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Abstract 

Background The exact mechanisms of type 2 diabetes mellitus (T2DM) remain largely unknown. We intended 
to authenticate critical genes linked to T2DM progression by tandem single-cell sequencing and general transcrip-
tome sequencing data.

Methods T2DM single-cell RNA-sequencing data were submitted by the Gene Expression Omnibus (GEO) database 
and ArrayExpress (EBI), from which gene expression matrices were retrieved. The common cell clusters and repre-
sentative marker genes were ascertained by principal component analysis (PCA), t-distributed stochastic neighbor 
embedding (t-SNE), CellMarker, and FindMarkers in two datasets (GSE86469 and GSE81608). T2DM-related differ-
entially expressed marker genes were defined by intersection analysis of marker genes and GSE86468-differentially 
expressed genes. Receiver operating characteristic (ROC) curves were utilized to assign representative marker 
genes with diagnostic values by GSE86468, GSE29226 and external validation GSE29221, and their prospective 
target compounds were forecasted by PubChem. Besides, the R package clusterProfiler-based functional annota-
tion was designed to unveil the intrinsic mechanisms of the target genes. At last, western blot was used to validate 
the alternation of CDKN1C and DLK1 expression in primary pancreatic islet cells cultured with or without 30mM 
glucose.

Results Three common cell clusters were authenticated in two independent T2DM single-cell sequencing data, 
covering neurons, epithelial cells, and smooth muscle cells. Functional ensemble analysis disclosed an intimate asso-
ciation of these cell clusters with peptide/insulin secretion and pancreatic development. Pseudo-temporal trajectory 
analysis indicated that almost all epithelial and smooth muscle cells were of neuron origin. We characterized CDKN1C 
and DLK1, which were notably upregulated in T2DM samples, with satisfactory availability in recognizing three rep-
resentative marker genes in non-diabetic and T2DM samples, and they were also robustly interlinked with the clini-
cal characteristics of patients. Western blot also demonstrated that, compared with control group, the expression 
of CDKN1C and DLK1 were increased in primary pancreatic islet cells cultured with 30 mM glucose for 48 h. Addition-
ally, PubChem projected 11 and 21 potential compounds for CDKN1C and DLK1, respectively.
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Introduction
Diabetes, characterized by hyperglycemia caused by 
absolute or relative insulin deficiency, is a major contrib-
uting factor to atherosclerosis, coronary heart disease 
and premature death [1]. With a significant increase in 
the global prevalence of diabetes, the population of dia-
betics is estimated to 642 million by 2040 [2], at an esti-
mated annual health care cost of $825 billion [3], making 
diabetes and its complications important public health 
issues. In contrast to T1 diabetes, the major subtype of 
diabetes is T2 diabetes mellitus (T2DM), also known as 
non-insulin-dependent diabetes, accounting for more 
than 90% of diabetics [4]. Although extensive research 
has been done into the pathogenesis of T2DM, the 
exact mechanism remains largely unknown. Hence, it 
is imperative to explore its possible specific mechanism 
and develop corresponding prevention and treatment 
strategies.

Pancreatic islet cells are critical for maintaining normal 
blood glucose levels, as damage to pancreatic islet cells 
can lead to the development and progression of diabetes. 
With the rapid development of high throughput second 
generation RNA sequencing (RNA-Seq), transcriptomic 
analysis of pancreatic islet provides an accurate approach 
to identify biomarkers in the pancreas of diabetics. How-
ever, bulk RNA analysis can only deliver the mean abun-
dance for each gene. Given that islet cell composition is 
highly variable even among non-diabetic controls [5], the 
high heterogeneity of individual cells is masked, leading 
to absence and failure of studies on potential therapeutic 
target [6]. Since the advent of single-cell RNA sequenc-
ing (scRNA-seq) in 2009, which expanded our knowledge 
about biological systems [7], a dozen publication have 
reported results of scRNA-seq, providing insights into 
the heterogeneity of islet cells. Nevertheless, scRNA-seq 
is not yet possible to detect low-abundance transcripts 
due to limited efficiency of initial mRNA capture and 
cDNA conversion, which may lead to loss of valuable 
information and increased sampling errors [6]. Therefore, 
a combination of bulk RNA-seq with scRNA-seq analy-
sis may be a proper option for identifying new diabetes 
therapeutic targets.

In this study, CDKN1C and DLK1 were identified by 
intersected analysis of scRNA-seq datasets with bulk RNA-
seq datasets, their alternation was verified in primary 
pancreatic islet cells cultured in high glucose. Besides, we 
forecasted the potential compounds targeting CDKN1C 

and DLK1 in T2DM, providing a theoretical basis for future 
studies on the mechanisms of T2DM progression and the 
exploitation of innovative therapies in future.

Results
The single‑cell landscape of human non‑diabetic 
and T2DM
A total of 17 non-diabetic and 8 T2DM patient samples 
from the GSE81608 and GSE86469 datasets were covered 
in this study. Among them, 651 single cells were from non-
diabetic (n = 12), while 949 were cells of T2DM (n = 5) ori-
gin in the GSE81608 dataset; in the GSE86469 dataset, 380 
and 258 cells were extracted from non-diabetic (n = 5) and 
T2DM (n = 3) samples, respectively. After elimination of 
low-quality cells, a total of 2130 cells were finally included 
in the analysis, namely 622 cells in GSE81608-non-dia-
betic, 870 cells in GSE81608-T2DM (Fig.  1A), 380 cells 
in GSE86469-non-diabetic, and 258 cells in GSE86469-
T2DM (Fig. 2A). PCA dimensionality reduction based on 
highly variable genes (k = 2000; Fig.  1B and 2B) was then 
performed for all cells in both datasets, respectively. PCA 
based on highly variable genes for all cells in each dataset 
(k = 2000; Figs. 1B and 2B) were then applied to affirm the 
available principal components (PCs) based on P < 0.05. 
Through the combinations of resolutions and PC value 
for the cluster identification, 15 PCs were selected in the 
GSE81608 dataset (Fig. 1C and Additional file 1: Fig. S1A), 
and 20 PCs were elected in the GSE86469 dataset (Fig. 2C 
and Additional file 1: Fig. S1B).

