3 (AnxA3), known for its 
role as a negative regulator of adipocyte differentiation, 
in RCC. Intriguingly, the study revealed a differential 
expression pattern for two isoforms of AnxA3, measuring 
36 and 33 kDa, respectively. Moreover, they observed a 
correlation between the increased accumulation of lipids 
within ccRCC cells and a reduction in the 36/33 isoform 
ratio of AnxA3. These observations collectively suggest 
that the 36  kDa isoform of AnxA3 might exert a nega-
tive influence on the response to adipogenic treatment, 
implying its potential role as a regulator that curtails lipid 
storage in ccRCC cells [50].

In addition, renal cell carcinoma is one of the most 
immune-infiltrated tumors. Our findings are also well 
in line with the hot nature of RCC tumor that generally 
show high levels of immune infiltration. Consistent with 
this viewpoint, a study conducted by Zhang et al. showed 
a significant correlation between the Holliday junction 
recognition protein (HJURP) and the progression of 
tumors across various malignancies, frequently indicat-
ing a poor prognosis [51]. This association extends to the 
infiltration of diverse immune cells and the expression of 
a broad array of genetic markers associated with immune 
cells. In addition, Tamma et al. contributed insights into 
microvascular density, macrophage presence, and mast 
cell involvement in human ccRCC both with and with-
out bevacizumab treatment. Their findings point to the 
potential mechanisms underlying bevacizumab’s antian-
giogenic impact, encompassing its direct influence on 
tumor cell-derived angiogenic cytokines and its indirect 
effect on pro-angiogenic factor release by inflammatory 
stromal cells [52]. Notably, Netti et al. unveiled the role 
of PTX3, an innate immune regulator from the pentraxin 
family, in ccRCC’s microenvironment. This protein dis-
rupts immunoflogosis by triggering the activation of the 
classical pathway of the complement system (C1q), lead-
ing to the subsequent release of pro-angiogenic factors 
(C3a, C5a) [53].

Interestingly, an intricate interplay emerges between 
immune infiltration levels and prognosis. The cluster 
exhibiting the most adverse prognosis (C2) paradoxically 
showcased the lowest immune infiltration, a phenom-
enon coupled with dysregulation in specific metabolic 
pathways like oxidative phosphorylation and ribosome 
pathways. In parallel, Lucarelli et  al. identified a nearly 
sixfold elevation of Kynurenine in ccRCC, coupled with 
diminished levels of tryptophan. Notably, Kynurenine 
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exerts pivotal influence over RC survival, migration, and 
chemoresistance, mediated through interactions with the 
aryl hydrocarbon receptor. Moreover, the Kynurenine-to-
tryptophan ratio has emerged as a promising indicator 
for assessing the aggressiveness of ccRCC, thereby func-
tioning as a prognostic factor for both cancer-specific 
and progression-free survival [54].

Undoubtedly, it is crucial to emphasize the significant 
role played by the tumor microenvironment in shaping 
the biological behavior of the disease, potentially affect-
ing responses to systemic therapeutic interventions. 
Expanding upon this perspective, the work of Lucarelli 
et al. sheds additional light on the capacity of MUC1 to 
govern the immunoflogosis within the microenviron-
ment of ccRCC. This protein operates by activating the 
classical pathway of the complement system; thereby, 
intricately influencing the composition of the immune 
infiltrate and promoting an environment characterized 
by immunological suppression [55].

In summation, our findings seamlessly align with the 
narrative of RCC as an immune-rich tumor type, charac-
terized by complex interactions between immune cells, 
metabolic pathways, and the tumor microenvironment. 
This intricate interplay not only shapes disease progres-
sion, but also holds the potential to guide the develop-
ment of targeted therapeutic strategies.

While our study provides valuable insights into the role 
of m1A RNA modification patterns in KIRC, there are 
certain limitations that should be acknowledged. First, 
our study is based on the retrospective data analysis, 
which might introduce biases and confounding factors 
inherent to this type of research. Moreover, the inter-
play between m1A regulators and other molecular path-
ways in the complex tumor microenvironment warrants 
deeper investigation. In addition, our study focused on 
a specific set of m1A-related regulatory genes; explor-
ing a broader set of regulators and their interactions 
could provide a more comprehensive understanding. 
Furthermore, the immune landscape and tumor micro-
environment are highly dynamic and subject to variation 
over time, which might affect the stability of identified 
patterns and correlations. Last but not least, while our 
findings provide potential avenues for prognostic pre-
diction and personalized treatment strategies, validation 
on larger and independent cohorts is essential for robust 
clinical translation.

Conclusion
In summary, the present research identifies m1A regu-
lators in KIRC across numerous aspects and substan-
tiates their significance in determining prognosis and 
immune performance. To our knowledge, the present 

work is the first to report the complex functions and 
wide-ranging interconnections of ten different types of 
m1A-related RNA modifications in KIRC. We identified 
three different RNA modification patterns, their under-
lying biological pathways, their correlations with clin-
icopathological features, and their potential prognostic 
values in the KIRC patients. This work emphasizes the 
importance of ten  different RNA modifications in 
KIRC and provides a novel insight for future research, 
herein.
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