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Abstract 

Background  Membranous nephropathy (MN) is a chronic glomerular disease that leads to nephrotic syndrome 
in adults. The aim of this study was to identify novel biomarkers and immune-related mechanisms in the progression 
of MN through an integrated bioinformatics approach.

Methods  The microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The differen-
tially expressed genes (DEGs) between MN and normal samples were identified and analyzed by the Gene Ontol-
ogy analysis, the Kyoto Encyclopedia of Genes and Genomes analysis and the Gene Set Enrichment Analysis (GSEA) 
enrichment. Hub The hub genes were screened and identified by the weighted gene co-expression network analysis 
(WGCNA) and the least absolute shrinkage and selection operator (LASSO) algorithm. The receiver operating charac-
teristic (ROC) curves evaluated the diagnostic value of hub genes. The single-sample GSEA analyzed the infiltration 
degree of several immune cells and their correlation with the hub genes.

Results  We identified a total of 574 DEGs. The enrichment analysis showed that metabolic and immune-related 
functions and pathways were significantly enriched. Four co-expression modules were obtained using WGCNA. The 
candidate signature genes were intersected with DEGs and then subjected to the LASSO analysis, obtaining a total 
of 6 hub genes. The ROC curves indicated that the hub genes were associated with a high diagnostic value. The CD4+ 
T cells, CD8+ T cells and B cells significantly infiltrated in MN samples and correlated with the hub genes.

Conclusions  We identified six hub genes (ZYX, CD151, N4BP2L2-IT2, TAPBP, FRAS1 and SCARNA9) as novel biomarkers 
for MN, providing potential targets for the diagnosis and treatment.
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Introduction
Membranous nephropathy (MN) is an immune-mediated 
glomerular disease characterized by the deposition of 
immune complexes along the subepithelial region of the 
glomerular basement membrane [1]. Immunohistochem-
ical staining showed that the deposits contained mainly 
long-unidentified antigens, IgGs and complement com-
ponents [2, 3]. The overall incidence of MN is 12 cases 
per 1 million adults worldwide, of which approximately 
80% are idiopathic conditions [4]. Diagnosis is made on 
kidney biopsy because there is no clear understanding of 
the molecular mechanisms of the disease. Clarifying the 
pathogenesis of MN is of importance for clinical diagno-
sis and treatment.

Immune cells play a relevant role in MN. An imbal-
ance of specific subpopulations of T helper (Th) cells was 
previously described in the development of MN [5]. Th2 
cells release various cytokines that stimulate B cells to 
produce immune complexes depositing in the glomerular 
wall. Rituximab, a human-mouse chimeric monoclonal 
antibody exerting B-cell depleting effects via binding to 
CD20, is approved for the treatment of MN [6]. Previ-
ous studies described an increased proportion of T cell 
subsets (CD4+/CD8+) in idiopathic MN, but this finding 
was not conclusive [7]. The exact nature of the disease-
initiating antigen in idiopathic MN remains unknown 
[8]. Th17 cells are generally regarded as key effectors of 
autoimmune inflammation, but their role in MN remains 
unknown [9].

The weighted gene co-expression network analy-
sis (WGCNA) is a widely used bioinformatics method 
for studying biological networks. The WGCNA identi-
fies hub genes and analyzes potential disease-associated 
genomic changes [10]. It has been applied to various dis-
eases, such as breast cancer [11], ischemic stroke [12] and 
rheumatoid arthritis [13]. However, WGCNA has been 
not used in MN. The least absolute shrinkage and selec-
tion operator (LASSO) algorithm is a regression analysis 
method used for a more accurate prediction in clinical 
decision making [14].

In this study, we screened and identified candidate 
biomarkers for MN by combining WGCNA and LASSO 
analyses. In addition, we used the single-sample Gene Set 
Enrichment Analysis (ssGSEA) to investigate 28 immune 
infiltrating cells in MN samples and their correlation with 
the candidate biomarkers.

