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Abstract 

Osteosarcoma is the most prevalent and fatal type of bone tumor. Despite advancements in the treatment of other 
cancers, overall survival rates for patients with osteosarcoma have stagnated over the past four decades Multiple-drug 
resistance—the capacity of cancer cells to become simultaneously resistant to multiple drugs—remains a significant 
obstacle to effective chemotherapy. The recent studies have shown that noncoding RNAs can regulate the expres-
sion of target genes. It has been proposed that “competing endogenous RNA” activity forms a large-scale regulatory 
network across the transcriptome, playing important roles in pathological conditions such as cancer. Numerous 
studies have highlighted that circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) can bind to microRNA 
(miRNA) sites as competitive endogenous RNAs, thereby affecting and regulating the expression of mRNAs and target 
genes. These circRNA/lncRNA-associated competitive endogenous RNAs are hypothesized to play significant roles 
in cancer initiation and progression. Noncoding RNAs (ncRNAs) play an important role in tumor resistance to chemo-
therapy. However, the molecular mechanisms of the lncRNA/circRNA-miRNA-mRNA competitive endogenous RNA 
network in drug resistance of osteosarcoma remain unclear. An in-depth study of the molecular mechanisms of drug 
resistance in osteosarcoma and the elucidation of effective intervention targets are of great significance for improv-
ing the overall recovery of patients with osteosarcoma. This review focuses on the molecular mechanisms underly-
ing chemotherapy resistance in osteosarcoma in circRNA-, lncRNA-, and miRNA-mediated competitive endogenous 
networks.
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Introduction
Osteosarcoma (OS) is a primary malignant bone tumor, 
more commonly observed in children and adolescents 
[1]. In the 1970s, amputation stood as the standard OS 
treatment, yielding a 5-year survival rate of only 20% [2, 
31]. The emergence of chemotherapy agents [4] has ele-
vated the post-treatment 5-year OS survival rate [5–8]. 
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However, long-term chemotherapy poses the risk that 
the patient’s cells will develop resistance to the chemo-
therapeutic drugs, eventually, eventually culminating in 
OS recurrence, distant metastasis, and treatment failure.

The resistance of OS to therapy is intimately linked with 
multidrug resistance, which emanates from prolonged 
exposure of cancerous cells to a particular chemothera-
peutic agent. This exposure can lead to cross-resistance 
against diverse chemotherapeutic agents with varying 
structures and functions. The effectiveness of chemother-
apy in OS is markedly impacted by multidrug resistance. 
Presently, there exist no conventional methods to sur-
mount chemotherapy resistance in malignancies without 
inducing adverse side effects. The exploration of novel 
generations of antitumor medications to combat tumor 
resistance has become a pivotal concept in the realm of 
cancer therapy.

For the purpose of curtailing OS recurrence and metas-
tasis rates, it becomes of paramount significance to elu-
cidate the manifold resistance mechanisms of OS against 
chemotherapeutic drugs and to investigate potential 
strategies for reversing this process. This review delves 
into the intricate mechanisms of drug resistance in OS, 
with particular emphasis on circRNA-, lncRNA-, and 
miRNA-mediated competitive endogenous networks.

Noncoding RNAs
It has been demonstrated that noncoding RNAs (ncR-
NAs), such as circular RNAs (circRNAs), long noncod-
ing RNAs (lncRNAs), and microRNAs (miRNAs), play 
significant roles in the regulation of cancer biology. The 
primary function of ncRNAs, which are not transcribed 
into proteins, is to regulate gene expression. Numerous 
biological properties of ncRNAs have been identified 

over the past few years. In addition, a growing number 
of ncRNAs is thought to play roles in OS tumorigen-
esis, invasion, metastatic progression, apoptosis, and 
drug resistance [9]. Salmena first proposed the com-
petitive endogenous RNA hypothesis in 2011 [10], sug-
gesting that lncRNA might regulate the expression of 
downstream genes by competitively binding to miRNA 
through microRNA response elements. Competitive 
endogenous RNA is not a novel ribonucleic acid mol-
ecule; instead, it is a novel mechanism for factor reg-
ulation. There is mounting evidence that noncoding 
RNAs, particularly circRNAs, lncRNAs, and miRNAs, 
form a competitive endogenous RNA-restrictive net-
work with mRNAs, and this network influences drug 
resistance [11–14]. Importantly, noncoding RNAs play 
a role in OS drug resistance due to their competitive 
endogenous RNA mechanisms.

