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Abstract 

Background It is common to support cardiovascular function in critically ill patients with extracorporeal membrane 
oxygenation (ECMO). The purpose of this study was to identify patients receiving ECMO with a considerable risk 
of dying in hospital using machine learning algorithms.

Methods A total of 1342 adult patients on ECMO support were randomly assigned to the training and test groups. 
The discriminatory power (DP) for predicting in‑hospital mortality was tested using both random forest (RF) and logis‑
tic regression (LR) algorithms.

Results Urine output on the first day of ECMO implantation was found to be one of the most predictive features 
that were related to in‑hospital death in both RF and LR models. For those with oliguria, the hazard ratio for 1 year 
mortality was 1.445 (p < 0.001, 95% CI 1.265–1.650).

Conclusions Oliguria within the first 24 h was deemed especially significant in differentiating in‑hospital death 
and 1 year mortality.
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Introduction
Patients with severe heart or lung failure can benefit from 
extracorporeal membrane oxygenation (ECMO). ECMO 
was required for critically ill patients with guarded 
prognoses regardless of the initial etiology [1]. Taiwan’s 
national registry reports that the overall morality of 
adults was near 60% after 1 month and 75% after 1 year 
[2]. At 1  month and 1  year, overall mortality rates were 
near 30 and 45%, respectively, for patients under 18 years 
[3]. As an invasive procedure, ECMO is associated with 
bleeding, embolisms, and infections [2, 3]. Consequently, 
finding objective criteria to select suitable critical care 
candidates for ECMO and to identify those likely to 
require extraordinary measures is crucial [4].

To predict outcomes in patients receiving ECMO sup-
port, risk scores have been developed, such as the Sur-
vival After Veno-Arterial ECMO (SAVE) Score and the 
ECMO-ACCEPTS Score [4–8]. The prognosis of using 
ECMO and the potential to receive subsequent therapy 
is highly variable among individuals according to their 
underlying etiologies and baseline pathophysiologi-
cal conditions. Consequently, the reported discrimina-
tory power (DP) of these approaches varies based on the 
inclusion criteria, ECMO setup, statistical algorithms, 
stratification strategies, and system evaluation.

The highly correlated variables included in the analysis 
could also be a significant reason for this disequilibrium. 
Despite the fact that these clinical parameters represent 
damage to different organs, there is interaction between 
these organs, and they are always interconnected. Due to 
this, it is vital to clarify this issue using a different method 
than the traditional one. Using newly developed machine 
learning algorithms to perform supervised classification, 
it sheds light on a distinct method of clarifying this issue 
[9–12].

Machine learning algorithms employ various meth-
ods, such as probabilistic and optimization approaches, 
to learn from past experience and detect useful patterns 
in  large, unstructured and complex data sets [13]. The 
random forest algorithm (RF) has shown superior accu-
racy for disease prediction among multiple supervised 
machine learning algorithms [13]. To determine the most 
reliable predictor of clinical outcome for ECMO patients, 
we have applied this novel algorithm and also compared 
to the conventionally used logistic regression (LR) model.

Methods
Setting and participants
Data from the ECMO registry of a single medical center 
in Taiwan were retrospectively analyzed. All patients on 
ECMO were included in the analysis. As potential pre-
dictive markers of future outcomes, clinical metrics were 
collected prior to ECMO and early in resuscitation. This 

study has been conducted in accordance with the ethical 
standards in the 1964 Declaration of Helsinki. The col-
lection and review of patient information was approved 
by the Institutional Review Board of National Taiwan 
University Hospital (#201002034R, 2010/02, ECMO data 
analysis study).