Materials and methods
Data extraction
The NCBI GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/) was used to get raw files for three registered micro-
array data sets, GSE200828, GSE108113, and GSE108112 

(Table  1) [15]. These datasets were obtained from 
GPL19983’s microarray platform, Affymetrix Human 
Gene 2.1 ST Array [HuGene21st_Hs_ENTREZG_19.0.0]. 
Only kidney biopsy from human membranous nephropa-
thy (MN) and kidney biopsy from human healthy living 
donor (Control) were chosen for each data set. We com-
bined GSE200828 and GSE108113 for our study, and the 
combined dataset served as the training dataset. The 
GSE108112 dataset was then used as a test dataset for 
model validation. The batch effect was removed using 
the "limma" [16] package’s "remove Batch Effect" function 
[17] in R program. Finally, 181 MN and 16 control sam-
ples were included for subsequent analyses. All data were 
downloaded on 22 October 2022.

Identification of differentially expressed genes (DEGs)
We used the “limma” [16] package in R software for the 
identification and analysis of differentially expressed 
genes (DEGs) of MN and normal samples in the com-
bined dataset. Filtering was performed based on the 
false discovery rate (FDR) < 0.05 and log |fold change| 
(logFC) ≥ 1.5. Volcano plot and heat map of DEGs were 
plotted using the “ggplot2” [18] and “pheatmap” packages 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​pheat​map/​
index.​html).

Enrichment analysis
We used the “DOSE” [19], “org.Hs.eg.db” [20] and “clus-
terProfiler” [21] packages for Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses. The GO analysis includes three 
components: biological process, molecular function and 
cellular component. An adjusted p-value < 0.05 was used 
to select significant GO terms and KEGG pathways. The 
data were visualized using the “ggplot2” [18] package.

Gene set enrichment analysis (GSEA)
We performed the GSEA to further explore the immune 
mechanisms in the pathogenesis of MN. The GSEA is 
used to associate a disease phenotype to a group of genes, 
attributing a specific weight to each gene in the input list 
that depends on a metric of choice. Reference genes were 
downloaded from the Molecular Signatures Database 
(MSigDB). The adjusted p-value < 0.05 was set as the cut-
off criterion.

Table 1  Characteristics of datasets in this study

GSE series Platform MN Control Total Submission date

GSE200828 GPL19983 51 6 57 Apr 14, 2022

GSE108113 GPL19983 87 5 92 Dec 14, 2017

GSE108112 GPL19983 43 5 48 Dec 14, 2017

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
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Weighted gene co‑expression network analysis (WGCNA)
We applied the WGCNA method to build a gene co-
expression network [10]. Firstly, the samples were clus-
tered to identify any significant outliers. Second, a 
scale-free network was constructed by calculating the 
strength of connection between genes. The “pickSoft-
Threshold” function in the R software was used to cal-
culate the value of β (a soft threshold power parameter), 
ensuring a scale-free network. Then, a dynamic tree cut-
ting algorithm was used to identify modules by hierar-
chical clustering. We set the minimum module size to 
60 and the cut height to 0.25. Finally, we merged similar 
modules and evaluated the correlation between module 
feature genes, clinical features and modules associated 
with the features. Gene significance (GS) and module 
affiliation (MM) were calculated for each module and 
used for hub gene selection. The genes with GS > 0.5 and 
MM > 0.8 were defined as pivotal genes.

Identification of the hub genes
We plotted Venn diagrams of key genes and DEGs. The 
overlapping genes were subjected to the LASSO analy-
sis to identify the hub genes. The LASSO algorithm 
chooses variables by building a penalty function that 
reduces the coefficients of non-significant variables to 
zero while keeping the model correlation coefficients of 
variables with non-zero regression coefficients [22]. For 
lasso regression, we utilized the glmnet function, and 
cross-validation was done with the cv.glmnet function 
with nfolds = 10. The expression level of the hub genes in 
MN and normal samples was analyzed using box plots. 
The receiver operating characteristic (ROC) curves were 
plotted using the “pROC” [23] package, while the area 
under the ROC curve (AUC) was calculated to ana-
lyze the expression level of the hub genes. We used the 
GSE108112 dataset and plotted ROC curves to assess the 
diagnostic value of the hub genes.

Evaluation of immune cell infiltration and their correlation 
with the hub genes
The relative infiltration level of 28 immune cells in the 
combined dataset was quantified using the ssGSEA score 
[24] and visualized using the "pheatmap" package. Violin 
plots showed the infiltration level of the immune cells. 
Spearman correlations between immune infiltrating cells 
and hub genes were visualized using the “ggplot2” [18] 
package.