circRNA mediated competitive endogenous RNA 
in OS chemoresistance
Since their discovery in 1976, circRNAs have been 
hypothesized to result from incorrect shearing and low 
expression levels [15, 16]. Numerous studies have dem-
onstrated that circRNAs are involved in various patho-
physiological processes in the body and are abnormally 
expressed in a wide range of malignant tumors, includ-
ing OS [22], gastric cancer [17], bladder cancer [18], 
liver cancer [19], colorectal cancer [20], and breast 
cancer [21]. Tumorigenesis and modifications in the 
biological functions of cells result from abnormal cir-
cRNA expression [23, 24]. In addition, it has been dem-
onstrated that circRNAs are associated with tumor 
therapy resistance; for example, circ_0026359 promotes 

Table 1 circRNAs and osteosarcoma chemotherapy resistance

Name Mechanism References

circ-CHI3L1.2 Increases resistance to cisplatin through the miR-340-5p/LPAAT axis [27]

hsa_circ_0004674 Regulates the miR-342-3p and FBN1 axis to promote OS doxorubicin resistance [33]

CircPVT1 Via the miR-24-3p and KLF8, encourages OS cell proliferation and chemoresistance [28]

TRIAP1 is regulated by miR-137, which in turn contributes to OS cells’ doxorubicin resistance [37]

Regulates ABCB1 and plays a role in OS cells’ resistance to doxorubicin and cisplatin [29]

circUBAP2 Boosts SEMA6D expression. The Wnt/-catenin signaling pathway can be activated to increase cisplatin resistance [30]

hsa_circ_0000073 OS cells are more resistant to methotrexate because of it by upregulating NRAS and sponging miR-145-5p 
and miR-151-3p

[40]

circ_0081001 when knockdown, methotrexate sensitivity is increased by controlling the miR-494-3p and TGM2 axis [41]

CircDOCK1 Via the miR-339-3p and IGF1R axis, aids in osteogenic sarcoma tumorigenesis and resistance to cisplatin [31]

CircITCH Through the miR-524/RASSF6 axis, downregulation of circITCH encourages OS development and resistance 
to doxorubicin

[38]

Circular RNA LARP4 Sponging microRNA-424 increases OS chemosensitivity to cisplatin and doxorubicin [32]

Circular RNA_ANKIB1 Via microRNA-26b-5p, it speeds up resistance to chemotherapies [39]
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cisplatin resistance in stomach cancer [25]. The results 
of several studies have shown that circRNAs have a 
significant impact on chemotherapy resistance in OS 
(Table 1).

CircRNAs and cisplatin resistance of OS
The competitive endogenous RNA mechanism plays a 
major role in the biological functions of circRNAs in cells 
because it contains miRNA-binding sites [12, 26]. Circ-
CHI3L1.2 was found to be elevated in cisplatin-resistant 
OS cells [27], and the miR-340-5p and LPAAT axis could 
be used to make circCHI3L1.2-deficient OS cells more 
sensitive to cisplatin-resistant OS. They found that miR-
340-5p could bind to circ-CHI3L1.2. Moreover, miR-340-
5p’s target, LPAATβ, had less protein expression when 
circ-CHI3L1.2 was knocked down. Notably, the effect 
of circ-CHI3L1.2 knockdown was mitigated by the miR-
340-5p inhibitor. According to their findings, the miR-
340-5p-LPAAT axis was involved in circ-CHI3L1.2’s 
contribution to cisplatin resistance. The effects of circ-
CHI3L1.2 knockdown were partially reversed by miR-
340-5p suppression, which suggested that there were 
additional downstream pathways besides the miR-340-
5p-LPAAT axis. Other potential mechanisms should be 
explored in future studies. Numerous cancers have been 
linked to the oncogene CircPVT1. CircPVT1 was found 
to be up-regulated in OS tissues resistant to cisplatin, 
doxorubicin or methotrexate [28]. The targeting relation-
ships of circPVT1/miR-24-3p and miR-24-3p/KLF8 were 
verified. CircPVT1 could act as a sponge of miR-24-3p. A 
further confirmation of the negative regulation between 
circPVT1 and miR-24-3p was observed in OS cells. This 
research found that the overexpression of miR-24-3p 
inhibited the proliferation of OS cells, and increased 
the sensitivity of chemoresistant U2OS and MG63 cells 
to chemotherapy. The bioinformatics analysis suggested 
that KLF8 might be a downstream target of miR-24-3p. 
The binding association between miR-24-3p and KLF8 
was confirmed by dual-luciferase reporter and RNA pull-
down assays. KLF8 transcription factor played a vital role 
in oncogenic transformation. Nevertheless, the existing 
literature lacks a thorough discussion of the oncogenic 
role of KLF8 and its underlying mechanism. KLF8 was 
highly expressed in OS cell lines and was even further 
upregulated in chemoresistant OS cells, as confirmed by 
qRT-PCR and Western blotting assessments. The expres-
sion of KLF8 exhibited a positive correlation with that of 
circPVT1, while it demonstrated a negative association 
with that of miR-24-3p. Collectively, through the axis of 
miR-24-3p and KLF8, circPVT1 promotes OS cell pro-
liferation and drug resistance. CircPVT1 is involved in 
drug resistance in OS tumor cells through multiple path-
ways. The overexpression of circPVT1 is responsible 

