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Abstract 

Background High throughput gene expression profiling is a valuable tool in providing insight into the molecular 
mechanism of human diseases. Hypoxia- and lactate metabolism-related genes (HLMRGs) are fundamentally dysregu-
lated in sepsis and have great predictive potential. Therefore, we attempted to build an HLMRG signature to predict 
the prognosis of patients with sepsis.

Methods Three publicly available transcriptomic profiles of peripheral blood mononuclear cells from patients 
with sepsis (GSE65682, E-MTAB-4421 and E-MTAB-4451, total n = 850) were included in this study. An HLMRG signa-
ture was created by employing Cox regression and least absolute shrinkage and selection operator estimation. The 
CIBERSORT method was used to analyze the abundances of 22 immune cell subtypes based on transcriptomic data. 
Metascape was used to investigate pathways related to the HLMRG signature.

Results We developed a prognostic signature based on five HLMRGs (ERO1L, SIAH2, TGFA, TGFBI, and THBS1). This clas-
sifier successfully discriminated patients with disparate 28-day mortality in the discovery cohort (GSE65682, n = 479), 
and consistent results were observed in the validation cohort (E-MTAB-4421 plus E-MTAB-4451, n = 371). Estimation 
of immune infiltration revealed significant associations between the risk score and a subset of immune cells. Enrich-
ment analysis revealed that pathways related to antimicrobial immune responses, leukocyte activation, and cell adhe-
sion and migration were significantly associated with the HLMRG signature.

Conclusions Identification of a prognostic signature suggests the critical role of hypoxia and lactate metabolism 
in the pathophysiology of sepsis. The HLMRG signature can be used as an efficient tool for the risk stratification 
of patients with sepsis.
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Introduction
Sepsis is defined as a life-threatening organ dysfunc-
tion caused by a dysregulated host response to infec-
tion [1]. It is estimated as the leading cause of death in 
critically ill patients, and mortality significantly increases 
when organ failure occurs [2]. The functions of essential 
organs, including lung, kidney, liver, and heart, are often 
interdependent. This interdependence is particularly evi-
dent in cardiovascular failure, which reduces systemic 
blood circulation and results in tissue hypoxia and meta-
bolic imbalance [3]. Lactate is traditionally interpreted as 
a critical player in energy use [4], and is thus a marker 
of tissue hypoxia. In clinical settings, the measurement of 
serum lactate levels is a routine test during the manage-
ment of critical illnesses, such as sepsis and septic shock 
[5]. Serum lactate levels have valuable usage in evaluat-
ing disease severity, estimating treatment response, and 
predicting prognosis [5]. It has been widely accepted that 
there is a strong and positive correlation between lac-
tate levels and disease severity, morbidity, and mortality 
in sepsis [6]. Past research has shown that elevated lac-
tate levels were significantly associated with increased 
mortality rate in sepsis, whereas reduced lactate levels 
after treatment could be a predictor of reformed clini-
cal outcomes [7]. However, given the complexity of lac-
tate metabolism and clearance in the pathophysiological 
conditions of human body, especially in sepsis, the clini-
cal use of lactate is not as simple as recommended by 
some guidelines [8]. It has been traditionally accepted 
that elevated serum lactate concentrations in sepsis is 
derived from anaerobic metabolism in the conditions of 
tissue malperfusion and hypoxia. However, accumulat-
ing evidence suggests that anaerobic metabolism may not 
be the primary or exclusive source of lactate production 
[9]. On one hand, enhanced adrenergic stress can cause 
accelerated aerobic glycolysis resulting in a significant 
elevated lactate in septic patients [10, 11]. On the other 
hand, cytopathic hypoxia and mitochondrial impairment 
have been recognized as additional causes, although the 
exact mechanism remains unexplored [12, 13]. Therefore, 
further understanding of the molecular consequences of 
hypoxia and the pathophysiological processes of lactate 
metabolism and clearance in sepsis would help discover 
effective targets for therapeutic intervention.

