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Abstract 

IgA nephropathy (IgAN) is the most common primary glomerular disease in the world, and up to 40% of patients 
with IgAN develop end-stage renal disease (ESRD). At present, an increasing amount of evidence indicates 
that the pathogenesis of IgAN is related to autoimmunity. In recent years, several studies have shown that B cell 
activating factors (BAFF), also known as B lymphocyte stimulators (BLyS), and proliferation-inducing ligand APRIL 
are extremely important for the activation of autoimmune signalling pathways, which have become key targets 
for the treatment of IgAN. As a dual-target biological agent, telitacicept can inhibit both BLyS and APRIL cytokines, 
improve the function of renal immune complexes, and reduce haematuria and proteinuria, which play important 
roles in IgAN pathogenesis and long-term prognosis. This article reviews the role of telitacicept in IgA nephropathy 
and discusses its potential for use in the treatment of IgAN and other autoimmune diseases where pathogenesis 
is driven by B cells.
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Introduction
The most prevalent primary glomerular disease in the 
world is IgA nephropathy (IgAN). In IgAN, immunoglob-
ulin A (IgA) is deposited in the mesangial region of the 
glomeruli, which causes damage to the mesangial region 
[1, 2]. There are between 5.80 and 8.23 million IgAN 
patients in China, with around 2.5 cases per 100,000 peo-
ple. Approximately 20–40% of IgAN patients in China go 
on to develop end-stage renal disease (ESRD) [3, 4], and 
the need for renal replacement therapy places a signifi-
cant financial burden on their families and on society as 
a whole [5, 6].

The pathophysiology of IgAN is poorly understood; 
however, haematuria, proteinuria, and progressive renal 
failure are the most prominent clinical signs. Angioten-
sin-converting-enzyme inhibitors (ACEI), also known as 
angiotensin II-receptor blockers (ARB), are being used 
as supportive therapy for IgAN to manage blood pres-
sure and reduce urine protein. A conservative support-
ive therapy of renin–angiotensin–aldosterone system 
(RAAS) blockers has also been advised (Kidney Disease: 
Improving Global Outcomes, KDIGO) [7]. However, 
some patients cannot tolerate these drugs as they expe-
rience decreased renal function and so cannot reach the 
maximum dose. The side effects of hormones and immu-
nosuppressants can also prevent long-term use [8]. Thus, 
current therapies do not adequately treat progressive 
IgAN, and novel approaches are needed.

Telitacicept (Taiai), also known as RC18 or RCT18, 
is a fully human soluble fusion protein. It contains the 
crystalline fragment (Fc) of human immunoglobulin G1 
(IgG1) combined with the extracellular specific soluble 
portion of the trans-membrane activator and CAML-
interactor (TACI) of the B lymphocyte stimulator (BLyS), 
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also known as B cell activating factor (BAFF) [9, 10]. Teli-
tacicept is a novel biological agent that targets two kinds 
of cell signalling molecules essential for B lymphocyte 
development. The interaction of the BLyS and a prolifer-
ation-inducing ligand (APRIL) can successfully suppress 
the B cell-mediated autoimmune response [11]. Accord-
ing to a current clinical trial, telitacicept dramatically 
reduces proteinuria while displaying a good safety profile 
[12].

By examining the pathophysiology and treatment 
options associated with telitacicept, we analysed its role 
in IgA nephropathy and proposed new approaches for 
the treatment of IgAN in the future.

Discussion
Role of B lymphocytes in the pathogenesis of IgAN
Activation of B lymphocytes plays a crucial role in auto-
immunity, which is directly associated with the early 
stages of IgAN. According to the traditional “Four hits” 
hypothesis, the first hit is described as follows: under 
the influence of potential environmental and genetic 
factors, the circulating level of galactose-deficient IgA1 
(Gd-IgA1) increases; the second hit is the production of 
Gd-IgA1-specific autoantibody IgG; the third hit is the 
presence of Gd-IgA1 in the circulating immune com-
plex; and the fourth hit is that the Gd-IgA1–antiglycan 
IgG immunological complex deposits in the mesangium, 
causing inflammation and fibrosis in the mesangial 
region of the glomerulus [13, 14].The first hit is the pro-
duction of Gd-IgA1 by activated B cells as a result of mis-
homing [15]. The immunoglobulin mucosal-associated 
lymphoid tissue (MALT) mainly produces and secretes 
IgA [16]. IgAN is believed to be most commonly linked to 
the formation of gut-associated lymphoid tissue (GALT) 
and nasopharynx-associated lymphoid tissue (NALT) 
[17, 18]. Through T cell-dependent or independent 
mechanisms, pathogenic bacteria in these areas promote 
the maturation and differentiation of immature B lym-
phocytes, which in turn produce plasma cells that secrete 
IgA [19]. Additionally, dysregulation of the gut microbi-
ota has been linked to the development of GALT; it may 
also be able to increase BAFF expression and dendritic 
cell maturation by activating Toll-like receptors (TLRs), 
promote B lymphocyte maturation and plasma cell pro-
duction, and accelerate the development of IgAN [20].