Results
Screening and identification of DEGs
The workflow of this study is described in Fig. 1. DEGs 
were screened using the "limma" [16] package (R 

software) after merging GSE200828 and GSE108113 
(11 control samples and 138 treatment samples) (Addi-
tional file 1: Table S1). A total of 574 DEGs were identi-
fied based on the FDR threshold < 0.05 and logFC ≥ 1.5. 
Among them, 228 genes were upregulated and 346 
genes were downregulated (Fig. 2a, b) (Additional file 2: 
Table S2).

Enrichment analysis
We performed the GO and KEGG enrichment analyses 
to further understand the biological functions of DEGs 
and associated signaling pathways. In terms of biologi-
cal processes, the GO enrichment analysis showed that 
the differentially expressed genes were mainly enriched 
in several terms, including “alpha-amino acid metabolic 
process” and “carboxylic acid catabolic process”. Regard-
ing cellular components, they were mainly enriched 
in “apical plasma membrane” and “collagen-contain-
ing extracellular matrix”. As for molecular functions, 
they were mainly enriched in “anion transmembrane 
transporter activity” and "secondary active transmem-
brane transporter activity” (Fig. 3a, b) (Additional file 3: 
Table  S3). The KEGG enrichment analysis showed 
that the DEGs were mainly enriched in metabolic and 
immune pathways, such as “metabolism of xenobiotics by 
cytochrome P450”, “complement” and “coagulation cas-
cade” (Fig. 3c, d). (Additional file 4: Table S4).

Gene set enrichment analysis (GSEA)
To further investigate the potential immune mechanisms 
in the pathogenesis of MN, we used the immune gene set 
from the MsigDB database as a reference. The obtained 
DEGs were subjected to the GSEA, with a normalized 
enrichment score (NES) > 1 and an adjusted p-value < 0.05. 
The top 5 significantly enriched gene sets were displayed 
in MN and control samples (Additional file  5: Table  S5). 
According to the GSEA results, the significantly downreg-
ulated pathways in the control group include "GSE37533_
PPARG1_FOXP3_VS_FOXP3_TRANSDUCED_CD4_
TCELL" and "GSE6269_HEALTHY_VS_FLU_INF_PBMC" 
(p-value = 1.00E−10) (Fig.  4). The significantly elevated 
pathways in the experimental group include "GSE19888_
ADENOSINE_A3R_INH_PRETREAT_AND_ACT_BY_
A3R_VS_TCELL_MEMBRANES_ACT_MAST_CELL" 
and  "GSE2405_0H_VS_12H_A_PHAGOCYTOPHI-
LUM_STIM_NEUTROPHIL"  (p-value = 1.00E−10) 
(Fig.  5). It can be inferred that, compared to the control 
group, the pathways of "GSE19888_ADENOSINE_A3R_
I N H _ P R E T R E AT _ A N D _ A C T _ B Y _ A 3 R _ V S _
TCELL_MEMBR ANES_ACT_MAST_CELL"  and 
"GSE2405_0H_VS_12H_A_PHAGOCYTOPHILUM_
STIM_NEUTROPHIL" are significantly activated, while 
the  pathways  of  "GSE37533_PPARG1_FOXP3_VS_
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FOXP3_TRANSDUCED_CD4_TCELL" and "GSE6269_
HEALTHY_VS_FLU_INF_PBMC" are suppressed in the 
experimental group. These findings imply that immune-
related mechanisms may be crucial in the development 
of MN. Previous research has found that the number of T 
and B lymphocytes in the peripheral blood of patients with 
idiopathic membranous nephropathy is equivalent to that 
of healthy controls, but the CD4 +/CD8 + ratio is increased 
[8]. T cells also play a significant role in Heymann’s nephri-
tis, and reduction of CD4 + T cells eliminates IgG and C3 
deposition and reduces proteinuria in rats, implying that 
CD4 + T cell-B cell interactions are critical in autoantibody 
synthesis [25]. Monocytes, as dendritic cells or progenitors 

of macrophages in tissues, play a key role in immune 
response regulation [26]. Jie According to Hou et al., ele-
vated CD14 + CD163 + CD206 + M2 monocytes may be 
implicated in the pathogenesis of early IMN in adults and 
may serve as a sensitive biomarker for determining the 
severity of IMN [27]. A vaccination expressing CD40 DNA 
targeting dendritic cells was reported to prevent active 
Hyman’s nephritis (HN) in experimental rats, an animal 
model of human autoimmune membranous nephropathy 
[28]. This shows that immune cell infiltration may be cru-
cial in the development of membranous nephropathy. It 
warrants additional examination.