Then, the cells in GSE81608 were divided into 9 indi-
vidual clusters (C0-C8; Fig. 1D) with the tSNE algorithm, 
and analogously, the cells in the GSE86469 dataset were 
partitioned into six primary cell lineages (C0-C5; Fig. 2D). 
Besides, Figs. 1E and 2E also illustrated the sample sources 
of each cluster in both datasets. Subsequently, 306 marker 
genes were characterized in the GSE81608 dataset-9 clus-
ters by the FindAllMarkers function (Fig.  1F; Additional 
file 1: Table S1). A total of 649 marker genes from all 6 clus-
ters (GSE86469 dataset) were authenticated (Fig. 2F; Addi-
tional file 1: Table S2).

Phenotyping of human non‑diabetic and T2DM 
cells
Cell populations were annotated in the CellMarker 
database with the R package singl based on the expres-
sion patterns of the authenticated marker genes. In the 
GSE81608 dataset (Fig. 3A), C0, C1, C3, C4, and C8 were 

Conclusion It is desirable that the emergence of the 2 critical genes indicated (CDKN1C and DLK1) could be catalysts 
for the investigation of the mechanisms of T2DM progression and the exploitation of innovative therapies.
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Fig. 1 Cell processing of scRNA-seq Dataset GSE81608. A Number of genes per cell (nFeature_RNA) and number of unique molecular identifiers 
(UMIs) per cell (nCount_RNA) for scRNA-seq data. B The top 2000 variable DEGs between cells are marked in red, and the top 10 variable DEGs 
are labeled. C Identification of 15 principal components (PCs) with significant differences (p < 0.05), where we observe an ‘elbow’ around PC6-8, 
suggesting that the majority of true signal is captured in the first 8 PCs. D Identification of 9 cell clusters by performing T-distributed stochastic 
neighbor embedding (t-SNE). E Sample sources of each cluster. F Heatmap displaying top 60 marker genes in 9 clusters
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Fig. 2 Cell processing of scRNA-seq dataset GSE86469. A Number of genes per cell (nFeature_RNA) and Number of UMIs per cell (nCount_RNA) 
for scRNA-seq data. B The top 2000 variable DEGs between cells are marked in red, and the top 10 variable DEGs are labeled. C Identification of 20 
principal components (PCs) with significant differences (p < 0.05), where we observe an ‘elbow’ around PC6-8, suggesting that the majority of true 
signal is captured in the first 8 PCs. D Identification of 6 cell clusters by performing t-distributed stochastic neighbor embedding (t-SNE). E Sample 
sources of each cluster. F Heatmap displaying the top 40 marker genes in the 6 clusters
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labeled as Neurons, C2 as Hepatocytes, C5 as Epithelial 
cells, C6 as Macrophage, and C7 as Smooth muscle cells. 
The six cell clusters from the GSE86469 dataset were 
illustrated as iPS cells (C0), neurons (C1, 2, and 3), epi-
thelial cells (C4), and smooth muscle cells (C5) (Fig. 3B). 
Collectively, neurons, epithelial cells, and smooth muscle 
cells were the cell clusters annotated in both datasets, 
implying that they may potentially feature an essential 
role in non-diabetic and T2DM. Additionally, the cellular 
provenance of the three common cell clusters from both 
datasets is tabulated in Table 1.

The latent mechanism of common cell clusters 
in non‑diabetic and T2DM
Cross-tabulation analysis was utilized to pinpoint identi-
cal marker genes in each common cell cluster from the 
GSE81608 and GSE86469 datasets. The results are pre-
sented in Fig. 3C. In the two datasets, there were 42 com-
mon-marker genes between neurons (noted as neurons’ 
marker genes; Additional file  1: Table  S3), a total of 78 
epithelial cells’ marker genes (Additional file 1: Table S4), 
and 84 smooth muscle cells’ marker genes (Additional 
file 1: Table S5).

Thereafter, functional annotation was performed 
against these marker genes to enlighten the utility of 
the common cell cluster in non-diabetes and T2DM. 
These genes contained a total of 554 BP terms, 58 CC 
terms, and 68 MF terms in the GO system (Additional 
file  1: Table  S6). This study primarily concentrated on 
the results of BP categories (Fig.  3D). Specifically, neu-
rons’ marker genes were mainly linked to T2DM-related 
processes, such as peptide/peptide hormone secretion, 
insulin secretion, and carbohydrate/sugar metabolism. 
Epithelial cells’ marker genes were associated with neu-
trophil activation, degranulation and their mediated 
immunity; predictably, epidermal/epithelial differen-
tiation/migration/apoptosis processes were notably 
enriched; moreover, these genes were also closely affili-
ated with wound healing, hemostasis/coagulation, vas-
cular development, and lipid localization/translocation. 
Smooth muscle cells’ marker genes were predominantly 
enriched in the extracellular matrix and structural tis-
sues; consistently, they were also tightly integrated with 
wound healing, hemostasis/coagulation, and vascular 
development; strikingly, pancreatic development and 
B-type pancreatic cell proliferation terms were distinctly 
enriched; meanwhile, smooth muscle cell/epithelial cell 
migration and neuronal death/projection expansion were 
also detected. KEGG enrichment analysis (Fig. 3E; Addi-
tional file  1: Table  S7) indicated that neurons’ marker 
genes were participating in insulin secretion, glucagon 
signaling pathway, and maturity-onset diabetes in young 
adults; epithelial cells’ marker genes and smooth muscle 