Over the past decade, omics technologies based on 
genomic, transcriptomic, proteomic and metabolic pro-
filing have shown great promise in providing insights 
into the molecular mechanisms of sepsis [14, 15]. Several 
investigators have successfully subgroup patients with 
sepsis based on biological similarities defined by tran-
scriptomic profiling of peripheral blood mononuclear 
cells (PBMCs) using discovery-based approaches [16, 
17]. Moreover, transcriptome analysis of PBMCs in sepsis 

research has revealed that hypoxia- and lactate metabo-
lism-related genes (HLMRGs) are fundamentally dysreg-
ulated in sepsis, which are of great predicting potential 
[18–21].

In the current study, we identified differentially 
expressed HLMRGs by analyzing the transcriptomic 
data of PBMCs from patients with sepsis, based on which 
we developed and validated a gene model for predict-
ing prognosis of patients with sepsis. The correlation of 
the predicting model with immune cell infiltration and 
the related signaling pathways were also investigated to 
explore the underlying biological mechanisms. This gene 
expression model is reflective of the individual’s underly-
ing biological response and immune status.

Methods
Data collection and preprocessing
Gene expression profiles (GSE65682, E-MTAB-4421, and 
E-MTAB-4451) of PBMCs from sepsis patients and the 
corresponding clinical information are retrieved from the 
GEO (https:// www. ncbi. nlm. nih. gov/ geo/) and ArrayEx-
press (https:// www. ebi. ac. uk/ biost udies/ array expre ss) 
databases. In GSE65682, blood samples were collected 
within 24 h of admission to critical care, and quantifica-
tion of gene expression was performed using the Affym-
etrix Human Genome U133 Plus 2.0 Array [22]. A total 
of 42 healthy controls and 479 sepsis patients with avail-
able 28-day follow-up information from GSE65682 were 
acquired. Both E-MTAB-4421 and E-MTAB-4451 were 
obtained from the GAinS study [23]. These two cohorts 
used the same inclusion or exclusion criteria, and gene 
expression was quantified using the same microarray 
type (GPL10558 Illumina HumanHT-12 V4.0), so they 
were combined. A total of 371 sepsis patients with avail-
able 28-day follow-up data from the combined data-
set were acquired. The baseline clinical information of 
patients included in this study is presented in Additional 
file 1: Table S1.

To preprocess of the gene expression data, we first 
transformed the probes into gene symbols according to 
the annotation file provided by the platform manufac-
turer. We remove those probes without corresponding 
gene symbols. We averaged the values of multiple probes 
corresponding to a same gene as the actual intensity of 
this gene. Next, we merged GSE65682, E-MTAB-4421, 
and E-MTAB-4451 to adjust batch effects using the Com-
bat method [24], which was executed by R software (ver-
sion 4.1.2).

Candidate gene selection
The selection of HLMRGs was based on a previously 
published study [25], where a set of HLMRGs were col-
lected by searching the Molecular Signatures Database 
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[26] (https:// www. gsea- msigdb. org/ gsea/ msigdb/ index. 
jsp) for relevant gene collections using “hypoxia” and 
“lactic” as keywords. A total of 764 HLMRGs were 
acquired after filtering, combining gene sets, and deleting 
duplicate genes. A full list of these HLMRGs is summa-
rized in Additional file 2: Table S2.

Development and validation of a prognostic HLMRG 
signature
GSE65682 was designated as the discovery set, and the 
combined dataset of E-MTAB-4421 and E-MTAB-4451 
was assigned as the validation set. HLMRGs differentially 
expressed between healthy controls (n = 42) and patients 
with sepsis (n = 479) in the discovery set were screened 
using the limma R package. The cutoff value was set as | 
 log2 (fold change) |≥ 1 and adjusted P < 0.05.

Cox regression (univariate and multivariate) and 
LASSO estimation were used to filter significant prog-
nostic genes from the identified HLMRGs, as previ-
ously described [27, 28]. First, we performed univariate 
Cox regression analysis to screen HLMRGs of prognos-
tic value, with a screening threshold of P < 0.05. Next, 
LASSO estimation was used to simultaneously achieve 
variable shrinkage using the glmnet R package [29]. The 
optimal values of the penalty parameter lambda in the 
LASSO estimation were obtained through ten-times 
cross-validations [30]. Finally, we obtained a best-fitting 
prognostic model by subsequently performing multi-
variate Cox regression analysis using the survminer R 
package.