Fig. 1  The workflow of the study
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Construction of the co‑expression network
The WGCNA algorithm was used for the construction of 
the co-expression gene network. First, the samples were 
checked for missing values. Then, they were clustered to 
identify any outliers that included in our analysis (Fig. 6). 
The soft threshold was established by the soft concatena-
tion function of WGCNA. When the power value was 
set to 12, the correlation coefficient was R2 = 0.84 with 
the slope = − 1.26, indicating that a satisfactory standard 
scale-free network could be constructed (Fig. 7). Finally, 
the modules with high similarity of feature genes were 
merged by the dynamic hybrid shearing method, obtain-
ing four different color gene modules (Fig. 8a). The heat 
maps showed the correlation of the above modules 
between MN and control samples (Fig. 8b, c). Within the 
grey module, there was a good correlation between MM 
and GS (cor = 0.67, p < 1e−200) (Fig.  8d). We, therefore, 
selected the genes in the grey module for subsequent 
analysis.

Identification of the hub genes
Based on previous analysis, we obtained 9 candidate hub 
genes from the gray module. To further clarify the diag-
nostic value of the candidate hub genes, we obtained a 
total of 9 intersected genes (Fig.  9a). We subsequently 
performed the LASSO analysis to identify 6 hub genes: 
ZYX, CD151, N4BP2L2-IT2, TAPBP, FRAS1 and 
SCARNA9 (Fig. 9b, c). Previous studies have shown that 
ZYX, CD151, TAPBP and FRAS1 all appear to be associ-
ated with cell adhesion [29–32] and that two lncRNAs, 
N4BP2L2-IT2 and SCARNA9, play important roles in 
regulating human immune function [33, 34]. Their sig-
nificance in membranous nephropathy, however, is 
unknown.

The expression level of hub genes
We designed box plots to observe the expression level of 
the 6 hub genes. The expression level of CD151, TAPBP 
and ZYX was significantly higher in MN samples than in 
normal samples (p < 0.001), whereas the expression level 
of FRAS1, N4BP2L2-IT2 and SCARNA9 was significantly 
lower in MN samples than in normal samples (p < 0.001) 
(Fig.  10a–f). The expression level of the hub genes was 
validated using the GSE108112 dataset, with the levels 
of CD151, TAPBP, ZYX, FRAS1 and N4BP2L2-IT2 being 
similar to those observed in the training set (Fig. 10g–l). 
The ROC curve was designed to evaluate the diagnos-
tic value of the hub genes. The results showed that the 
AUC values of the hub genes were all > 0.95, suggesting a 
high diagnostic value (Fig. 11a–f). The accuracy of their 
clinical value was further validated using the GSE108112 
dataset, showing that the AUC values of ZYX, CD151, 
N4BP2L2-IT2, TAPBP and FRAS1 were > 0.9 while the 
AUC value of SCARNA9 was 0.893 (Fig. 11g–l). Under-
standing the precise involvement of these important 
genes in the etiology of MN could have major clinical 
ramifications. For starters, these genes could be used as 
diagnostic biomarkers, assisting in the early detection of 
MN and risk assessment. Second, targeting these critical 
genes and their associated pathways could pave the door 
for new MN therapy options. Modifying their expression 
or activity may aid in the regulation of immune responses 
and the slowing of disease development. However, more 
study is required to evaluate these implications and 
investigate potential treatment strategies based on these 
findings. Overall, this study adds to our understanding 
of the molecular pathways underlying MN and has the 
potential to advance customized diagnosis and therapy 
approaches for MN patients.