for OS cell drug resistance to doxorubicin and cisplatin 
by controlling the ATP-binding box (ABC) transporter 
ABCB1 [29]. OS cells resistant to cisplatin show elevated 
expression levels of CircuUBAP2 and SEMA6D. By acti-
vating the Wnt/β-catenin signaling pathway through the 
miR-506-3p/SEMA6D axis, circUBAP2 increases OS 
resistance to cisplatin [30]. CircDOCK1 [31] encour-
ages OS cells to become cisplatin-resistant via the miR-
339-3p and IGF1R axes. The circRNA LARP4 increases 
OS chemotherapy sensitivity to cisplatin and doxoru-
bicin by sponging microRNA-424 [32]. The competitive 
endogenous RNA mechanism of circRNAs contributes to 
the resistance of OS to chemotherapy and several other 
biological functions.

CircRNAs and doxorubicin resistance of OS
By controlling miR-342-3p and FBN1, hsa_circ_0004674 
[33] promotes resistance to doxorubicin through the Wnt/
β-catenin pathway, suggesting that hsa_circ_0004674 
could be a promising target for OS resistance. The 
researchers found high levels of hsa_circ_0004674 
expression in osteosarcoma cells and tissues that were 
resistant to doxorubicin. OS tumors became more sensi-
tive to doxorubicin when hsa_circ_0004674 was knocked 
out. Moreover, their study discovered that miR-342-3p 
was under expressed in the doxorubicin-resistant OS tis-
sues and cells, inhibiting OS doxorubicin resistance. The 
anti-miR-342-3p reversal effect on si-hsa_circ_0004674 
suggested that hsa_circ_0004674 modulated the doxoru-
bicin resistance of OS by targeting miR-342-3p. Studies 
unveiled that miR-342-3p targeted FBN1, whose aber-
rant expression is linked to the malignant phenotype of 
several tumors, such as ovarian cancer [34] and papillary 
thyroid carcinoma [35]. The results showed that miR-
342-3p increased resistance to doxorubicin through its 
interaction with FBN1. The research suggests that during 
the malignant progression of many cancers, the activity 
of the Wnt/β-catenin signaling pathway is significantly 
upregulated [36]. Related studies of osteosarcoma have 
shown that activation of the Wnt/β-catenin pathway is 
associated with chemoresistance, whereas inhibiting this 
pathway has been demonstrated to enhance chemother-
apy sensitivity. Silencing hsa_circ_0004674 was found to 
inhibit the activity of the Wnt/β-catenin pathway. Fur-
ther analysis revealed that hsa_circ_0004674 had a posi-
tive regulatory effect on the activity of the Wnt/β-catenin 
pathway through the miR-342-3p/FBN1 axis. It has been 
reported that circPVT1 [37] was concerned with OS cell 
drug resistance to doxorubicin by controlling TRIAP1 
through miR-137. circPVT1 knockdown could boost 
doxorubicin sensitivity by inhibiting doxorubicin-caused 
proliferation and doxorubicin -induced apoptosis in 
doxorubicin-resistant osteosarcoma cells in  vitro. The 