Materials
As part of the analysis, demographic, anthropometric, 
cardiorespiratory, standard laboratory tests, inotropic 
therapy, urine output, and ventilator settings were used 
both before and after ECMO placement (Additional 
file  1: Table  S1). Placement of ECMO was classified as 
cardiovascular, respiratory, or other. A binary ECMO 
mode was available: veno-arterial (VA) or veno-venous 
(VV). A single metric labeled inotropic equivalent (IE) 
was developed by combining dopamine, dobutamine, 
epinephrine, norepinephrine, isoproterenol, and mil-
rinone in inotropic therapy [14]. Cardiopulmonary resus-
citation, intra-aortic balloon pump support, renal 
replacement therapy, infection, and the Glasgow Coma 
Scale (GCS) were recorded [1, 4, 5, 7, 15]. It was possible 
to calculate different risk scores by combining these vari-
ables. A total of 55 parameters were available as predict-
ing variables (features). Serial renal function and blood 
lactate collected afterward in the intensive care unit were 
not considered early markers and, therefore, were not 
used. In-hospital mortality during the index hospitaliza-
tion when ECMO was instituted was the primary end-
point of this study. We recorded the date, time, and cause 
of death.

Management of missing data
Missing data points are inevitable in a data set of this 
size. To avoid listwise deletion in the following analyses, 
a mean value was substituted for continuous variables 
or the most frequent value for categorical variables if the 
absent variable comprised less than 5% of the total val-
ues. As per clinical convention, continuous measures 
with a higher percentage of missing data (> 5%) were cat-
egorized into three (normal, abnormal, and missing) or 
four classes (high, intermediate, low, and missing). Addi-
tional file 1: Table S1 shows details of data management 
for each variable. For every patient, the target outcome 
variable (in-hospital death) was available.

Statistics
The baseline characteristics of the patients are reported 
as a distinct group. We presented continuous variables 
as means and standard deviations (SD) and categori-
cal variables as percentages. We estimated the prob-
ability of in-hospital death using a random forest (RF) 
and multi-variable logistic regression (LR) model. All 
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predicting variables were included in the "non-parsimo-
nious model," regardless of their statistical significance or 
potential collinearity. Based on this model, each individ-
ual was assigned a risk score. Further receiver operating 
characteristic (ROC) curve analysis used this "estima-
tor" as the test variable. To identify variables statistically 
associated with in-hospital death, a novel LR model 
was applied (stepwise selection, p < 0.05 for inclusion). 
We developed a parsimonious model using the newly 
selected variables partitioned as before with recalculated 
AUC of ROCs.

Feature importance is the degree to which a feature (or 
a predicting factor) relates to the target outcome. The 
Gini importance calculated from the RF structure was 
used to identify the most relevant features among the 
predicting variables based on the mean decreased "impu-
rity" [16, 17]. To ensure that the select feature also played 
an imperative role when different models were applied, 
LR was used again to calculate feature importance [17].

According to the select feature, survival analyses were 
performed regarding overall mortality up to 1  year, 
including Kaplan Meier curves, log-rank tests, and Cox 
regression models. In this study, the duration of ECMO 
was defined as beginning at the time of its placement and 
ending at the date of death (event), 1 year after the place-
ment of ECMO, or termination of the study (censored).

IBM SPSS Statistics for Windows, version 24 (IBM 
Corp., Armonk, N.Y. USA) was used for statistical analy-
sis. Python 3.10.6 (Python Software Foundation, Bea-
verton, USA) and IBM SPSS Modeler trial version  for 
Windows (IBM Corp., Armonk, N.Y. USA) were used to 
execute machine learning algorithms.

Evaluation of system performance by random forest
Patient groups were randomly divided into training 
and test sets by the following ratios: 75%:25%, 70%:30%, 
60%:40%, and 50%:50%. The model was developed using 
cases from the training set. On the test set, the same 
model was applied. The area under the curve (AUC) of 
the ROC analyses in each set was used to determine the 
DP of the estimator derived from each model.

Results
During the study period, 1,342 patients underwent 
ECMO. The mean age was 53.5  years (SD 15.7), and 
71.5% were male. It was found that VA mode (83.4%) 
was used in most cardiovascular cases (80.6%) and VV 
mode in most of the remaining cases (Additional file  1: 
Table S2). Table 1 summarizes continuous variables and 
associated risk scores with Table 2 including categorical 
metrics. Overall, 62.3% of cases resulted in in-hospital 
deaths.