Fig. 2  Differential expression analysis of the merged dataset. A Heatmap plot of differentially expressed genes for conditions of interest. B Volcano 
plot of differentially expressed genes for conditions of interest
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Immune cell infiltration
The immune cell infiltration status of healthy and MN 
samples is visualized in Additional file  6: Table  S6. The 
results showed that CD8+ T cells, activated dendritic 
cells (aDCs), immature B cells, myeloid-derived suppres-
sor cells (MDSC), macrophages, mast cells, monocytes, 
natural killer T cells, natural killer (NK) cells, plasmacy-
toid dendritic cells (pDCs), regulatory T cells, T follicular 
helper (Tfh) cells, T helper type 1 (Th1) cells, T helper 
type 2 (Th2) cells and CD4+ T cells were significantly 
more infiltrated in MN samples than in controls (Fig. 12a, 
b), suggesting that an abnormal immune function might 
play a role in the pathogenesis of MN. CD8 + T cells play 
a significant role in cell-mediated immune responses. 

CD8 + T lymphocytes in MN can detect and assault 
target cells that express specific antigens, resulting in 
inflammatory reactions and tissue damage [35]. Their 
cytotoxic activity may aggravate renal inflammation and 
injury, negatively altering glomeruli structure [36]. More 
study is needed to acquire a better understanding of the 
role of CD8 + T cells in the progression of MN, which 
could lead to new therapeutic approaches. Activated 
dendritic cells (aDCs) are antigen-presenting cells that 
are thought to play an important regulatory role in MN. 
T cells may be activated by aDCs that produce cytokines 
such as IL-12, IL-6, and TNF-. These cytokines may 
stimulate T cell proliferation and activation while also 
regulating inflammatory responses. ADCs’ regulating 

Fig. 3  Enrichment analysis of the differentially expressed genes. A, B The GO enrichment analysis. C, D The KEGG enrichment analysis
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function may be important in the immunopathogenesis 
of MN [37]. In-depth research into the functions of aDCs 
in MN may aid in understanding their unique involve-
ment in disease pathophysiology, resulting in innova-
tive intervention and treatment options. The correlation 

analysis of the characteristic genes with immune infiltrat-
ing cells showed that pDCs, Tfh cells, Th1 cells, Th2 cells 
and macrophages were positively correlated with CD151, 
TAPBP and ZYX (p < 0.001), whereas NK cells, mono-
cytes and macrophages were negatively correlated with 

Fig. 4  Enrichment plot of the immune-associated gene set analysis in control samples

Fig. 5  Enrichment plot of the immune-associated gene set analysis in MN samples
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FRAS1, SCARNA9 and 4BP2L2-IT2 (p < 0.001) (Fig. 12c). 
These findings suggested that specific immune cells 
might be involved in the development of MN.

Discussion
Bioinformatics has been widely used in various fields of 
medical research with an important role in the diagno-
sis of diseases, the development of drugs and treatment 
personalization. By identifying novel biomarkers and 
key genes associated with membranous nephropathy 
(MN), it is important to improve disease diagnosis, facili-
tate early detection and improve prognostic prediction, 
thereby benefiting MN patients and potentially extending 
to other renal and immune-related diseases. The impor-
tance of the key genes identified in this study as potential 
therapeutic targets. The application of bioinformatics to 
the analysis of human patient data will enable the devel-
opment of personalized treatment strategies to optimise 
therapeutic efficacy and reduce adverse effects. The 
application of bioinformatics to analyse high-throughput 
data and suggest gene clusters associated with a specific 
disorder has become an efficient research method [38, 
39].

MN is distinguished by glomerular basement mem-
brane thickening and significant podule fusion. MN is 
presently thought to be an autoimmune illness, with 
disease progression intimately tied to the inflammatory 
immunological process. Although numerous significant 
target antigens in MN, including as PLA2R, THSD7A, 
and Nell-1, have been discovered, the molecular pro-
cesses underlying glomerular damage in MN remain 
unknown.