Page 4 of 9Qin et al. European Journal of Medical Research          (2023) 28:354 

mechanical analysis revealed that circPVT1 functioned 
as a miR-137 sponge to regulate TRIAP1 expression. Fur-
thermore, a mechanistic analysis confirmed that the miR-
137 inhibitor was able to partially reverse the inhibitory 
effect of silencing circPVT1 on the TRIAP1 level in dox-
orubicin-resistant osteosarcoma cells. This validates the 
role of circPVT1 as a miR-137 sponge that upregulates 
TRIAP1 expression. Through the miR-524/RASSF6 axis, 
circITCH downregulation promotes OS development 
and doxorubicin resistance [38]. The interaction between 
circITCH, miR-524, and RASSF6 was confirmed through 
dual-luciferase reporter and RNA immunoprecipitation 
assays. By binding to microRNA-26B-5P and modulating 
EZH2, circular RNAANKIB1 promotes chemotherapy 
resistance in OS [39]. The expression of miR-26b-5p was 
suppressed in both OS tissues and cells, as well as doxo-
rubicin-resistant OS tissues and cells, while the levels of 
circ_ANKIB1 and EZH2 were increased. Circ_ANKIB1 
binds to miR-26b-5p. MiR-26b-5p directly targeted 
EZH2, and increasing the levels of EZH2 reversed the 
effect of elevated miR-26b-5p on doxorubicin-resistant 
cells. In  vivo, silencing of circ_ANKIB1 suppressed the 
growth of doxorubicin-resistant OS cells.

CircRNAs and methotrexate resistance of OS
It was discovered for the first time that hsa_circ_0000073 
may enhance the proliferation, migration, invasion and 
methotrexate resistance of OS cells [40]. It was discov-
ered that the expression of hsa_circ_0000073 was highly 
upregulated in both OS cells and tissues, which in turn 
led to poor OS survival. In order to determine whether 
hsa_circ_0000073 is involved in the competitive endog-
enous RNA model, predictions were made and it was 
observed that miR-145-5p and miR-151-3p directly bind 
to hsa_circ_0000073. At the same time, miR-145-5p 
and miR-151-3p exhibited a negative correlation with 
hsa_circ_0000073. miR-145-5p and miR-151-3p directly 
regulate NRAS. In OS cells, hsa_circ_0000073 upregu-
lates NRAS by inhibiting miR-145-5p and miR-151-3p. 
According to their study, hsa_circ_0000073 may enhance 
the proliferation, migration and invasion of OS cells by 
directing the regulation of NRAS through miR-145-5p or 
miR-151-3p. The authors also hypothesized that metho-
trexate resistance in OS could be closely associated with 
the hsa_circ_0000073/miR-145-5p and miR-151-3p/
NRAS axes. Circ_0081001 [41] has been implicated in 
regulating the sensitivity of OS cells to methotrexate 
by controlling the miR-494-3p/TGM2 axis. In metho-
trexate-resistant OS tissues and cells, expression lev-
els of Circ_0081001 and TGM2 were upregulated while 
miR-494-3p was downregulated. Interference with 
Circ_0081001 resulted in increased cell sensitivity to 
methotrexate by promoting apoptosis and inhibiting 

cell viability and metastasis in  vitro. Furthermore, a 
molecular sponge effect of circ_0081001 on miR-494-3p 
led to the upregulation of TGM2 level. Knockdown 
of circ_0081001 inhibited methotrexate resistance by 
upregulating miR-494-3p and downregulating TGM2. 
The downregulation of Circ_0081001 improved metho-
trexate sensitivity of OS in vivo.

LncRNA mediated competitive endogenous RNA 
in chemoresistance of OS
LncRNAs are a class of RNA molecules with lengths 
ranging from 200 to 100,000 nucleotides. They regu-
late gene expression at various levels but do not encode 
proteins [42, 43]. Several lncRNAs have unusually high 
expression levels in cancer cells and can function as 
oncogenes or tumor suppressors, participating in the for-
mation and spread of tumor cells [44]. They also contrib-
ute biologically to resistance to chemotherapy. Numerous 
studies have demonstrated a connection between chemo-
therapy resistance and changes in the expression levels 
of certain lncRNAs in OS tumor cells [9, 45] (Table  2). 
LncRNAs play key roles in drug resistance. Generally, 
the levels of lncRNAs involved in OS drug resistance 
increase through a competitive endogenous RNA mecha-
nism [46–48].