Each patient’s risk score was calculated as the genes’ 
coefficients in the multivariate Cox regression multi-
plied by their expression levels. Patients were categorized 
into high- and low-risk groups based on the median risk 
score of the discovery set. The 28-day survival curves 
of the high- and low-risk groups were drawn based on 
the Kaplan–Meier estimate, and the survival difference 
was compared by the log-rank test. We also performed 
receiver operating characteristic (ROC) analysis to evalu-
ate the sensitivity and specificity of the survival predic-
tion using the survivalROC R package.

Estimation of immune cell subtypes
The CIBERSORT method is a widely used bioinformatics 
tool for estimation of immune cell abundances from gene 
expression profiles [31]. We assessed immune cell com-
positions of 22 subtypes by applying the CIBERSORT 
algorithm to gene expression profiles, which is executed 
using the IOBR R package [32].

Pathway enrichment analysis
To investigate the signaling pathways associated with the 
HLMRG signature, differentially expressed genes (DEGs; 

screening criteria: |  log2 [fold change] |≥ 1 and adjusted 
P < 0.05) between the high- and low-risk groups were 
identified. The gene ontology (GO) analysis was per-
formed based on the identified DEGs using Metascape 
[33], a wildly-accepted online tool for functional enrich-
ment (http:// metas cape. org). For a given gene list, path-
way and process enrichment analyses were carried out 
using three ontology sources: Biological Processes, Cellu-
lar Components, and Molecular Functions. All the genes 
in the genome were used as the enrichment background. 
Terms with a P-value less than 0.01, a minimum count of 
three, and an enrichment factor over 1.5 were collected 
and grouped into clusters based on their membership 
similarities. The enrichment factor is defined as the ratio 
between the observed counts and the counts expected by 
chance. The most statistically significant term within a 
cluster was selected to represent the cluster.

Statistical analysis
Statistical analyses were conducted using the R software 
(version 4.1.2) or GraphPad Prism (version 9.0.0). The 
28-day survival curves of the high- and low-risk groups 
were drawn according to the Kaplan–Meier estimate, 
and the survival differences were compared using the 
log-rank test. Univariate and multivariate Cox regression 
analyses were performed to investigate whether this gene 
signature was an independent determinant of 28-day 
survival. Receiver operating characteristic (ROC) analy-
sis was used to evaluate the sensitivity and specificity of 
the survival prediction based on the risk score, indexes 
of other gene signatures, and combined models. The area 
under the ROC curve (AUC) was used to measure the 
accuracy of the prediction test and the DeLong method 
was used to assess differences between the ROC curves. 
The Wilcoxon rank-sum test was used to compare risk 
scores between two groups, while the Kruskal–Wallis test 
was used for comparison among more than two groups. 
Spearman’s correlation analysis was applied to assess 
the association between the risk score and immune cell 
abundance. Fisher’s exact test was carried out for com-
parison of 28-day mortality or other clinical features 
between the high- and low-risk groups. Hypothesis test-
ing with a two-tailed P-value < 0.05 was considered statis-
tically significant.

Results
Development and validation of a prognostic HLMRG 
signature
First, the three datasets included in this study (GSE65682, 
E-MTAB-4421, and E-MTAB-4451) were merged to 
eliminate batch effects (Fig.  1A). Next, we performed 
differential expression analysis in the GSE65682 dataset, 
which was designated as the discovery set. A set of 61 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://metascape.org
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differentially expressed HLMRGs between healthy con-
trols (n = 42) and sepsis patients (n = 479) were screened, 
with 29 HLMRGs downregulated and 32 HLMRGs 
upregulated (Fig.  1B). The expression profile of the top 
10 differentially expressed HLMRGs is shown in Fig. 1C. 
Univariate Cox regression analysis was employed to fur-
ther assess the 61 HLMRGs in the discovery set. A set of 
15 HLMRGs was significantly associated with the 28-day 
survival of sepsis patients (Fig.  1D). Seven of these 15 

HLMRGs were excluded by LASSO estimation because 
of multicollinearity (Fig. 1E). Finally, a prognostic HLM-
RGs signature consisting of five genes (ERO1L, SIAH2, 
TGFA, TGFBI, and THBS1) was identified by multi-
variate Cox regression analysis. Each patient’s risk score 
was determined according to the expression levels of 
the five selected genes and their associated coefficients 
in the multivariate Cox model. For patients with sep-
sis, a higher risk score indicated poorer 28-day survival. 