We identified putative important genes linked with MN 
in this study by combining MN gene expression profiles 
from the GEO database and using WGCNA and machine 
learning approaches. ssGSEA was used to analyze 28 
immune cell subsets from MN patients, and their con-
nection with diagnostic markers was explored. This study 
introduces novel concepts and strategies for the diagnosis 
and treatment of MN. We found that DEGs were mainly 
enriched in functions and pathways such as “cellular 
metabolism” and “immune response”. The pathogenesis 
of MN might be related to both aspects. Gao et al. found 
significant metabolic changes in MN patients, suggest-
ing that such events may be related to the severity of MN 

Fig. 6  Sample dendrogram and trait heatmap. Con: control group, Treat: MN group
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[40]. Other studies showed that an abnormal activation of 
the complement system played an important role in the 
pathogenesis of MN. However, a recombinant human-
ized monoclonal antibody against the complement pro-
tein C5 (eculizumab) was not effective in the treatment of 
MN [41]. To further investigate the relationship between 

immune function and MN, we performed the GSEA 
using the immune marker gene sets from the MsigDB 
database to provide a reference. We found that CD4+ T 
cells, neutrophils, mast cells and peripheral blood mono-
nuclear cells were significantly enriched in MN samples 
while monocytes, thymocytes, CD8+ T cells and DCs 

Fig. 7  Determination of soft thresholds in WGCNA. A, B Analysis of scale-free fit indices and average connectivity for various soft threshold values 
of power. C, D Validation of scale-free topological networks at the power value of 12
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were significantly enriched in control samples, suggest-
ing that the development of MN might be related to the 
abnormal activation of specific immune cells. Li et  al. 
found a significant increase in myeloid-derived suppres-
sor cells (MDSCs) in the peripheral blood, an increase 
in Th2 and Th17 immune responses and a positive cor-
relation with disease activity in MN patients [42]. Con-
sistently with our findings, MN patients reported a 
significantly lower number of regulatory T cells and an 
increased CD4+/CD8+ T cell ratio than healthy individu-
als [43]. In a retrospective cohort study, Tsai et al. found 
that some laboratory values were predictive of poor renal 
outcomes in patients with MN, including low serum lev-
els of complement C3, high and intermediate granulo-
cyte-lymphocyte ratios and a high platelet-lymphocyte 
ratio [44]. In accordance with our results, these studies 

suggested that the balance of immune cells plays a crucial 
role in the pathological progression of MN.

We used the WGCNA to screen out signature genes, 
with the candidate hub genes being identified by the 
LASSO algorithm (ZYX, CD151, N4BP2L2-IT2, TAPBP, 
FRAS1 and SCARNA9). To investigate the diagnostic 
value of these genes, we used another separate dataset 
(GSE108112) for validation and plotting ROC curves. 
All six genes displayed a high diagnostic value: CD151, 
TAPBP and ZYX were highly expressed in MN samples 
whereas FRAS1, N4BP2L2-IT2 and SCARNA9 were 
scarcely expressed in MN samples. ZYX is a zinc-binding 
phosphoprotein concentrating at focal adhesions and 
along the actin cytoskeleton [45]. ZYX played an impor-
tant role in DNA repair [46], apoptosis [47] and natu-
ral immunity [48]. CD151 is a principal regulator of the 
laminin-binding integrins signaling process supporting 

Fig. 8  Construction of the WGCNA modules. A Sample hierarchical clustering tree diagram with different blocks representing the gene modules 
created by the dynamic tree cutting method. B Heatmap of module-clinical trait relationships. The grey modules were significantly associated 
with MN. C The gene significance scores are expressed in modules. D The scatter plot of members of the grey module with their gene significance
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the normal function of the glomerular filtration barrier 
[49]. Previous studies showed that CD151 was closely 
associated with the formation of nephrogenic proteinu-
ria [50]. A recent study described that a novel variant 
in CD151 was associated with nephrogenic proteinuria 
and microscopic hematuria, reinforcing the importance 
of CD151 in the pathogenesis of MN [31]. TAP-binding 
protein (TAPBP), also known as tapasin, is a transmem-
brane glycoprotein that played an important role in the 
processing and presentation of class I antigens [51]. 
Tapasin promoted antigen presentation and specific rec-
ognition of the MHC I peptide complex by CD8+ cyto-
toxic T lymphocytes, favoring the release of cytotoxic 
proteins. An increased expression of tapasin ameliorated 

the infiltration of CD8+ cytotoxic T lymphocytes into 
tumor cells leading to activation of anti-tumor immune 
responses [52]. FRAS1 encodes an extracellular matrix 
protein located in the sublaminar region of the basement 
membrane that was associated with the development of 
a congenital kidney disease [53, 54]. Fraser extracellular 
matrix complex subunit 1 (FRAS1) genetic variant was 
significantly associated with the progression of chronic 
kidney disease to end-stage renal disease [55]. N4BPL2 
intronic transcript 2 (N4BP2L2-IT2) is a long-stranded 
non-coding RNA actively operating during autophagy 
[56]. Previous studies found that N4BP2L2-IT2 was 
involved in the development of MN [34]. Small Cajal 
body-specific RNA 9 (SCARNA9) is an immune-related 