Table 1 Demographic data of the 1342 patients receiving 
ECMO, description of variables with valid data

Charlson: Charlson Comorbidity Index, APACHE: Acute Physiologic Assessment 
and Chronic Health Evaluation II Scoring System, SOFA: Sequential Organ Failure 
Assessment Score, LODS: Logistic Organ Dysfunction System, MODS: Multiple 
Organ Dysfunction, SAPS3: Simplified Acute Physiology Score III, SAVE: The 
Survival After Veno-arterial ECMO Score

Variables Units Valid n Mean Standard 
deviation

Age years 1342 53.5 15.7

Body height cm 1342 165.0 8.5

Body weight kg 1342 68.9 16.5

Body mass index kg/m2 1342 25.2 5.0

Glasgow coma scale 1342 10.2 5.3

Inotropic equivalent 1342 28.9 44.2

Preset ventilation rate per minute 1342 17.3 6.1

FiO2 1342 0.9 0.2

Peak inspiratory pressure cmH2O 1342 27.8 8.8

Peak end‑expiratory 
pressure

cmH2O 1342 7.4 3.9

Mean airway pressure cmH2O 1342 14.0 5.1

Body temperature degree Celsius 1342 36.6 1.2

Respiratory rate per minute 1342 19.2 7.1

Heart rate per minute 1342 104.2 36.0

Systolic blood pressure mmHg 1342 95.7 31.4

Diastolic blood pressure mmHg 1342 57.5 18.1

24 h urine amount dL 1342 10.8 13.2

pH 1342 7.3 0.2

PaCO2 mmHg 1342 42.2 22.1

PaO2 mmHg 1342 120.7 100.3

PaO2/FiO2 mmHg 1342 166.8 171.1

Bicarbonate mEq/L 1342 20.1 6.7

Total bilirubin mg/dL 1035 2.4 4.1

Blood urine nitrogen mg/dL 1134 37.4 26.8

Creatinine mg/dL 1342 2.1 1.8

Sodium mmole/L 1342 139.3 6.9

Potassium mmole/L 1342 4.4 1.0

Lactate mmole/L 1068 8.3 6.4

White blood cell per uL 1342 13,610.9 7335.9

Hematocrit % 1342 36.3 7.6

Platelet 103/uL 1342 204.8 865.5

Prothrombin time 981 1.5 1.0

Creatine kinase U/L 864 1489.0 6561.2

Aspartate aminotrans‑
ferase

U/L 929 503.8 1615.9

Creatine kinase MB U/L 835 84.5 149.8

Troponin I ng/mL 665 19.0 174.8

Charlson 929 4.3 3.1

APACHE 998 19.6 8.2

SOFA 841 12.0 4.4

LODS 820 9.9 3.7

MODS 774 9.1 3.7

SAPS3 840 53.2 12.0

SAVE 429 ‑5.4 5.7
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Table 2 Demographic data of the 1342 patients receiving ECMO, description of categorical data using missing values as a distinct 
level