Fig. 1 Construction of a prognostic HLMRG signature. A UMAP algorithm showing sample clusters before and after batch normalization. B 
Volcano plot showing differentially expressed HLMRGs between sepsis patients (n = 479) and healthy controls (n = 42) in the discovery set. The 
screening criteria were set as adjusted P < 0.05 and |  log2 (fold change) |≥ 1. C Expression profile of the top 10 dysregulated HLMRGs. D Univariate 
Cox regression analysis to screen HLMRGs related to 28-day survival of sepsis patients in the discovery set (n = 479). Squares represent the HR 
of death and open-ended horizontal lines represent the 95% CI. All P-values were calculated using Cox proportional hazards analysis. E Ten-fold 
cross-validation for tuning parameter selection in the LASSO estimation. The partial likelihood deviance corresponding to each lambda value 
is shown as mean ± SD. The dotted vertical line (left) indicates the optimal value by minimum criteria. F LASSO coefficient profile of individual genes 
included in the estimation. G Distribution of the multivariate Cox regression coefficients of the HLMRG signature
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Among the five HLMRGs, ERO1L, SIAH2, and THBS1 
showed positive coefficients, whereas TGFA and TGFBI 
showed negative coefficients (Fig. 1F). Higher expression 
levels of genes with positive weighting coefficients indi-
cated worse outcomes, whereas higher expression levels 
of genes with negative weighting coefficients suggested 
better outcomes.

We profiled the distribution of risk scores and mRNA 
expression of the five genes consisting of the HLMRG 
signature in the discovery set. The results showed that 
the expression levels of genes with positive coefficients 
were higher in high-risk patients (Fig. 2A). Patients were 
divided into high-risk (n = 239) and low-risk (n = 240) 
groups according to the median risk score. The 28-day 
survival status of sepsis patients in the high- and low-risk 
groups is shown in Fig. 2B. A significantly higher mortal-
ity rate was found in the high-risk group compare to the 
low-risk group (32.22% vs. 15.42%, P < 0.001). Kaplan–
Meier analysis revealed that sepsis patients in the high-
risk group demonstrated worse outcomes than those in 
the low-risk group (HR = 2.334, 95% CI 1.623–3.386, 
P < 0.001; Fig.  2C). In GSE65682, four molecular classi-
fications designated as the molecular diagnosis and risk 

stratification of sepsis (Mars) endotypes were identified 
based on transcriptomic profile of PBMCs from sep-
sis patients [22]. The Mars endotype has been proven 
as a sufficient predictor of 28-day mortality for sepsis 
patients, and patients with Mars1 endotype tended to 
have the worst outcome. As shown in Fig. 2D, the AUC of 
the HLMRG signature was significantly higher than that 
of the Mars endotype (0.674 vs. 0.590, P = 0.007). More-
over, the AUC of the HLMRG signature combined with 
the Mars endotype was significantly higher than that of 
the Mars endotype alone (0.679 vs. 0.590, P = 0.003).

The efficacy of the HLMRG signature for predicting 
28-day mortality of sepsis patients was further confirmed 
in a validation set (E-MTAB-4421 plus E-MTAB-4451). 
The cut-off value for patient classification was also set 
as the median risk score of the discovery set. Consist-
ent with the findings described above, higher expres-
sion levels of ERO1L, SIAH2, and THBS1, whereas lower 
expression levels of TGFA and TGFBI were observed in 
patients with higher risk scores (Fig.  3A). Furthermore, 
a higher mortality rate was observed in the high-risk 
group (n = 163) than that in the low-risk group (n = 208) 
(40.49% vs. 20.19%, P < 0.001; Fig. 3B). In E-MTAB-4421 