The researchers have confirmed that the lncRNA 
TTN-AS1 controls OS cell growth, apoptosis, and cispl-
atin resistance and promotes MBTD1 expression by tar-
geting miR-134-5p [49]. Patients with OS showed high 
levels of lncRNA expression. Drug resistance can also 
be reduced by downregulating TTN-AS1. Zhang et  al. 
[50] found that the lncRNA KCNQ1OT1 was expressed 
in the tumors and adjacent tissues of 30 patients with 
OS. The lncRNA KCNQ1OT1 inhibited miR-129-5p 
expression, which in turn promoted cell prolifera-
tion, invasion, drug resistance, and LARP1 expression. 
DNMT1-mediated Kcnq1 expression increases with the 
knock-out of KCNQ1OT1, making OS cells more sensi-
tive to cisplatin [51]. By focusing on the miR-130a-3p/
SP1 axis, MIR17HG helps OS cells develop cisplatin 
resistance [46]. Doxorubicin-resistant OS cells and tis-
sues had lower levels of the lncRNA FENDRR, which was 
linked to worse prognoses in patients with OS [52]. The 
lncRNA HOTAIR is upregulated in cisplatin-resistant 
OS tumor cells [47]. By directly binding to and control-
ling miR-106a-5p, HOTAIR overexpression upregulates 
STAT3 expression, which is reduced in OS tissues and 
cisplatin-resistant cells. Cisplatin resistance and drug 
resistance-related gene expression in Saos2/cisplatin, 
MG-63/cisplatin, and U2-OS/cisplatin cells were dimin-
ished when HOTAIR was knocked down. OS tissues had 
considerably increased SNHG16 and ATG4B expression. 
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A higher level of SNHG16 expression is linked to a worse 
prognosis in patients with OS [48].

In OS-resistant HOS/cisplatin cells, one study found 
that the expression of lncRNA NORAD and MRP1 
mRNA and protein was significantly elevated, while 
the expression levels of miR-410-3p were consider-
ably minimized [53]. When the lncRNA ANRIL was 
knocked down in U2-OS and Saos-2 OS cells, ANRIL-
silenced cells became more susceptible to cisplatin 
[54]. In ANRIL-silenced cells, the level of miR-125a-5p, 
which binds to ANRIL, increased. Furthermore, there 
was a decrease in the expression of STAT3, which is a 
target of miR-125a-5p. The researchers demonstrated 
that by selectively regulating miR-125a-5p, sensitivity 
of OS cells to cisplatin was enhanced by suppressing 
lncRNA ANRIL expression. Wen et al. discovered that 
OS cells became cisplatin-sensitive when the lncRNA-
SARCC was overexpressed [55]. Using microarray anal-
ysis, the authors found that SARCC increased miR-143 
expression in OS. In contrast, SARCC and miR-143 
expression were downregulated in cisplatin-resistant 
OS cells, making them resistant to cisplatin. In OS, 
miR-143 directly targets hexokinase 2 (HK2), the key 
enzyme in glycolysis. The RNA network SARCC-miR-
143-HK may regulate OS chemosensitivity. By sponging 
miR-140-5p, the lncRNA MSC-AS1 triggers osteogenic 
differentiation [56]. In addition, when MSC-AS1 was 
silenced, cisplatin became more toxic to OS cells, and 

overexpression of MSC-AS1 in OS patients led to a 
worse prognosis. Increasing miR-142 to decrease CDK6 
and deactivate the PI3K/AKT axis inhibited OS cell 
processes in tumor cells with silenced MSC-AS1. Pre-
vious research indicated significantly increased expres-
sion of the lncRNA OIP5-AS1 in cisplatin-resistant 
OS cells, leading to resistance through LPAAT, PI3K, 
AKT, and mTOR pathways [57]. Knocking out OIP5-
AS1 effectively reduced cisplatin resistance. Knock-
down of OIP5-AS1 enhanced cisplatin sensitivity in 
OS via the miR-377-3p and FOSL2 axes [58], while the 
lncRNA ROR [59] mediated cisplatin resistance in OS 
by controlling ABCB1 through miR-153-3p. NCK1-AS1 
silencing restrained OS cell proliferation, migration, 
and invasion, and heightened their cisplatin sensitiv-
ity [60]. Cisplatin-resistant OS cells exhibited notable 
upregulation of lncRNA NCK1-AS1. Overexpressing 
miR-137 increased OS cells’ sensitivity to cisplatin, but 
the effects were counteracted by high levels of NCK1-
AS1 in cisplatin-resistant cells. Another study discov-
ered elevated expression of the lncRNA DNAJC3-AS1 
[61] in OS, decreasing OS sensitivity to cisplatin 
through a mechanistic process, which was reversed by 
downregulating the sense-cognate gene DNAJC3. Ele-
vated lncRNA HOTTIP [62] promoted chemoresist-
ance in OS by activating the Wnt/-catenin pathway.