Variables Categories Valid n %

Sex Male 959 71.5

Female 383 28.5

ECMO categories Cardiovascular 1081 80.6

Respiratory 252 18.8

Others 9 0.7

ECMO mode VA 1119 83.4

VV 223 16.6

NYHA classification n.a 79 5.9

I 600 44.7

II 314 23.4

III 218 16.2

IV 131 9.8

Post‑operative No 976 72.7

Yes 366 27.3

IABP use No 1104 82.3

Yes 238 17.7

Extracorporeal CPR No 819 61.0

Yes 523 39.0

Infection before ECMO 950 70.8

392 29.2

Pulmonary emboli 1336 99.6

6 0.4

Dialysis before ECMO 1193 88.9

149 11.1

LV ejection fraction Missing 728 54.2

 < 55% 438 32.6

≥ 55% 176 13.1

Central venous pressure Missing 399 29.7

 ≤ 12 mmHg 409 30.5

 > 12 mmHg 534 39.8

Bilirubin Missing 307 22.9

0–2 712 53.1

2–5 226 16.8

 > 5 97 7.2

Blood urine nitrogen Missing 208 15.5

0–20 323 24.1

20–50 550 41.0

 > 50 261 19.4

Lactate Missing 274 20.4

0–2 156 11.6

2–10 532 39.6

 > 10 380 28.3

Prothrombin time Missing 361 26.9

0–2 873 65.1

 > 2 108 8.0

Creatine kinase Missing 478 35.6

0–200 347 25.9

200–1000 318 23.7

 > 1000 199 14.8
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Table 2 (continued)

Variables Categories Valid n %

Aspartate aminotransferase Missing 413 30.8

0–45 294 21.9

45–135 286 21.3

 > 135 349 26.0

Creatine kinase MB form Missing 507 37.8

0–23 276 20.6

23–69 279 20.8

 > 69 280 20.9

Troponin I Missing 677 50.4

0–23 564 42.0

23–69 51 3.8

69 50 3.7

Charlson Comorbidity Index Missing 437 32.6

0–14 544 40.5

15–22 325 24.2

22–47 36 2.7

APACHE Score Missing 344 25.6

0–14 304 22.7

15–22 339 25.3

22–47 355 26.5

SOFA Score Missing 501 37.3

1–9 596 44.4

10–13 244 18.2

14–24 1 0.1

LODS Missing 522 38.9

1–7 222 16.5

8–11 341 25.4

12–20 257 19.2

MODS Missing 568 42.3

0–7 260 19.4

8–10 252 18.8

11–19 262 19.5

SAPS3 Missing 522 38.9

24–46 277 20.6

47–58 287 21.4

59–98 256 19.1

SAVE Missing 913 68.0

Class I 7 0.5

Class II 52 3.9

Class III 149 11.1

Class IV 128 9.5

Class V 93 6.9

Outcome Survival to discharge 506 37.7

In-hospital death 836 62.3

Charlson: Charlson Comorbidity Index, APACHE: Acute Physiologic Assessment and Chronic Health Evaluation II Scoring System, SOFA: Sequential Organ Failure 
Assessment Score, LODS: Logistic Organ Dysfunction System, MODS: Multiple Organ Dysfunction, SAPS3: Simplified Acute Physiology Score III, SAVE: The Survival After 
Veno-arterial ECMO Score. Outcome: the number and percentage of survival to discharge and in-hospital death
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Under different partitions, RF and LR showed differ-
ent discriminatory power (DP) in terms of area under 
the ROC curve. For partition 2, which used 934 cases 
for training, the training DP was 1.00 for RF and 0.80 

for LR (Additional file  1: Table  S3, upper panel, parti-
tion 2). The AUC of ROC became far more uniform 
when the resulting model was applied to the accom-
panying test set. For RF and LR, it was 0.70 and 0.74, 

Table 3 Logistic regression model used to predict in‑hospital death with 11 clinical variables, including model description, odds ratio, 
p value, and 95% confidence interval

The model used to estimate the probability of in‑hospital death

Probability of in‑hospital death = exp(Y)/(exp(Y) + 1), where

Y = logit (probability of in‑hospital death) = 

 1.007

 + 0.022 × Age

 + 0.035 × Ventilation rate

 + 0.007 × Inotropic equivalent

 + 0.591 × Extracorporeal ECPR

 + 0.767 × Infection before ECMO

 − 0.005 × Systolic blood pressure

 − 0.033 × Urine amount

 − 0.071 × Glasgow coma scale

 − 0.432 × [ECMO category = respiratory]

 − 1.721 × [ECMO category = others]

 − 0.573 × [Bil = missing]

 − 1.150 × [Bil = 0–2 mg/dL]