Fig. 2 Survival analysis of the HLMRG signature in the discovery set (n = 479). A Distribution of risk scores derived from the HLMRG signature, 
and expression profile of the five genes that comprised the HLMRG signature in the discovery set. B Distribution of 28-day survival status 
in the high-risk (n = 239) and low-risk (n = 240) groups. Sepsis patients were classified into different risk groups using the median risk score 
as the cutoff. C Kaplan–Meier estimate of the 28-day survival according to the HLMRG signature. The difference between the two curves 
was determined by the two-side log-rank test. D ROC analysis of the sensitivity and specificity of 28-day survival prediction by the HLMRG 
signature risk score, Mars endotype, and combination of the two factors. P-values were obtained from the pairwise comparisons of the AUCs using 
the Delong method. **P < 0.01, ***P < 0.001, ns no significance
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and E-MTAB-4451, two distinct sepsis response signa-
ture groups (SRS1 and SRS2) were defined based on tran-
scriptomic analysis of PBMCs from sepsis patients [23]. 
Patients classified in SRS1 had higher short-term (14 day 
and 28 day) and long-term (6 month) mortality was than 
those belonged to SRS2. As shown in Fig. 3C, the AUC 
of the HLMRG signature was significantly higher than 
that of the SRS group (0.644 vs. 0.570, P = 0.041). Fur-
thermore, the AUC of the HLMRG signature combined 
with SRS group was significantly higher than that of SRS 
group alone (0.646 vs. 0.570, P = 0.004). These results 
demonstrated that the identified HLMRG signature is a 
reliable classifier that can discriminate patients with sep-
sis into risky groups with significantly disparate 28-day 
survival.

Prognostic value of the HLMRG signature
First, the correlation between clinical features and the 
HLMRG signature was investigated using Fisher’s exact 
test. In the discovery set, the HLMRG signature signifi-
cantly correlated with Mars endotype and the source of 
infection, but not with age, gender, history of diabetes 
mellitus, or thrombocytopenia (Fig.  4A). In the valida-
tion set, the HLMRG signature significantly correlated 
with the SRS group, but not with age or gender (Fig. 4B). 
We also compared the risk scores in patients with the 
dispersed Mars endotype, source of infection, and SRS 
group. These results showed that significantly higher risk 
scores were manifested in patients with an abdominal 
infection source (Fig. 4C), Mars 1 endotype (Fig. 4D), or 
the SRS1 group (Fig. 4E).

Next, univariate Cox regression analysis was employed 
to the discovery set. The results showed that the Mars 
endotype (Mars1, HR = 2.008, 95% CI 1.012–3.985, 
P = 0.046) and HLMRG signature (HR = 2.347, 95% CI 
1.585–3.474, P < 0.001) both significantly correlated with 

the 28-day survival of sepsis patients (Fig.  5A). Finally, 
multivariate Cox regression analysis with age, gender, 
Mars endotype, and HLMRG signature as covariates 
revealed that the HLMRG signature showed independ-
ence in predicting the 28-day survival of sepsis patients 
(HR = 2.194, 95% CI 1.399–3.439, P < 0.001; Fig.  5B). 
These results suggested the identified HLMRG signature 
as an independent prognostic factor for sepsis patients.

Association between the HLMRG signature and immune 
cell subtypes
Lactate is recognized as a metabolic player involving 
in immune cell fate, and a key player in determining 
immune cell fate and regulating immune cell function 
[34]. Therefore, we investigated the correlation between 
the HLMRG signature and immune cell abundance in 
sepsis. First, the immune cell proportions in PBMCs of 
sepsis patients were calculated using the CIBERSORT 
method. Based on this algorithm, we found that patients 
with sepsis displayed heterogeneous enrichment of 
immune cell populations (Fig. 6A). Next, the correlation 
between the HLMRG signature and immune cell fraction 
was evaluated using Spearman’s correlation analysis. In 
the discovery set, the results suggested that the propor-
tions of eosinophils, plasma cells, and M0 macrophages 
were positively associated with the risk score, whereas 
the proportion of neutrophils negatively correlated with 
the risk score (|Spearman rho|> 0.30, P < 0.001; Fig.  6B, 
left panel). In the validation set, the results revealed that 
the abundance of M0 macrophages, resting mast cells, 
and regulatory T cells positively correlated with the risk 
score, whereas the abundance of resting memory  CD4+ 
T cells negatively correlated with the risk score (|Spear-
man rho|> 0.30, P < 0.001; Fig.  6B, right panel). The 
above results uncovered a consistent positive correlation 
between the HLMRG signature and the abundance of M0 