A range of cytokines, including BLyS/BAFF and 
APRIL, control the activation of B cells [21, 22]. BLyS/
BAFF is a crucial B lymphocyte activation factor. These 
cytokines bind to TACI, the BAFF receptor (BAFF-R), 
or the B cell maturation antigen (BCMA) to induce B 
lymphocyte maturation and differentiation [11, 23, 24]. 
According to clinically controlled experimental studies, 
the density of glomerular mesangial IgA deposition and 

levels of serum IgA1 are positively correlated with serum 
levels of BLyS/BAFF levels in IgAN patients. This sug-
gests that elevated BLyS/BAFF levels can lead to exces-
sive IgA1 production and accelerate the progression of 
IgAN [25]. Furthermore, Mccarthy DD et al. [26] discov-
ered that serum IgA levels were raised in transgenic mice 
that overexpressed BAFF. The mice displayed symptoms 
of autoimmune illnesses, and glomerular mesangial IgA 
deposition could be clearly seen. APRIL is a cytokine that 
resembles tumour necrosis factor (TNF) and shares 30% 
of its sequence with BLyS/BAFF. It has a high binding 
affinity for BCMA and TACI and helps mature B cells dif-
ferentiate into plasma cells and maintain plasma cells [11, 
27, 28]. Zhang et al. demonstrated that the plasma APRIL 
levels of IgAN patients were significantly higher than in 
the healthy control group, and that there was a signifi-
cant positive correlation between the plasma APRIL level 
and the adjusted Gd-IgA1 level [29]. A previous study 
by Muto et  al [30] also described a marked increase in 
APRIL expression in the tonsils of patients with IgAN, a 
positive response to tonsillectomy in patients with exces-
sive APRIL expression, and a decrease in serum Gd-IgA1 
levels. This supports our theory that APRIL plays a role 
in controlling IgAN progression. Thus, inhibiting B lym-
phocyte activation, lowering IgA levels, and targeting 
BLyS/BAFF and APRIL are emerging strategies for the 
investigation of IgAN therapeutic medicines [31].

Treatment of IgAN
Clinical treatment goals
Although the underlying pathophysiology of IgAN has 
been extensively investigated, we still lack precise thera-
pies for the condition. Currently, IgAN is treated through 
therapeutically supportive measures to lower blood 
pressure, lessen proteinuria, reduce lifestyle risk factors, 
and lessen other non-specific kidney damage. The main 
approach to intervention is the use of ACEI or ARB, 
which lower intraglomerular pressure by inhibiting the 
RAAS, to some extent lowering the patient’s proteinuria 
levels, and delaying the progression of renal failure [32].

Traditional treatment modalities
If IgAN patients have concurrent hypertension and 
the patient’s proteinuria is greater than 1.5  g/day, 2021 
KDIGO advises stratified management with RAAS 
blockade therapy; if the patient’s urine protein remains 
between 0.75 and 1  g/day after 3  months of optimised 
supportive therapy, 6 months of glucocorticoid therapy is 
recommended [33].

However, the effectiveness of glucocorticoids and 
immunosuppressants in patients with IgAN is still 
debatable. According to research by the supportive ver-
sus immunosuppressive therapy for the treatment of 
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progressive IgA nephropathy (STOP-IgAN) [34], immu-
nosuppressive regimens do not significantly enhance 
prognosis in relation to that by supportive therapy. Addi-
tionally, they have increased negative side effects, such as 
the development of infection and cancer.

Use of traditional Chinese medicine has also shown 
results in IgAN [35]. The dialectical treatment of tradi-
tional Chinese medicine is effective for IgAN patients 
with primary chronic lesions (tubular atrophy and renal 
small blood vessel lesions), whereas IgAN patients with 
active lesions and chronic kidney lesions require integra-
tion of traditional Chinese and Western medicine.