cells’ marker genes were strongly coupled to the most 
common vascular outcome of T2DM, coronary heart 
disease (CHD) [8], especially the epithelial cells’ marker 
genes, which were linked to multiple CHD-related 
pathways (hypertrophic and dilated cardiomyopathy, 
atherosclerosis, arrhythmogenic right ventricular cardio-
myopathy). Additionally, marker genes of smooth muscle 
cells were cited in the pathway of AGE-RAGE signaling 
in diabetic complications.

Pinpointing of aberrantly expressed marker genes 
in the common cell clusters
Next, the FindMarkers function (R package Seurat) was 
employed to analyze DEGs between non-diabetic and 
T2DM samples in the common cell cluster in GSE81608 
(Additional file  1: Table  S8) and GSE86469 (Additional 
file  1: Table  S9) datasets. Then, robust DEMGs in neu-
rons, epithelial cells, and smooth muscle cells cell clusters 
were investigated separately by using cross-tabulation 
analysis. As depicted in Fig. 4A, TTR , SST, CDKN1C, and 
DLK1 were DEMGs in the neurons cluster; SDC4 was a 
DE-marker gene in the epithelial cells cluster; no robust 
DE-marker gene was confirmed in the smooth muscle 
cells cluster.

Pseudo‑time trajectory analysis of the common 
cells
To further explore the landscape of neurons, epithelial 
and smooth muscle cells in the non-diabetic and T2DM 
microenvironments, the differentiation trajectories of 
neurons, epithelial cells, and smooth muscle cells from 
both sources (non-diabetic and T2DM) were mimicked 
in the GSE86469 dataset.

Genes with abnormal expression in neurons, epithelial 
cells, and smooth muscle cells populations were authen-
ticated between non-diabetic and T2DM samples. A 
dendrogram of differentiation trajectories of the 3 cell 
lineages through these genes was then constructed using 
the R package Monocle (Fig.  4B). Concerning cell typ-
ing, the initiation of the branches and nodes 2 and 3 con-
sisted of neurons, while the other two branches (at node 
1) mainly consisted of epithelial and smooth muscle cells 
and a few neurons (Fig. 4C). From the perspective of the 
original clusters of cells (cell cluster name not labeled), 
the initiation segment of differentiation mainly contained 
C1 and C2 cells, the middle segment was composed of 
C3, and the end segment contained all C4 and C5 and a 
few C3 cells (Fig. 4D). In terms of cell origin (from either 
non-diabetic or T2DM samples), cells from both non-
diabetic and T2DM samples were distributed throughout 
the differentiation process (Fig. 4E).

Furthermore, variations in the expression of the 
five previously authenticated DEMGs during the 



Page 6 of 19Yang et al. European Journal of Medical Research          (2023) 28:340 

Fig. 3 Cell annotation and latent mechanism of cell clusters in non-diabetic and T2DM. A Distribution of the cell subpopulations in the GSE81608. 
B Distribution of the cell subpopulations in the GSE86469. C Identification of identical marker genes in neuron, epithelial cell and smooth muscle 
cell cluster from GSE81608 and GSE86469 datasets utilizing cross-tabulation analysis. D BP categories of GO enrichment analysis of marker genes 
in neuron, epithelial cell and smooth muscle cell cluster. E KEGG enrichment analysis of marker genes in neuron, epithelial cell and smooth muscle 
cell cluster
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differentiation of the three cell types were monitored. 
The DEMGs CDKN1C and DLK1 of the neurons cluster 
exhibited a slightly upregulated expression pattern from 
neuronal cells to epithelial and smooth muscle cells, fol-
lowed by a gradual decrease; whereas SST displayed a 
trend of progressive up-regulation and then down-reg-
ulation during the differentiation of neuronal cells into 
epithelial and smooth muscle cells, and the levels of this 
gene were almost equilibrated at the initial and termi-
nal ends of the differentiation; for TTR , generally, it pre-
sented a decrease expression during the process of cell 
differentiation; the SDC4 gene of the epithelial cells pop-
ulation manifested a relatively advanced expression at the 
end of differentiation (Additional file 1: Fig. S2).

Analysis of T2DM‑related DEMGs
In the GSE86468 dataset, a total of 2098 DEGs linked to 
T2DM were authenticated by R package limma, using 
|log2 FC|> 0.5 and P < 0.05 as the significance threshold 
(Additional file 1: Table S10). Compared to non-diabetic 
patients (n = 15), 2058 genes were markedly upregulated 
in the T2DM (n = 9) population and 40 were downregu-
lated in T2DM patients (Fig.  5A). The cross-tabulation 
analysis then indicated that CDKN1C, DLK1 and SDC4, 
among the five previously characterized DEMGs, were 
also T2DM-related DEGs (Fig. 5B), and they were defined 
as T2DM-related DEMGs that may not only be impli-
cated in the pathogenesis of T2DM but also exert crucial 
functions in the common cell clusters.