Fig. 3 Survival analysis of the HLMRG signature in the validation set (n = 371). A Distribution of risk scores derived from the HLMRG signature, 
and expression profile of the five genes that comprised the HLMRG signature in the validation set. B Distribution of 28-day survival status 
in the high-risk (n = 163) and low-risk (n = 208) groups. Sepsis patients were classified into different risk groups based on the same cutoff used 
in the discovery set. C ROC analysis of the sensitivity and specificity of 28-day survival prediction by the HLMRG signature risk score, SRS group, 
and combination of the two factors. P-values were obtained from the pairwise comparisons of the AUCs using the Delong method. *P < 0.05, 
**P < 0.01, ***P < 0.001, ns no significance
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macrophages in both datasets, indicating the involve-
ment of hypoxia and lactate metabolism in regulating 
macrophage function, as well as the role of macrophages 
in determining the prognosis of sepsis patients.

Assessment of biological pathways related to the HLMRG 
signature
To investigate the potential biological pathways asso-
ciated with the HLMRG signature, we performed GO 
analysis based on DEGs between the high- and low-risk 
groups. 45 and 35 DEGs were screened out in the dis-
covery and validation datasets, respectively (Fig.  7A). 
The expression profile of the top 10 DEGs between high 
and low risk groups in the discovery and validation 
sets are shown in Fig. 7B. Intersection analysis yielded 
25 DEGs that were coincidently dysregulated in both 
of the datasets (Fig.  7C). GO analysis was performed 

based on these 25 DEGs using Metascape, a free online 
tool for gene annotation and functional enrichment. 
Genes enriched for biological processes were mainly 
involved in the response to fungus/bacteria, antimi-
crobial humoral response, and regulation of cytokine 
production (Fig.  7D, upper panel). Genes enriched for 
cellular components were principally associated with 
the specific/secretory/tertiary granule/vesicle lumen 
and primary lysosomes (Fig. 7D, middle panel). Genes 
enriched for molecular functions were predominantly 
related to heparin binding, peptidase/endopeptidase 
activity, and kinase regulator activity (Fig.  7D, lower 
panel). As shown in Fig.  7E, the enriched terms were 
classified into 11 clusters according to their member-
ship similarities. The full list of the terms associated 
with the HLMRG signature is summarized in Addi-
tional file 3: Table S3.

Fig. 4 Association between the HLMRG signature and clinical features of sepsis patients. A Heatmap showing correlation of the HLMRG signature 
with age, gender, source of infection, thrombocytopenia, diabetes mellitus and Mars endotype in the discovery set (n = 479). NA, not available. B 
Heatmap showing correlation of the HLMRG signature with age, gender and SRS group in the validation set (n = 371). Comparisons of the risk score 
in sepsis patients with disperse source of infection (C), Mars endotype (D), and SRS group (E). The Wilcoxon rank-sum test was used to compare 
risk scores between two groups, while the Kruskal–Wallis test was applied for comparisons among more than two groups. ***P < 0.001, ns 
no significance
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Discussion
The recent sepsis-3 guidelines have proposed that sep-
sis should be defined as a life-threatening organ dys-
function caused by a dysregulated host response to 
infection [1]. There is also a recommendation that the 
definition of septic shock should include the persis-
tence of a serum lactate level more than 2  mmol/L 
despite adequate fluid resuscitation as a new criterion 
[1]. This recommendation is proposed on the basis of 
the clinical observation that lactate concentrations 
are strongly correlated with severity, morbidity, and 
mortality of sepsis. However, the molecular conse-
quences of hypoxia and the pathophysiological pro-
cesses of lactate metabolism and clearance remain 
poorly understood, and further research is required. 
Herein, we extensively assessed the expression of a set 