Novel biologics
In recent years, several innovative biologics have started 
to be employed in the treatment of IgAN as a result of 
advances in our understanding of the disease’s aetiol-
ogy. Sparsentan is a non-immunosuppressive, single-
molecule, dual endothelin and angiotensin receptor 
antagonist (DEARA), with a double effect as a highly 
selective antagonist of endothelin type A (ETA) receptor 
and angiotensin II type-1 receptors (AT1R). An ongoing 
phase III clinical trial (NCT03762850), one of the largest 
intervention experiments to study the efficacy and safety 
of new IgAN drugs, is studying the efficacy and safety of 
Sparsentan (400 mg once daily) compared with the cur-
rent standard therapy irbesartan (300  mg once daily) in 
the treatment of IgAN. A pre-specified interim analysis 
of the primary efficacy endpoint of 24-h urine proteinu-
ria change in subjects is performed at week 36. And the 
study met this efficacy endpoint, and the results were 
statistically significant: after 36  weeks of treatment, the 
proteinuria level of patients in the sparsentan group 
was reduced by an average of 49.8% from baseline. This 
decrease was more than three times higher than that of 
the irbesartan-treated group, i.e. the positive drug con-
trol group (49.8% vs 15.1%; p < 0.0001), and the safety 
profile was similar between the two groups [36–38]. 
Drugs that target the B cell receptor, like CD20 mono-
clonal antibodies, work in a number of ways, including 
cytotoxicity-dependent, complement-dependent, and 
apoptosis-inducing pathways [39]. Rituximab is a CD20 
monoclonal antibody. However, according to a ran-
domised controlled trial by Richard A et  al [40], it did 
not lower serum levels of Gd-IgA1 and glycan-specific 
IgG antibodies, enhance renal function, or reduce pro-
teinuria. Rituximab is a mild anti-CD20 monoclonal 
antibody that causes B lymphocyte failure by binding 
to CD20 receptors on the membrane of pre-B lympho-
cytes and mature B lymphocytes [41]. However, because 
plasma cell membranes lack CD20 receptors, rituximab 
cannot bind to plasma cells or clear plasma cells, and 
may therefore ineffectively inhibit plasma cell formation 

and the secretion of Gd-IgA1 antibodies. This could be 
the cause of rituximab’s inability to significantly alter the 
course of treatment or prognosis for IgAN. In a single-
arm trial, 24 patients with primary glomerulonephritis—
five of whom had IgAN—were treated with a single dose 
of rituximab at 375 mg/m2. In patients with IgAN, pro-
teinuria did not significantly alter after 6 months of ritux-
imab treatment (1.0 ± 0.8 g/day at baseline vs 0.9 ± 0.8 g/
day at 6  months). The short follow-up of just 6  months 
and the potential need for many doses of rituximab to 
produce a response in a slow-progressing condition like 
IgAN made it difficult to interpret the trial’s findings [42, 
43]. A fully human monoclonal antibody to BLyS(BAFF), 
belimumab reduces immature and mature B lympho-
cytes directly and indirectly by inhibiting the function 
of plasma cells [44], which may explain why it is ineffec-
tive at preventing the production of Gd-IgA1 antibodies 
in plasma cells. It also may explain why belimumab is 
ineffective at improving the effectiveness and prognosis 
of IgAN. Narsoplimab (OMS721) is a human monoclo-
nal antibody targeting mannan-binding lectin-associated 
serine protease-2 (MASP-2), the effector enzyme of the 
lectin pathway of the complement system [45]. OMS721 
is being developed for treatment of diseases thought to 
be mediated by the complement lectin pathway, includ-
ing IgAN [46]. Research is ongoing in a phase III, dou-
ble-blind, randomised, placebo-controlled experiment 
(NCT03608033) in which 450 patients have been ran-
domly divided into 2 groups, treated with OMS721 at 
185  mg/mL, and controlled with 5% glucose (D5W) or 
normal saline in the placebo group. Observations include 
changes from the baseline in a 24-h urine protein excre-
tion (UPE) in g/day at 36  weeks from the beginning of 
the treatment. Results of this experiment are expected 
to open up new options for IgAN treatments. There are 
many studies on IgAN treatments conducted globally 
[46], and the list summarises the treatments for IgAN 
mentioned in this article (Table 1) [44, 46].

As a result, new therapeutic targets need to be consid-
ered when designing pharmacological treatments. New 
therapeutic targets must successfully combat re-B lym-
phocytes, mature B lymphocytes, plasma cells, and the 
formation of Gd-IgA1 antibodies. This objective can now 
be accomplished by a novel biologic, which offers fresh 
start for the treatment, prognosis, and long-term out-
come of IgAN.