GO analysis highlighted that these T2DM-related 
DEMGs in the BP category were intimately affiliated 
with exosome secretion and its regulatory processes; 
meanwhile, the Notch signaling pathway, cell–matrix 
adhesion, and regulatory processes of T cell prolifera-
tion/activation were notably enrolled; in addition, these 
genes were inextricably linked to urological develop-
ment (mesonephric development, mesonephric tubule/
epithelial development, and ureteral bud development). 
Furthermore, these genes were potentially responsi-
ble for regulating the activity and binding of cell cycle 
proteins, protein kinase regulators, and protein kinase 
inhibitors in the costamere. The top 10 BP entries and 
all CC and MF entries are visualized in Fig. 5C, and the 
detailed GO analysis results are provided in Additional 
file 1: Table S11. In KEGG analysis, these T2DM-related 

DEMGs were principally engaged in pathways relevant 
to inflammatory responses, cell cycle, atherosclerosis, 
and proteoglycans in cancer (Fig.  5D; Additional file  1: 
Table S12).

Assessment of the diagnostic value and clinical 
relevance of the T2DM‑related DEMGs
To appraise the usability of the three T2DM-related 
DEMGs in recognizing T2DM and non-diabetic samples, 
ROC curve analysis was performed based on their expres-
sion profiles extracted from the GSE86468 and GSE29226 
datasets, respectively. The results revealed that CDKN1C 
and DLK1 had favorable sample discrimination in both 
datasets (both AUC > 0.75; Fig.  6A) and considered as 
critical genes. The ROC results in GSE29221 confirmed 
the optimal predictive performances of these genes (both 
AUC > 0.7, Fig. 6A). Further, it was noticed that CDKN1C 
and DLK1, marker genes of neuronal cell clusters, were 
expressed differentially between non-diabetic and T2DM 
samples in epithelial cell clusters and smooth muscle 
cell clusters from GSE81608 and GSE86469 (Additional 
file 1: Fig. S3). Furthermore, using the Single Cell Expres-
sion Atlas database, it was also observed that the mRNA 
levels of two critical genes were significantly increased in 
type B pancreatic cells from T2DM patients (Additional 
file 1: Fig. S4A). On the other hand, the t-SNE map from 
the E-MTAB-5061 datasets indicated that the two critical 
genes expressed in both pancreatic endocrine cells and 
exocrine cells as well, such as acinar cells and ductal cells 
(Additional file 1: Fig. S4B).

Subsequently, the connection of CDKN1C and DLK1 
with the clinical traits of T2DM was evaluated. The 
results revealed that in the ethnic subgroups (African 
American, Hispanic, and White), both genes possessed 
the highest expression in the Hispanic population and the 
lowest expression in the African American population 
(Fig. 6B); in the gender subgroup, DLK1 expression was 
considerably decreased in the male population compared 
with that in the female cohort, whereas CDKN1C was 
unremarkable with the gender of the patients (Fig.  6C). 
Relevance analysis confirmed that DLK1 expression levels 
were positively linked to patient age (r = 0.48, P = 0.02), 
whereas CDKN1C was irrelevant to this trait (r = 1.82e-
03, P = 0.99; Fig. 6D); moreover, non-association of both 

Table 1 Cellular provenance of three common cell clusters

Neurons Smooth_muscle_cells Epithelial_cells All

Non‑diabetic T2D Non‑diabetic T2D Non‑diabetic T2D

GSE86469 214 119 12 18 27 2929 419

GSE81608 451 675 17 7 87 134 1371
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Fig. 4 Analysis of marker genes and pseudo-time trajectory analysis of the common cells. A Robust DEMGs analysis in cell clusters of neurons, 
epithelial cells and smooth muscle cells by cross-tabulation. B Different cells in the GSE86469 dataset were ordered along trajectories to construct 
a pseudo-time axis. The darker the color, the earlier the cell progression begins. C Cell annotations in trajectory analysis. D Distribution of 5 
sub-clusters in trajectory. E Distribution of non-diabetic or T2DM sample cells in trajectory
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Fig. 5 Analysis of T2DM-related DEMGs combining bulk RNA-seq and single cell data. A The volcano plot of GSE86468 dataset. B Identification 
of three T2DM-related DEGs by cross-tabulation analysis of bulk RNA-seq and single cell data. C GO analysis of T2DM-related DEMGs. D KEGG 
analysis of T2DM-related DEMGs
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Fig. 6 Diagnostic value and clinical relevance of T2DM-related DEMGs. A ROC curves for CDKN1C and DLK1 in the GSE86468, GSE29226 
and GSE29221 datasets. B The expression of CDKN1C and DLK1 in the ethnic subgroups. C Differences between CDKN1C and DLK1 in gender 
subgroups. D Relevance analysis between DEMGs and patient age
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genes with patient BMI was evident (Additional file  1: 
Fig. S5).

Exploration of the latent molecular mechanisms 
of the critical genes in the T2DM progression
An enrichment analysis using predefined gene sets 
revealed the possible molecular mechanisms of the criti-
cal genes in the T2DM process. For the critical gene 
CDKN1C, a total of 14 GO terms (Additional file  1: 
Table  S13) and 3 KEGG pathways (Additional file  1: 
Table  S14) were ensured. In Fig.  7A, B, the top 10 GO 
terms and all KEGG pathways were displayed, respec-
tively. Collectively, CDKN1C was tightly integrated with 
keratinization, meiosis, and immune response. The anal-
ysis of GO terms for DLK1 (Fig.  7C; Additional file  1: 
Table  S15) hinted that DLK1 might be directly tied to 
T2DM, and it was found that peptide/peptide hormone/
insulin secretion and glucose/fatty acid processes were 
distinctly enriched; additionally, it was participating in 
responses to carbohydrates, metabolism of purine-con-
taining compounds, and coagulation-related biologi-
cal processes. The six KEGG pathways in which DLK1 
was engaged are displayed in Fig.  7D (Additional file  1: 
Table S16).