 − 0.733 × [Bil = 2–5 mg/dL]

 − 0.101 × [CKMB = missing]

 − 0.516 × [CKMB = 0–23 U/L]

 − 0.538 × [CKMB = 23–69 U/L]

Variables Odds ratio p 95% confidence 
interval

Age 1.022 < 0.001 1.014 1.03

Ventilation Rate 1.035 0.004 1.011 1.06

Inotropic equivalent 1.007 0.001 1.003 1.012

Extracorporeal CPR 1.806 < 0.001 1.356 2.407

Infection before ECMO 2.152 < 0.001 1.548 2.993

Systolic blood pressure 0.995 0.017 0.991 0.999

Urine amount 0.967 < 0.001 0.957 0.977

Glasgow coma scale 0.931 < 0.001 0.909 0.954

ECMO category 0.045

Respiratory 0.649 0.045 0.425 0.991

Others 0.179 0.119 0.021 1.558

Cardiovascular Reference

Bilirubin < 0.001

 Missing 0.564 0.077 0.299 1.063

 0–2 0.317 < 0.001 0.174 0.577

 2–5 0.48 0.025 0.253 0.913

 > 5 Reference

Creatine kinase MB 0.004

 Missing 0.904 0.599 0.622 1.316

 0–23 0.597 0.01 0.403 0.884

 23–69 0.584 0.007 0.396 0.862

  > 69 Reference
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Fig. 1 Ranking of the clinical features in the random forest (A) and logistic regression (B) models. bh: body height, bw: body weight, bmi: 
body mass index, NYHA: New York Hear Association functional class, ECMO: extracorporeal membrane oxygenation, Post OP: ECMO placed 
after an operation, IABP: Intra‑aortic balloon pumping, ECPR: extracorporeal cardiopulmonary resuscitation, Infection: infection before ECMO, PE: 
pulmonary emboli, GCS: Glasgow coma scale, IE: inotropic equivalent, Dialysis: renal replacement therapy before ECMO, LVEF: left ventricular 
ejection fraction, VR: preset ventilation rate, FiO2: fraction of inspired oxygen, PIP: peak inspiratory pressure, PEEP: peak end‑expiratory 
pressure, MAP: mean airway pressure, BT: body temperature, RR: respiratory rate, HR: heart rate, SBP: systolic blood pressure, DBP: diastolic blood 
pressure, CVP: central venous pressure, Urine_dl: 24‑h urine amount (deciliter), pH: PH value, PaCO2: the partial pressure of carbon dioxide 
in the arterial blood, PaO2: the partial pressure of oxygen in the arterial blood, PaO2 over FiO2: PaO2/FiO2, HCO3: bicarbonate, Bil: total bilirubin, 
BUN: blood urine nitrogen, Cre: creatinine, Na: sodium, K: potassium, Lact: lactate, WBC: white blood cell, Hct: hematocrit, Pla: platelet, PT: 
prothrombin time, CK: creatine kinase, GOT: aspartate aminotransferase, CKMB: creatine kinase MB, Trop: troponin I, Charlson Score: Charlson 
Comorbidity Index, APACHE: Acute Physiologic Assessment and Chronic Health Evaluation II Scoring System, SOFA: Sequential Organ Failure 
Assessment Score, LODS: Logistic Organ Dysfunction System, MODS: Multiple Organ Dysfunction, SAVE: Survival after Veno‑Arterial ECMO, SAPS3: 
Simplified Acute Physiology Score III
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respectively. Additional file  1: Table  S3, upper panel, 
shows the same pattern regardless of the size of the 
training and test sets. Based on the parsimonious LR 
model, 11 clinical variables were significantly associ-
ated with in-hospital death. These 11 clinical variables 
include age, ventilation rate (VR), inotropic equivalent 
(IE), extracorporeal cardiopulmonary resuscitation 
(ECPR), infection before ECMO, systolic blood pres-
sure (SBP), urine output (U/O), GCS, non-cardiovascu-
lar presentation, and bilirubin or creatine kinase levels. 
As shown in Table 3, a logit transformation of the prob-
ability of in-hospital death equals a linear combination 
of the 11 clinical variables. Both RF and LR models 
were constructed using parsimonious models with sta-
tistically significant variables. In both models, the in-
hospital mortality rate showed a favorable DP. For RF, 
it was 0.73 and for LR, it was 0.76. (Additional file  1: 
Table S3, lower panel, partition 3).