In summary, understanding how changes in the 
expression levels of lncRNAs in OS tumor cells is 

Table 2 lncRNAs associated with osteosarcoma chemotherapy resistance

Name Mechanism References

LncRNA TTN-AS1 Via the miR-134-5p and MBTD1, controls drug resistance and apoptosis in OS cells [49]

LncRNA KCNQ1OT1 In OS, inhibiting resistance by controlling LARP1 mediated by miR-129-5p by knocking down KCNQ1OT1 [50]

OS cells become more sensitive to CDDP if KCNQ1OT1 is knocked out by increasing Kcnq1 expression 
through DNMT1

[51]

LncRNA MIR17HG OS resistance to cisplatin is aided by the SP1, MIR17HG, and miR-130a-3p [46]

LncRNA FENDRR Reduces the levels of ABCB1 and ABCC1 in OS cells, making them more sensitive to doxorubicin [52]

LncRNA HOTAIR Bolsters OS cells’ cisplatin resistance via the STAT3 Axis of miR-106a-5p [47]

LncRNA SNHG16 Sponges miR-16 to increase ATG4B expression, which in turn increases cisplatin resistance [48]

LncRNA NORAD Regulates OS’s sensitivity to drug resistance by targeting miR-410-3p [53]

LncRNA ANRIL Through targeted regulation of miR-125a-5p, OS cell sensitivity to cisplatin can be increased by inhibiting 
the expression of the lncRNA ANRIL

[54]

LncRNA-SARCC Targets Hexokinase 2 to increase OS’s sensitivity to cisplatin by inhibiting glycolysis through miR-143 [55]

LncRNA MSC-AS1 By binding to microRNA-142, downregulated lncRNA MSC-AS1 increases cisplatin sensitivity [56]

LncRNA OIP5-AS1 Sponging the miR-340-5p induces the LPAAT, PI3K, AKT, and mTOR signaling pathway, resulting in OS cisplatin 
resistance

[57]

Through the miR-377-3p/FOSL2 axis, knockdown enhances cisplatin sensitivity in OS [58]

LncRNA ROR Sponges miR-153-3p to induce cisplatin resistance in OS [59]

LncRNA NCK-AS1 In OS cells, inhibiting the lncRNA NCK-AS1 modifies miR-137 to control cisplatin resistance [60]

LncRNA DNAJC3-AS1 Decreases OS’s sensitivity to cisplatin, which was reversed by down-regulating DNAJC3, its sense-cognate gene [61]

LncRNA HOTTIP By activating the Wnt/-catenin pathway, lncRNA HOTTIP overexpression increases osteosarcoma cell chemoresist-
ance

[62]
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related to chemotherapy resistance may help in select-
ing and developing effective therapeutics to overcome 
drug resistance, thereby improving OS treatment 
outcomes.

Prospects
In addition to the molecular mechanisms discussed 
here, other factors influence drug resistance in OS, such 
as microenvironmental damage and cell cycle- or apop-
tosis-related mechanisms of chemotherapy resistance. 
To develop more effective treatments, it is essential to 
conduct in-depth research into the molecular mecha-
nisms underlying OS resistance. This is important for 
reducing the incidence of OS resistance, improving the 
efficacy and prognosis of chemotherapy for OS, and 
developing better treatments. Numerous mechanisms 
and factors are involved in the development of resist-
ance to tumor medication. It is difficult to identify a 
single mechanism that fully explains chemotherapeutic 
drug resistance. Many factors influence drug resistance 
in OS, including the effects of ncRNAs, ABC transport-
ers, cancer stem cells, DNA repair factors, autophagy, 
microenvironmental damage, and cell cycle and apop-
tosis-related mechanisms of chemotherapy resistance. 
New approaches to cancer treatment, such as new 
anticancer medications, utilization of multifunctional 
nanocarriers, and RNA interference therapy [63], have 
emerged in light of the aforementioned mechanisms.