Expression analysis of CDKN1C and DLK1 
by western blotting
The expression of CDKN1C and DLK1 was further con-
firmed in rat pancreatic islet cells. Compared with con-
trol group, CDKN1C and DLK1 were upregulated after 
30 mM glucose treatment for 48 h (Fig. 8).

Projection of the potential compounds targeting 
the critical genes
Key gene–compound interactions were predicted using 
the PubChem database. A total of 98 potential com-
pounds capable of affecting CDKN1C expression were 
predicted in the premise of Homo sapiens (Additional 
file  1: Table  S17), of which, 11 compounds (lactic acid, 
hydroquinone, nickel, beta-naphthoflavone, disulfi-
ram, valproic acid, vorinostat, sulforaphane, pirinixic 
acid, estradiol, and cytarabine) were reported to 
decrease the expression of CDKN1C. Of the 41 potential 

compounds predicted to affect DLK1 expression (Addi-
tional file  1: Table  S18), 21 compounds (2,2-bis(4-glyci-
dyloxyphenyl)propane, benzo(a)pyrene, valproic acid, 
fluorouracil, entinostat, vorinostat, estradiol, sarin, tet-
rachlorodibenzodioxin, copper sulfate, doxorubicin, 
rosiglitazone, trichostatin a, tretinoin, thapsigargin, 4-(5-
benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)
benzamide, cyclosporine, sunitinib, panobinostat, dor-
somorphin, and phenylmercuric acetate) were previously 
described to reduce DLK1 expression. Valproic acid, 
vorinostat, and estradiol were discovered to simultane-
ously downregulate the expression of two critical genes.

Discussion
The prevalence of diabetes mellitus is 9% worldwide, with 
type 2 diabetes (T2DM) accounting for 90% of all cases 
[9]. However, the underlying mechanisms of T2DM are 
poorly understood as yet. Although lifestyle and diet 
partially account for this health disparity, more than 100 
robust association signals in T2DM have been identified 
in genome-wide association studies [10, 11], indicating 
the complex polygenic nature of T2DM. Thus, identifi-
cation of the core genes may provide potential target for 
the treatment of T2DM. The pancreatic islet cells play an 
important role in the development of diabetes. The tre-
mendous advance in transcriptomic analysis of single 
cells over the past five years has contributed to a better 
understanding of the role of islet cell-associated genes 
in the pathogenesis of diabetes. Given that scRNA-seq 
offers a unique perspective on the mechanism driving 
responses within and outside of the disease, it allows us 
to focus on cell alterations [6]. CDKN1C and DLK1 of 
T2DM were identified by integrated analysis of scRNA-
seq and bulk RNA-Seq in this study. They are further 
linked to the clinical characteristics of T2DM patients by 
internal and external validation. Additionally, the poten-
tial compounds targeting CDKN1C and DLK1 in T2DM 
are forecasted and profiled. Our study provides a theoret-
ical basis for investigating the mechanisms of T2DM pro-
gression and exploiting innovative therapies in the future.

In islet cells, endocrine cells have been shown to be 
identified by the expression of INS (beta cell), GCG  
(alpha cell), SST (delta cell), PPY (PP cell), GHRL 

Fig. 7 Latent molecular mechanisms of the critical genes in T2DM progression. A GO term for CDKN1C gene set enrichment analysis (GSEA). B 
KEGG term of gene set enrichment analysis (GSEA) for CDKN1C. C GO term for DLK1 gene set enrichment analysis (GSEA). D KEGG term of DLK1 
gene set enrichment analysis (GSEA). The top portion of the plot shows the running enrichment score (ES) for the gene set as the analysis walks 
down the ranked list. The score at the peak of the plot is the ES for the gene set. The middle portion of the plot shows where the members 
of the gene set appear in the ranked list of genes. For a positive ES, the leading edge subset is the set of members that appear in the ranked list 
prior to the peak score. For a negative ES, it is the set of members that appear subsequent to the peak score. The bottom portion of the plot shows 
the value of the ranking metric when the list of ranked genes is moved down, measuring the correlation of gene with a phenotype and sorted 
using Signal2noise

(See figure on next page.)
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Fig. 7 (See legend on previous page.)



Page 13 of 19Yang et al. European Journal of Medical Research          (2023) 28:340  

(epsilon cell), while exocrine cells by COL1A1 (stel-
late cells), PRSS1 (acinar cells) and KRT19 (ductal 
cells) [12–14]. However, the genetic alternation of oth-
ers cells such as neurons, epithelial cells and smooth 
muscle cells have not received sufficient attention. 
Indeed, while the autonomic nervous system inner-
vates beta, alpha, and delta cells in the islet of mouse, 
the sympathetic fibers preferentially innervate smooth 
muscle cells in the blood vessels and control hormone 
secretion in human islets by affecting local blood flow 
instead of modulating endocrine cell function directly 
[15]. In this study, cell cluster have been annotated by 
CellMarker database and neurons, epithelial cells and 
smooth muscle cells have been identified in both data-
sets. As expected, marker genes of neurons are mainly 
linked to T2DM-related processes, such as peptide/
peptide hormone secretion and insulin secretion, sug-
gesting a crucial role of neurons in control of hormone 
secretion. Actually, the degree of islets innervation 
is three times greater in patients with T2DM than in 
controls, and the increase in fibers is negatively cor-
related with insulin secretion and glucose tolerance 
[16]. Moreover, HMG20A, a chromatin factor involved 
in neuronal differentiation and maturation, has been 
reported for metabolism–insulin secretion coupling. 
What’s more, the functional consequence of T2DM-
linked rs7119 SNP reducing HMG20A expression may 
lead to impaired beta cell mature function [17]. In addi-
tion to neuron alternations, marker genes in epithelial 
and smooth muscle cells are associated with immu-
nity, wound healing, barrier function and CHD-related 
pathway, indicating that the inflammation and vascular 
injury may also be potential mechanism of T2DM in 
islet. Hence, accumulating evidences have shown that 
targeting islet inflammation may be an effective thera-
peutic strategy for T2MD patients [18].