Role of telitacicept in the treatment of IgAN
Mechanism of action of telitacicept
Telitacicept is an innovative medicine that was indepen-
dently developed in China and has the qualities of “a new 
target, a new structure, and a new mechanism” for the 
treatment of autoimmune diseases [9]. The dual-target 
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action of telitacicept can more successfully lower B lym-
phocyte activation, limit the body’s immune response, 
and treat autoimmune illnesses than belimumab, an 
inhibitor of BLyS/BAFF [11]. Additionally, telitacicept 
has a slightly higher molecular weight than the identical 
BLyS/BAFF and APRIL dual-target inhibitor, atacicept 
(NCT04716231) (TACI-Ig) (73.4 kD vs. 80.24 kD). This 
helps it to maintain the N-terminal portion of extracellu-
lar TACI and enhances its capacity to bind to TACI [47]. 
Previous studies have indicated that atacicept can, in a 
dose-dependent manner, lower serum levels of Gd-IgA1 
and anti-Gd-IgA1 antibodies in IgAN patients [48, 49]. 
Since telitacicept targets both BLyS/BAFF and APRIL, it 
has potential use in the treatment of many autoimmune 
illnesses linked to B cells such as IgAN, systemic lupus 
erythematosus (SLE), and rheumatoid arthritis (RA) 
[25, 50]. Blocking the binding of BLyS/BAFF to TACI 
and BAFF-R effectively slows down the maturation and 
differentiation of B lymphocytes. In addition to this, by 
blocking the binding of APRIL to BCMA or TACI, teli-
tacicept can lower IgA1 secretion, lower the production 
of Gd-IgA1, and inhibit the production of anti-Gd-IgA1 
autoantibodies. This slows the progression of IgAN by 
reducing immune complex deposition in the mesangial 
region of the glomeruli (Fig. 1) [23, 51–56].

Clinical efficacy
Based on a recent phase II clinical trial (NCT04291781), 
after 24  weeks of continuous administration of telitaci-
cept at 240 mg/week, patients’ average 24-h proteinuria 
levels decreased by 49% from baseline 24-h proteinuria. 
After 24 weeks of continuous administration at 160 mg/
week or 240 mg/week, the estimated glomerular filtration 
rate (eGFR) increased significantly in relation to that of 
the placebo group, and the patients’ serum levels of IgA, 
IgG, and IgM dramatically dropped [12]. Larger, high-
quality clinical investigations are required to further con-
firm the effectiveness of telitacicept against IgAN.

In our country, telitacicept is currently approved for 
the treatment of SLE [11], and clinical research is being 

conducted on its potential use against multiple sclerosis 
(MS), neuromyelitis optica spectrum disorder (NMOSD), 
myasthenia gravis (MG), and primary Sjogren’s syndrome 
(pSS) [10, 57]. Thus far, telitacicept has shown substan-
tial promise in the treatment of B lymphocyte-associated 
immunological disorders as numerous clinical trials have 
progressed.

Clinical monitoring indicators related to IgAN were 
established
Despite the lack of defined indicators for IgAN clinical 
monitoring, immune variables, inflammatory factors, and 
indicators related to renal function are frequently utilised 
to assess clinical efficacy.

In recent years, the serum IgA/C4 ratio, serum soluble 
IL-2 receptors (IL-2R) level [58], urine type IV collagen 
content [59], Monocyte chemoattractant protein 1(MCP-
1) level [60], and urinary IL-6 levels [61] have all been 
found to be relevant to IgAN progression and can serve 
as potential new indicators in the clinical monitoring of 
IgAN.

Xie et al. [62] discovered that the intensity of glomeru-
lar CD206 + and CD68 + macrophage infiltration in IgAN 
patients predicted the patient’s response to immunosup-
pression; When the level of glomerular CD206 + mac-
rophage infiltration was increased, the body’s response 
to immunosuppression increased by a factor of 40; and 
when the level of glomerular CD68 + macrophages infil-
tration was increased, the body’s response rate to immu-
nosuppression increased by a factor of 13. Therefore, 
clinicians can develop individualised IgAN treatment 
regimens based on the degree of glomerular CD206 + and 
CD68 + macrophage infiltration.

In addition to understanding the mechanism of thera-
peutic intervention, evaluation of the clinical efficacy 
of IgA therapy requires examination of both the illness 
characteristics and the function of the injured organs. 
Telitacicept is a two-target immunosuppressant, and for 
patients treated with telitacicept, we may be able to mon-
itor treatment and prognosis with CD206 and CD68.