RF and LR models were used to examine the relative 
importance of all 55 features. The urine output (in deci-
liters) on the first day of ECMO institution was ranked 
as the first critical feature under the RF model (Fig. 1A), 
and again as the second important feature under the LR 
model (Fig. 1B). Although the ranking order of the other 
variables varied between the two models, the first 24  h 
urine output remained a powerful predictor of in-hos-
pital mortality. In the subsequent survival analysis, this 
variable was selected as the major classifying feature [17].

There were three categories of urine output in the 
first 24 h: (1) normal (more than 10 dl), decreased (5 dl 
to 10 dl), and oliguric (less than 5 dl). A comparison of 
decreased urine group and normal urine group showed 
that the HR of in-hospital death was 1.005 (p = 0.970) for 
decreased urine group and 1.446 (p < 0.001) for oligu-
ric group. Therefore, urine output less than 500 ml (i.e., 
5  dl) seemed to affect in-hospital mortality. Our study 
compared patients with oliguria to those without oligu-
ria by combining the first two categories (normal and 
decreased urine amount). As compared to patients whose 
initial urine output was greater than 5  dl, the HR for 
1 year mortality in patients with oliguria was 1.445 (95% 
CI 1.265–1.650). Kaplan–Meier curve and log-rank test 
both revealed a significant difference between the overall 
mortality of the oliguric group and patients with normal 
and slightly reduced urine output (p < 0.001) (Fig. 2).

A multi-variable Cox regression model adjusted for 
other variables was also used to analyze 1  year mortal-
ity. As compared with the normal group, the HR for 
1 year mortality was 1.016 (p = 0.90, 95% CI 0.798–1.000) 
for the decreased urine group and 1.295 (p < 0.001, 95% 
CI 1.116–1.502) for the oliguric group. When the patients 
were categorized only into oliguric and non-oliguric 
groups, the former (i.e., urine output < 5  dl) had a HR 
of 1.291 (p = 0.001, 95% CI 1.121–1.486) compared with 
the latter (urine output over 5 dl). For each 1 dl increase 

Fig. 2 Kaplan–Meier curve comparing the patients with and without oliguria (urine output less than 500 ml)
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in urine output, the HR for 1 year mortality dropped by 
0.986 (p < 0.001, 95% CI 0.979–0.992).

Discussion
The final analysis of this study included 1342 patients 
with ECMO support. Compared to conventional 
approaches, this was by far the largest study of patients 
on ECMO evaluating prognostic indicators using 
machine learning algorithms of RF. One of the most 
influential features in predicting future death, among 
all anthropometric, hemodynamic, and laboratory vari-
ables, was urine output during the first 24 h after ECMO 
placement.

As part of the training process, RF uses many decision 
trees (DT) to determine a classifier. In both classification 
and regression tasks, the DT model is a non-parametric 
model based on a tree-like graph. A top-to-bottom tree-
like structure represents the relationship between the 
recruiting features and the target variable. The DTs are 
very sensitive to the training data, so they are error-prone 
on the test data set. Different parts of the training data 
set are used for each DT to search for the most “votes,” 
which are combinations of features and thresholds which 
will result in the "most effective" separation between 
the two classes. Due to the fact that the RF algorithm 
interprets and gets the results from multiple DTs, it can 
reduce the variance that would result from considering 
just one DT alone [13]. In addition, we applied a series 
of solutions to reduce over-fitting in the RF algorithm, 
and found that the DP was comparable to that derived 
from LR model. On the other hand, parsimonious models 
based on select, clinically and statistically significant vari-
ables offer the prospect of numerical stability and gen-
eralizability, and as demonstrated here, better DP than 
non-parsimonious models. Thus, including a wider range 
of variables in the model regardless of their significance 
decreases the consistency between training and testing. 
The current analyses illustrate that concentrating only 
on key variables among all those available can produce a 
simpler model that also optimizes the DP.