CDKN1C, located on the human chromosomal band 11 
p15.5, encodes the cyclin-dependent kinase inhibitor 1c 
(p57, Kip2), which is known as “a tumor suppressor gene” 
[19, 20]. It not only negatively regulates cell prolifera-
tion, but also directs the differentiation of certain select 
lineages, as well as maintains adult quiescent neural stem 
cell populations of adult quiescent [21]. Previous studies 
confirmed that CDKN1C played an important role in the 
neurogenesis, migration and morphology [20], of which 
overexpression could inhibit the proliferation of β-cells, 
leading to diabetes [22]. As indicated by the enrichment 
analysis, CDKN1C enriches in biological processes of 
keratinization, meiosis, and immune response. Expres-
sion levels of keratin 17 protein, which is involved in the 
keratinization pathway, are confirmed to be upregulated 
in T2DM [23]. Previous studies have shown that chil-
dren of mothers with gestation diabetes are more likely 
to become obese and develop diabetes in adulthood, sug-
gesting that meiosis may play a critical role in the devel-
opment and progression of T2DM [24]. Dysregulation of 
adaptive immune cells may have relevance to T2DM and 
its comorbidities [25, 26]. Compared with control group, 
we found that the expression of CDKN1C was increased 
in primary pancreatic islet cells cultured with 30 mM 
glucose. In addition, the correlation with clinical charac-
teristics has been validated with both internal and exter-
nal datasets, suggesting that it may contribute to T2DM.

Delta-Like 1 Homolog (DLK1), a transmembrane pro-
tein to the Notch/Delta/Serrate family [27], is paternally 
expressed and belongs to a group of imprinted genes 
located on chromosome band 14q32 in humans and 
12qF1 in mice [28]. It is expressed in many human tis-
sues during embryonic development but is low in adults 
expression and is mostly restricted to (neuro)endocrine 
tissues and other immature stem/progenitor cells (nota-
bly hepatoblasts) [28], such as normal pituitary gland, 

Fig. 8 The alternation of CDKN1C and DLK1 expression in primary pancreatic islet cells under different conditions. A Representative western blot 
of CDKN1C and DLK1 in primary pancreatic islet cells treated with or without 30 mM glucose (HG) for 48 h. B Densitometric analysis of CDKN1C 
in primary pancreatic islet cells. C Densitometric analysis of DLK1 in primary pancreatic islet cells
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spinal cord, pancreatic islet cells, adrenals, and Leydig 
cells [29]. Accumulating evidences demonstrate that 
DLK1 plays an important role in energy metabolism 
[30] and exerts neuroendocrine effects [31]. In addition 
to inhibiting adipocyte differentiation [32], it also deter-
mines the cell fate of pancreatic islet cells and neurons 
[33, 34]. DLK1 is involved in the differentiation of pan-
creatic ductal cells into β-cells, and promotes insulin syn-
thesis and secretion by activating AKT signaling [35–37]. 
However, animal studies have shown that mice overex-
pressing DLK1 are insulin resistant [38]. Our enrichment 
analysis also demonstrated that DLK1 was significantly 
upregulated in pathways including cellular glucose 
homeostasis, insulin secretion, mitochondrial matrix 
and glutathione metabolism. There is a general consen-
sus that T2DM is characterized by chronic hyperglyce-
mia resulting from impaired insulin secretion [39] and 
altered glutathione metabolism [40], and mitochondrial 
dysfunction in adipose tissue partially participates in 
the pathogenesis of T2DM [41]. Compared with control 
group, the expression of DLK1 was increased in primary 
pancreatic islet cells cultured with 30mM glucose. Com-
bined its correlation with clinical characteristics vali-
dated by internal and external datasets, DLK1 is expected 
to become a therapeutic target of T2DM [42]. However, 
DLK1 is also associated with paternally inherited risk of 
type 1 diabetes, because the influence of SNP rs941576, 
which is in the imprinted region of chromosome 14q32.2 
and at 105 kb downstream of DLK1 [43]. Hence, further 
studies need to be performed to detect its role in differ-
ent types of diabetes.

Notably, we predicted that 3 compounds could down-
modulate CDKN1C and DLK1 simultaneously. Valp-
roic Acid (VPA), a histone deacetylase inhibitor, is widely 
applied in the treatment of bipolar disorder. In human 
embryonic stem cell (hESC)- based in  vitro systems for 
developmental neurotoxicity and reproductive toxicity 
testing, VPA is used as a positive control compound to 
treat H9 hESCs. It can decrease the expression of DLK1 in 
JRC and UKN1 system and the expression of CDKN1C in 
UKK system [44]. Vorinostat, another histone deacetylase 
inhibitor, also suppresses the expression of CDKN1C and 
DLK in UKN1 system by intervening H9 hESCs [45, 46]. 
Hence, VPA and vorinostat might be effective in reversing 
aforementioned islets deficits in T2DM, such as hormone 
secretion, inflammation and vascular injury, which remain 
to be verified in the future. In addition, CDKN1C and 
DLK1 appear to be hormonally regulated, with the former 
decreasing after expose to estradiol in endometrial cancer 
cells [47], while the latter decreasing after treatment with 
estradiol in girls with anorexia nervosa or human uterine 
leiomyoma cells [48, 49]. Since the level of estradiol is cor-
related with age, especially for female, it is understandable 

why the expression of DLK1 varies by gender and is posi-
tively correlated with age, albeit the underlying mechanism 
needs further investigation.