Table 1 Therapies in clinical development for treatment of IgAN

Agent Target Format Mechanism of action Stage in IgAN 
to date

References

Rituximab CD20 Monoclonal antibody Depletes CD20 B cells Phase 4 NCT00498368

Belimumab BAFF Monoclonal antibody Inhibits activation of B cells None 44

Narsoplimab MASP-2 Monoclonal antibody Inhibits complement lectin pathway activation Phase 3 NCT03608033

Telitacicept BAFF and APRIL Fusion protein/antibody Inhibits maturation and activation of B cells Phase 2 NCT04291781

Atacicept BAFF and APRIL Fusion protein/antibody Inhibits maturation and activation of B cells Phase 3 NCT04716231

Sparsentan ETAR and AT1R Non-immunosuppressive, 
single-molecule

Vasodilator effects Phase 3 NCT03762850
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Safety of telitacicept
Telitacicept has fewer side effects than conventional 
medications since it is processed by cells rather than the 
liver and kidneys [9]. The side effects seen in the placebo 
group were similar to those experienced by the telitacic-
ept group. Importantly, in phase II randomised, double-
blind, placebo-controlled clinical trials of telitacicept 
in 44 patients with IgAN and persistent proteinuria, all 
observed side effects were considered mild to moderate 
[12]. Additionally, there was no increase in the frequency 
of adverse reactions in patients when the dose was 
increased from 160 mg/week to 240 mg/week.

Telitacicept has also shown good tolerance and safety 
in the treatment of patients with SLE [63] and RA [64]. In 
this 52-week phase III, placebo-controlled, multicenter, 
randomised, double-blind clinical trial (NCT04082416), 
the efficacy and safety of telitacicept (160 mg subcutane-
ously once weekly) were compared with those of a pla-
cebo (subcutaneously once weekly) in the treatment of 
SLE. The SLE Response Index 4 (SRI-4) response rates 
in the telitacicept and placebo groups were evaluated at 
week 52 as the primary endpoint. The SRI-4 response 
was defined as the SELENA-SLEDAI score being reduced 
by ≥ 4 points from baseline, no new BILAG assessment 

class A organs or ≤ 2 new BILAG assessment B organs 
compared to baseline, and the physician’s overall assess-
ment (PGA) not deteriorating (< 0.3 points increase from 
baseline) at 52  weeks. The SRI-4 response rate in the 
telitacicept group (160 mg subcutaneously once weekly) 
reached 82.6%, significantly higher than that in the pla-
cebo group of 38.1%, (82.6% vs 38.1%; p < 0.001). In addi-
tion, the overall infection rate was similar between the 
telitacicept and placebo groups, with no significant dif-
ference, suggesting the good tolerability and safety profile 
of telitacicept. In a recently published case series, teli-
tacicept was used to treat refractory childhood SLE; The 
course of treatment lasted 5–26  weeks, and 4 out of 15 
patients experienced mild-to-moderate side effects [65]. 
According to the studies mentioned above, telitacicept is 
safe and effective for use in the treatment of a range of 
autoimmune diseases, including IgAN.

Epilogue
IgAN is the most prevalent form of primary glomerulo-
nephritis in the world, including in China [55]. Between 
20% and 40% of patients develop ESRD within 20  years 
of IgAN, putting both patients and their families under 
significant physical and financial strain. The development 

Fig. 1 Mechanism of action of telitacicept in the treatment of IgAN. Immature B lymphocytes are inappropriately activated by mucosal flora 
in the mucosal epithelial region. By binding two important cytokines, the B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand 
(APRIL), with a B cell activating factor receptor (BAFF-R), the trans-membrane activator and CAML-interactor (TACI), and the B cell maturation 
antigen (BCMA), the three B lymphocyte-membrane-surface-related receptors, abnormally activate immature B lymphocytes in bone marrow 
and peripheral lymphoid tissues mature and differentiate. The mature differentiated plasma cells enter the systemic circulation, galactose-deficient 
IgA1 (Gd-IgA1) secretion increases, anti-galactose-deficient IgA1 (anti-Gd-IgA1) autoantibody secretion increases, and a more immune complex 
forms. As a biological agent can simultaneously block cytokines BLys and APRIL, it can also prevent their binding to the three B lymphocyte-m
embrane-surface-related receptors (BAFF-R, TACI, and BCMA). This prevents the maturation of B lymphocytes, thereby preventing the release 
and development of Gd-IgA1 and anti-Gd-IgA1 antibodies into the bloodstream and preventing the development of immunological complexes 
in the kidney’s mesangial region. Telitacicept is a fusion protein comprising a recombinant trans-membrane activator, calcium modulator, 
and cyclophilin ligand interactor (TACI) receptor fused to the fragment crystallisable (Fc) domain of human immunoglobulin G (IgG)
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of telitacicept provides new possibilities for the treatment 
and long-term prognosis of IgAN, and for other autoim-
mune diseases where B cells play a primary role in patho-
genesis. The safety and efficacy of telitacicept remain to 
be further confirmed as clinical trials progress.
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