According to both RF and LR models (Fig.  1A, B), 
urine output was one of the leading predictors, despite 
other features drifting their ranking scores irregularly. 
Furthermore, the amount of the 24  h urine output of 
the first day under ECMO institution determined the 
clinical outcomes of these critical patients. Oliguric 
patients were expected to have a poor prognosis. Clinical 
outcomes after ECMO may be determined by urine 
output due to global ischemia–reperfusion injury and 
renal hypoperfusion [18]. According to previous studies, 
oliguria is one of the earliest signs of insufficient organ 
perfusion [19]. Acute renal injury was reported in more 
than half of patients who were resuscitated following 

cardiopulmonary resuscitation (CPR) [18]. Oliguria 
could be used as a biomarker of acute kidney injury in 
critically ill patients [20]. A prior study also showed that 
in unselected critically ill patients, urine output obtained 
on ICU entry was associated with hospital mortality 
[21]. In patients receiving ECMO support, Combes 
et  al. demonstrated that renal failure with a 24  h urine 
output less than 500 ml was significantly associated with 
ICU death (OR = 6.52) after ECMO implantation under 
cardiopulmonary resuscitation [22]. In out-of-hospital 
cardiac arrest patients receiving ECMO following CPR, 
Lee et al. found oliguria to be an independent risk factor 
for 30  day mortality [23]. According to Distelmaier 
et al. [19] 24 h urine output was a significant variable to 
predict 30 day and 2 year mortality after cardiovascular 
surgery. In comparison with previous studies (81, 23, 
and 205 in the studies by Combes, Lee, and Distelmaier, 
respectively), ours was by far the largest study and an 
entirely novel method for examining this issue [19, 22, 
23].

In addition, urine output was routinely monitored in 
the ICU. Thus, urine output is a noninvasive, easily acces-
sible, inexpensive, and ideal parameter for detecting high-
risk mortality patients receiving ECMO support in time 
and intervening before adverse clinical outcomes occur. 
Low cardiac output (cardiogenic shock), systemic vaso-
dilation (sepsis), and organ hypoperfusion may account 
for the decreased urine production under ECMO [19]. 
The condition may also be caused by decreased pump 
flow, impaired pulsatility, air embolization, hormonal dis-
orders, or a change in platelet concentration [19, 24]. In 
addition, extracorporeal membranes and mechanical cir-
cuits may trigger inflammatory cascades with hypercoag-
ulable states that could adversely affect microcirculation 
[19]. Due to the possibility that ECMO could trigger an 
acute inflammatory reaction, there might be capillary 
leakage and intravascular volume depletion resulting in 
acute tubular necrosis and oliguria [25].

Limitations
It is possible that information might be lost if miss-
ing variables are replaced or if continuous variables are 
converted to categorical variables. To clarify this issue, 
we repeated the RF and LR analysis on 200 patients 
with complete data. The AUC for the in-hospital death 
remained near 0.75. The final DP did not appear to be 
altered by the pre-processing.

Conclusions
In this study, 1342 patients undergoing ECMO support 
were enrolled, and independent predictors of in-hospital 
death were evaluated. The machine learning algorithm 
with RF and LR was used to find the most stable feature 
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and robust DP in this prediction task. Our study found 
that oliguria, defined as urine output less than 500  ml 
within  the first 24  h after ECMO implantation, was 
strongly associated  with in-hospital death and 1  year 
mortality. To detect high-risk ECMO patients in advance 
and treat them promptly, urine output was a reliable and 
easy-to-use parameter.
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