However, there were some limitations in this study. Fur-
ther functional experiments based on knockout mice and 
large sample cohort studies are needed to confirm the reg-
ulatory mechanisms targeting these genes in various cell 
types of the human pancreas.

Conclusion
In summary, we identified two core genes in T2DM though 
integrative analysis of two scRNA-seq dataset and a bulk 
RNA-seq dataset and validated their alternation in primary 
pancreatic islet cells cultured with or without high glucose. 
Moreover, the compounds associated with these key genes 
were predicted for further analysis in T2DM.

Materials and methods
Data source
The single-cell sequencing data (non-diabetic and T2DM 
patients) in our study were freely retrieved from the 
GEO database under accession numbers GSE86469 and 
GSE81608 which were generated using the same protocol: 
Smart-Seq RNA-sequencing method combined with by 
Fluidigm C1 system (SMARTer/C1) [50]. The GSE86469 
dataset [14] contains 638 individual islet/other single-cell 
RNA-sequencing data from 5 non-diabetic and 3 T2DM 
samples (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. 
cgi? acc= GSE86 469). The GSE81608 dataset (https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE81 608) 
encompasses a total of 1600 single-cell (islet) sequencing 
data from 12 non-diabetic samples and 5 T2DM samples 
[12]. The cell volume statistics for each type of sample 
comprised in the GSE86469 and GSE81608 datasets are 
presented in Table  2. And meanwhile, single-cell RNA-
sequencing data from E-MTAB-5061 (contained the pan-
creatic tissue and islets from six non-diabetic samples and 
four T2DM samples) (https:// www. ebi. ac. uk/ biost udies/ 
array expre ss/ studi es/E- MTAB- 5061? query=E- MTAB- 
5061) was downloaded from ArrayExpress (EBI) to explore 
the expression profiles of target genes in endocrine and 
exocrine cell types of the human pancreas [13]. Further, 
the GSE86468 and GSE29226 datasets were prepared to 
screen the target genes and estimate the diagnostic value of 
which supplemented by external validation set GSE29221. 
The GSE86468 dataset (platform: GPL18573) (https:// 

Table 2 Cell volume statistics for each type of sample

Dataset Non‑diabetic T2D All

GSE86469 380 258 638

GSE81608 651 949 1600

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86469
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86469
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-5061?query=E-MTAB-5061
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-5061?query=E-MTAB-5061
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-5061?query=E-MTAB-5061
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86468


Page 15 of 19Yang et al. European Journal of Medical Research          (2023) 28:340  

www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE86 468) 
entailed RNA-seq profiles of 24 individual islet/other bulk 
cell samples (obtained from 15 non-diabetic and 9 T2DM 
cadaveric organ donors) [14]. The GSE29226 dataset [51] 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE29 226) holds gene expression profiles based on 24 sub-
cutaneous fat biopsies (three biological replicates and four 
technical replicates) from three T2DM patients and three 
non-diabetic patients (all female), which were produced 
with the Illumina HumanHT-12 v3 Expression BeadChip 
array (GPL6947 platform). The GSE29221 dataset (https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE29 221) 
was generated on the platform of GPL6947 with the Illu-
mina HumanHT-12 V3.0 expression beadchip and con-
tained the transcription data from three T2DM and three 
non-diabetic individuals as per four times.

Exclusion of the low‑quality cells
The comprehensive analysis of single-cell sequencing 
data in this study was initiated through the ‘Integrate-
Data’ functions within R package Seurat (version 4.1.0) 
based on the GSE86469 and GSE81608 datasets, respec-
tively. The exclusion criteria for low-quality cells in this 
study are as follows: (1) the number of detectable genes 
in a single cell was less than 100; (2) the proportion of 
mitochondrial genes in a single cell is ≥ 5%; and (3) the 
number of genes detected in a single cell is ≤ 3. Besides, 
genes that failed to detect expression in up to 3 single 
cells would be discarded. Eventually, in the GSE81608 
dataset, we gained 1492 cells (622 derived from non-
diabetic patients and 870 from T2DM samples) and 
28134 genes. No low-quality cells were recognized in the 
GSE86469 dataset of 638 cells (non-diabetic and T2DM 
samples contained 380 and 258 cells, respectively), while 
17280 genes from this dataset were captured in the fol-
low-up analysis.

Reduced‑dimensional and categorization analysis
The ‘FindVariableFeatures’ function (vst method) was 
conducted to calculate feature variance on the standard-
ized values after clipping to a maximum and select the 
high variability genes (top 2000) for downscaling on the 
filtered retained core cells. Next, the consistency of the 
sample distribution was monitored by principal compo-
nent analysis (PCA). In this process, PCs with P < 0.05 
were recognized for subsequently unsupervised clus-
ter analysis (that is, K-means clustering algorithm) [52], 
where a single-cell resolution was combined with PCs 
in elbow plot to determine relevant sources of heteroge-
neity. Finally, the results of the unsupervised clustering 
analysis were visualized in nonlinear t-SNE [53] plots. 
The above analyses were executed in both GSE86469 and 
GSE81608 datasets.