Combination of at least two antitumor medications: 
increased lethality against tumor cells
Chemotherapy of osteosarcoma has evolved from the 
initial single-drug application to the current multidrug 
combination. The combination of a variety of chemo-
therapy drugs achieved a good therapeutic effect. At 
the same time, the efficacy and adverse reactions of 
the drug should be comprehensively considered when 
the combination of chemotherapy drugs is used. The 
adverse reactions should be minimized, and personal-
ized treatment plans should be provided for patients. 
How to combine drugs reasonably become the future 
research direction of molecular targeted drugs.

Prolonging the exposure to chemotherapeutic drugs
The toxicity of a drug to normal tissue limits the poten-
tial dose, and the kinetics of the drug (including absorp-
tive capacity, in  vivo distribution, metabolism, and 
elimination) limit the concentration at which the drug 
can reach the tumor tissue. The recent advancements 
in cancer nanotechnology can offer chemotherapeutic 
drugs longer exposure times and extended circulating 

half-lives. Nevertheless, the most fundamental solution 
is to prevent and overcome multiple-drug resistance to 
chemotherapy drugs.

Build drug‑resistant tumor animal models to test clinical 
relevance
Before the stage of clinical and translational medicine 
research, it is necessary to combine in  vivo pharmacol-
ogy methods and genomics analysis platforms. Through 
the creation of animal models with drug-resistant 
tumors, the mechanism behind OS resistance can be 
better understood, and an optimal dosage regimen can 
be established. This approach can lead to the design of 
more effective OS drugs that demonstrate clinical ben-
efits, ultimately fostering a new generation of anticancer 
medications. The establishment of dependable preclini-
cal tumor drug-resistant cell models holds significant 
importance for delving further into the attributes of 
drug-resistant cells and for identifying novel clinical ther-
apeutic strategies.

Establish highly selected and annotated databases 
of germline and somatic mutant genes
Through genetic testing, the type of genetic variation and 
level of biomarkers in a patient’s body can be determined, 
and clinicians can make decisions based on a compre-
hensive analysis of these indicators. The established 
databases include mutation points associated with drug 
responses, providing a description of the possible role 
of gene mutation sites in drug resistance and the level of 
evidence to effectively address possible drug intolerance 
or toxic side effects in patients with cancer.

With the discovery, prediction, and clinical applica-
tion of molecular diagnostic markers, precise treatments 
for different patients are also being promoted. The drug 
resistance of tumor cells can be viewed from an evolu-
tionary perspective, and a variety of therapeutic methods 
used to combat tumor cells. The most important chal-
lenge in tumor resistance is to quickly identify biological 
indicators of multiple-drug resistance before the emer-
gence of tumor resistance. Through high-throughput 
screening techniques and systems biology approaches, 
researchers can partially detect or predict the response 
of tumor cells to particular chemotherapeutic drugs, 
thus avoiding complications before administering chem-
otherapy. In the future, the research direction of tumor 
resistance may be to identify molecular markers of tumor 
resistance, predict and monitor chemotherapy efficacy, 
perform early detection and prognosis combined with 
laboratory and imaging examinations, and develop chem-
otherapy drugs for effective targets.
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Conclusion
In this review, we discussed the molecular mechanisms 
underlying chemotherapy resistance in OS, especially 
in terms of circRNA-, lncRNA-, and miRNA-mediated 
competitive endogenous networks. CircRNAs bind to 
miRNAs and act as miRNA sponges, thus regulating 
target genes of miRNAs [61]. This is known as com-
petitive endogenous RNA mechanism. Through their 
interactions with miRNAs, circRNAs play an important 
regulatory role in tumorigenesis and tumor progres-
sion. The researchers have found abnormal expres-
sion of circRNAs/lncRNAs in drug-resistant OS cells, 
suggesting that circRNAs/lncRNAs play a role in 
chemotherapy resistance in OS. The role of circRNAs/
lncRNAs has also been explored. These findings pro-
vide a foundation for elucidating the mechanism of 
cisplatin resistance in OS and, eventually, new inter-
vention targets for ncRNA-based therapeutics in OS, 
with the goal of preventing chemoresistance. The 
implications are significant, both in terms of advanc-
ing oncology research and actual patient outcomes. 
However, the research on the molecular mechanisms 
underlying chemotherapeutic drug resistance in OS is 
still in the early stages of development. Further studies 
are required to elucidate the involvement of ncRNAs in 
drug resistance of OS.
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