Fig. 9  Screening of the hub genes. A Venn diagram of the intersection of differentially expressed genes and the grey modular genes. B LASSO 
regression analysis of the coefficient distribution maps for the hub genes. C The tenfold cross-validation obtaining the hub genes
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long non-coding RNA that influenced the develop-
ment and progression of many tumors by regulating the 
immune components of the tumor microenvironment 
[57, 58]. However, studies concerning SCARNA9 and 
MN have not been performed.

The diagnostic relevance of these hub genes in clinical 
practice could play a key role in early identification, ill-
ness prognosis, and individualized therapy methods for 
MN. These hub genes may serve as novel biomarkers for 
clinical testing if they are validated and developed fur-
ther, giving doctors with more accurate and timely diag-
nostic information.

Furthermore, therapeutic strategies based on the func-
tional roles of these hub genes might be investigated. For 
example, creating medications or therapy strategies that 
target ZYX, which is important in DNA repair, apopto-
sis, and natural immunity, could be effective in treating 
MN and related diseases. As potential therapeutic tar-
gets, CD151 and TAPBP could be examined for creating 
drugs that intervene in the progression and development 
of membranous nephropathy.

We used the ssGSEA algorithm to assess the extent of 
immune cell infiltration in MN and control samples. We 
found that the numbers of CD8+ T cells, aDCs, imma-
ture B cells, MDSC, macrophages, mast cells, monocytes, 
natural killer T cells, NK cells, pDCs, Th cells and CD4+ 
T cells were significantly higher in MN samples than in 
controls. The CD4+ T cells are responsible for coordinat-
ing the killer cells, the antibodies and the phagocytes that 
will eliminate the pathogens [59]. The Th1 cells mainly 
release cytokines such as IL-2, IFN-γ and TNF-β [60] 
while Th2 cells secrete IL-4, IL-5, IL-6 and IL-10 [59]. 
Previous studies have described a significant imbalance of 
Th cell subsets in patients with MN. Specifically, the Th2/
Th1 cell ratio was increased, the expression of IL-4 was 
upregulated and the expression of IFN-γ was reduced, 
correlating with the severity of proteinuria [61]. The 
Th17/Treg imbalance was observed in a variety of auto-
immune diseases [62]. A recent study found an associa-
tion among increased Th17, thrombosis and recurrence 
in patients with MN [63]. The effectiveness of rituximab 
suggested an important role for B cells in patients with 

Fig. 10  The expression level of the hub genes. A–F The expression level of the hub genes in the training datasets (GSE200828 and GSE108113). 
G–L The expression level of the hub genes in the validation dataset (GSE108112). Con: controls, Treat: MN group
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MN [64]. Current research focuses on the restoration of 
immune tolerance by Treg cells and manipulation of anti-
gen expression [65, 66].

This study also has several limitations. First, the micro-
array dataset employed in this work has a limited sample 
size. Second, while we examined the enrichment of dif-
ferential genes for activities and pathways, the specific 
processes that link them have yet to be thoroughly under-
stood. More research with bigger sample sizes is required 
to find potential biomarkers linked to MN. Furthermore, 
experimental data are required to evaluate the functional 
roles of the identified MN genes.

Conclusion
In summary, we identified six hub genes (ZYX, CD151, 
N4BP2L2-IT2, TAPBP, FRAS1 and SCARNA9) associated 
with the pathogenesis of MN through an integrated bio-
informatics analysis. We performed an immune infiltra-
tion analysis, providing further insight into the immune 
mechanisms of MN. Future studies will use a combina-
tion of large sample size and in vivo experiments to vali-
date new diagnostic and therapeutic biomarkers for MN.

Fig. 11  Validation of the diagnostic value of the hub genes. A–F Validation of the hub genes using the training datasets (GSE200828 
and GSE108113). G–L Validation of the hub genes using the validation dataset (GSE108112). AUC, area under the curve
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