of dysregulated HLMRGs in sepsis, based on which a 
prognostic HLMRG signature was developed and vali-
dated in a large number of participants (total n = 850). 
The HLMRG signature was established by combin-
ing the Cox regression model with LASSO regulariza-
tion for parameter shrinkage, and a prognostic model 
consisting of only five genes (ERO1L, SIAH2, TGFA, 
TGFBI, and THBS1) was obtained. The minimal num-
ber of gene members indicates their clinical practicabil-
ity and economic advisability. Clear survival differences 
in 28-day mortality between patients in the high- and 
low-risk groups classified by the HLMRG signature 
were observed in both the discovery set (n = 479) and 
the validation set (n = 371). Four molecular endotypes 
associated with 28-day mortality of sepsis were iden-
tified by previous study based on transcriptomic pro-
file of PBMCs from sepsis patients; patients with a 

Fig. 5 The HLMRG signature is an independent prognostic factor of sepsis patients. A Univariate Cox regression analysis performed on sepsis 
patients in the discovery set (n = 479). Orange solid dots represent the HR of death and open-ended horizontal lines represent the 95% CIs. All 
P-values were calculated using Cox proportional hazards analysis. B Multivariate Cox regression analysis that contained age, gender, Mars endotype, 
and HLMRG signature as covariates. *P < 0.05, ***P < 0.001
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Mars1 endotype had the worst outcome [22]. In the 
current study, the HLMRG signature significantly cor-
related with the Mars endotype. This correlation sug-
gested Mars endotype and HLMRG were both potential 
prognostic factors for sepsis, which was verified by the 
univariate Cox regression analysis. However, the multi-
variate Cox regression analysis with age, gender, Mars 
endotype, and HLMRG signature as covariates revealed 
that only the HLMRG signature could be an independ-
ent determinant for predicting the 28-day mortality of 
sepsis patients. These results suggested the prominent 
reliability of the identified HLMRG signature for pre-
dicting sepsis outcomes. We further performed ROC 
analysis to evaluate the sensitivity and specificity of the 
survival prediction, and the AUC of the HLMRG sig-
nature was significantly higher than that of the Mars 
endotype, but combination of the HLMRG signature 
and Mars endotype could not further increased the 
predicting capacity. We inferred the reason was that 

these two predictive signatures were both derived from 
transcriptomic analysis, and the inclusion of meaning-
ful clinical characteristics may greatly improve the pre-
dicting efficacy.

Several investigators have successfully subgroup 
patients with sepsis based on genetic signatures derived 
from transcriptomic profiling of PBMCs. Liang et  al. 
[35] developed and validated a novel prognostic predic-
tive risk score for sepsis based on six pyroptosis-related 
genes (GZMB, CHMP7, NLRP1, MYD88, ELANE, 
and AIM). Four out of the six genes (GZMB, CHMP7, 
NLRP1, and AIM2) also have potential diagnostic value 
in sepsis diagnosis [35]. Peng et  al. [27] established a 
prognostic immune-related gene signature comprising 
three gene members (LTB4R, HLA-DMB and IL4R). This 
prognostic signature demonstrated good predictive per-
formance for 28-day mortality in the internal and exter-
nal validation datasets [27]. Zhu et  al. [36] identified a 
ferroptosis-related prognostic signature (TLR4, WIPI1, 

Fig. 6 Association between the HLMRG signature and immune cell subtypes. A Immune cell fractions of sepsis patients in the discovery set 
(n = 479) and validation set (n = 371) calculated by the CIBERSORT method. B The correlation between the HLMRG risk score and immune cell 
fractions analyzed by Spearman’s correlation analysis
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Fig. 7 Assessment of biological pathways related to the HLMRG signature. A Volcano plots showing differentially expressed genes between high 
and low risk in the discovery and validation sets. The screening criteria were set as adjusted P < 0.05 and |  log2 (fold change) |≥ 1. B Expression 
profile of top 10 DEGs between high and low risk groups in the discovery and validation sets. C Venn diagram of intersected DEGs screened 
from the discovery and validation sets. D GO analysis of the identified DEGs. Top 10 significantly enriched terms related to Biological Processes, 
Cellular Components and Molecular Functions were shown. E Network plot showing relationships between the enriched terms. Nodes represent 
enriched gene sets that are grouped and annotated by their similarity according to related gene sets. Node size is proportional to the total 
number of genes within each gene set. Proportion of shared genes between gene sets is represented as the thickness of the connecting line 
between nodes
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and GABARAPL2), and Jiang et al. [37] developed a sig-
nature consisting of nine inflammatory response-related 
genes (CCL22, CX3CL1, CXCR6, FFAR2, FPR1, HBEGF, 
ITGA5, RGS16, and SELL) to predict prognosis. The 
AUC of the HLMRG signature was comparable to the 
AUCs of the signatures identified by the groups afore-
mentioned, except that it was significantly higher than 
that of the signature identified by Zhu and his colleagues 
(0.674 vs. 0.599, P = 0.002; Fig. 8).

Lactate is traditionally recognized as a byproduct 
derived from glucose metabolism. More recently, there 
is growing evidence indicates that role of lactate is a key 
player in the regulation of various biological and patho-
logical processes. Infection, inflammation, hypoxia, and 
tumors are found to promote lactate production [38]. A 
plethora of studies have highlighted that lactate play a 
role in regulating a wide range of immune cells involved 
in maintaining host immune homeostasis [38]. In sepsis, 
aerobic glycolytic metabolism fundamentally participated 
in activation of immune cell, and the lactate produced 
by aerobic glycolysis plays an immunosuppressive role 
[7]. The biological effects of lactate on innate myeloid 
cells have been extensively studied. In monocytes and 
macrophages, lactic acid suppresses an arrangement of 
lipopolysaccharide-induced (LPS)-induced cytokines and 
chemokine mediators [39–41]. Lactate itself also acts as 
a suppressor of inflammasome assembly, LPS-stimulated 
cytokine secretion, and migration of macrophages and 
monocytes [42–44]. In the present study, we inferred 
from the transcriptomic data a consistent positive cor-
relation between the HLMRG signature and the abun-
dance of M0 macrophages in the discovery and validation 
sets, indicating the involvement of hypoxia and lactate 
metabolism in regulating macrophage function, as well as 
the role of macrophages in determining the prognosis of 
sepsis patients. Finally, DEGs between the high- and low-
risk groups were screened out for GO analysis, and the 
results suggested that these DEGs were significantly asso-
ciated with pathway clusters of cell adhesion molecular 

binding, cytokine production, protein serine or threonine 
kinase activity, and leukocyte migration, providing inspi-
ration for us to further discover the underlying biological 
mechanisms of the HLMRG signature.

The current study has few limitations. First, this was 
a retrospective study, and transcriptomic data were 
retrieved from primarily available researches; we were 
unable to control for infection source, demographics, 
or patient severity. Second, the HLMRG signature was 
established merely on the basis of transcriptomic data. 
The AUCs of the HLMRG signature were 0.674 and 
0.644 for the discovery and validation sets, respectively, 
although the prediction performance was better than 
that of existing molecular biomarkers such as the Mars 
endotype and the SRS group. The AUCs are relatively low 
for a clinically useful biomarker; therefore, the clinical 
characteristics of patients with sepsis or other system-
based omics data should also be added to the model to 
increase its predictive power. Third, despite validation in 
an independent cohort, we did not evaluate the HLMRG 
signature in any clinical study conducted at our medi-
cal center. A prospective analysis should be designed for 
translational purposes of the HLMRG signature. Finally, 
there existed few experimental data regarding the func-
tional roles and underlying molecular mechanisms of 
the genes consisting of the HLMRG signature. As such, 
detailed experimental validation and exploration should 
be designed to gain insights into the roles and mecha-
nisms of the genes consisting of the HLMRG signature.

Conclusions
The current study identified a group of HLMRGs dysreg-
ulated in sepsis patients. Using these genes, a prognostic 
model was developed and tested, which accurately pre-
dicts the likelihood of 28-day mortality in sepsis patients. 
This gene expression model is reflective of the underly-
ing biological response of sepsis and the immune state 
of sepsis patients. Prospective clinical investigations 
and targeted studies of individual genes and relevant 

Fig. 8 Comparison of the AUC of the HLMRG signature with those of the other groups. **P < 0.01
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pathways are required to confirm and extend the findings 
presented here.
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