Notation of the cell subpopulation types
Following the findings of tSNE, the marker genes for 
each cell subpopulation were located in every dataset by 
utilizing the FindAllMarkers function. The parameters 
were set to min.pct = 0.5, logfc.threshold = 1, min.diff.
pct = 0.3, and p_val < 0.05. Cell cluster phenotypes were 
determined by comparing marker genes of each cluster 
in the CellMarker database (SingleR package, version 
1.6.1). The cell phenotypes which were advertised in both 
datasets were principally focused and denominated as 
the common cell clusters to ensure the robustness of the 
identified clusters [54, 55].

Functional elucidation of the marker genes
The shared marker genes from each common cell cluster 
in both datasets (achieved by cross-tabulation analysis) 
were selected to implement a functional interpretation, 
aiming to preliminarily probe the latent mechanisms of 
each cell cluster in non-diabetic and T2DM. The analysis 
was undertaken in the R package clusterProfiler based on 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) databases. The enrichment cri-
terion was established as P < 0.05. The cross-tabulations 
and the Venn diagrams presenting the results were exe-
cuted in the online tool Jvenn, at the URL http:// jvenn. 
toulo use. inra. fr/ app/ examp le. html.

Pinpointing the aberrantly expressed marker genes 
from non‑diabetic and T2DM cells within the common cell 
cluster
Differentially expressed genes (DEGs) between non-dia-
betic and T2DM cells were also characterized, respec-
tively, in the common cell clusters of the corresponding 
datasets, and analyzed by the FindMarkers function of 
the R package Seurat. The threshold was set to |average 
 log2-fold change (FC)|≥ 0.5 and P ≤ 0.05. Next, Differ-
entially expressed marker genes (DEMGs) representing 
the corresponding common cell clusters were elicited by 
the crossover of marker genes from a single common cell 
cluster and DEGs within a single common cell cluster in 
both datasets.

Putative time‑series analysis of the common cell clusters
The differentiation trajectories and processes of the 3 
common cell clusters were abstracted using Monocle 
[56]. Briefly, signature genes were screened in the com-
mon cell cluster using Seurat with the following crite-
ria: (1) expression detected in no less than 10 cells; (2) 
|mean expression value|> 0.5; and (3) differential expres-
sion analysis q < 0.01. Then, pseudo-time-series analy-
sis was undertaken by R package Monocle based on the 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86468
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29226
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29226
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29221
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29221
http://jvenn.toulouse.inra.fr/app/example.html
http://jvenn.toulouse.inra.fr/app/example.html
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authenticated signature genes. Eventually, a pseudo-time-
series trajectory chart of the common cell phenotypes 
was visualized using the plot_cell_trajectory function.

T2DM‑related DEGs
The variability of gene expression levels between the 
T2DM group and the non-diabetic group was compared 
by R package edgeR in the GSE86468 dataset, with |log2 
FC|> 0.5 and P < 0.05 set as the threshold for significant 
differences. Besides, intersection analysis was utilized to 
recognize DEMGs in the GSE86468-DEGs, defined as 
T2DM-related DEMGs, and R package clusterProfiler-
based functional annotation was implemented for them 
(see 2.5 for details).

ROC curve‑based assessment of diagnostic benefit
The area under curve (AUC) of the receiver operating 
characteristic curve (ROC) was applied to appraise the 
usability of the ascertained T2DM-related DEMGs in 
diagnostic non-diabetic and T2DM samples. Briefly, the 
expression profiles of the T2DM-related DEMGs in the 
GSE86468 and GSE29226 datasets were matched, the 
ROC curves of the corresponding genes were plotted and 
the AUCs were calculated by R package pROC in both 
datasets [57]. Only genes with AUCs greater than 0.75 in 
both datasets were admitted in the ensuing analysis here. 
These genes were defined as “critical genes”. Further, the 
predictive performance of critical genes was validated by 
a external validation set (GSE29221).

Enrichment analysis of pre‑specified gene sets 
of the critical genes
Elucidating the hidden functions of the critical genes may 
facilitate the interpretation of the progression of T2DM. 
Here, the corresponding subsets (c5.go.v7.4.entrez.gmt; 
c2.cp.kegg.v7.4.entrez.gmt) were used as preset gene 
sets, which were freely available from the Molecular Sig-
natures Database (MSigDB) [58, 59], URL: http:// www. 
broad insti tute. org/ msigdb. The samples were divided 
into high and low risk groups based on the median 
expression of the single key gene. Gene Set Enrichment 
Analysis (GSEA) was carried out by using R package clus-
terProfiler in the high and low risk groups in the T2DM 
cohort (GSE86468 dataset). Worthy terms/pathways were 
ascertained by |Normalized Enrichment Score (NES)|> 1, 
P < 0.05, and q < 0.25.

Western blotting
Primary pancreatic islet cells (CP-R015) were purchased 
from Procell Life Science & Technology Co.,Ltd. They 
were cultured with or without 30 mM glucose (high glu-
cose, HG) for 48 h. Protein concentrations were extracted 
using ice-cold RIPA buffer (Beyotime, Nantong, China) 

containing protease inhibitor and phosphatase inhibi-
tor (Thermo Fisher Scientific, Waltham, MA, USA). A 
20–30  μg protein was subjected to 10–15% SDS poly-
acrylamide gel electrophoresis and transferred onto 
polyvinylidene difluoride membranes (PVDF, Millipore, 
Bedford, MA, USA). The PVDF membranes were blocked 
in 5% skim milk for 1h and then incubated overnight at 
4 ℃ with DLK1(sc-376755, Santa Cruz Biotechnology) or 
CDKN1C (sc-56341, Santa Cruz Biotechnology). After 
incubating with appropriate secondary antibodies for 
2  h, the band densities were determined using Image J 
software (NIH, Maryland, USA) and normalized to each 
internal control.

Forecasting and profiling of the potential compounds 
targeting the critical genes in T2DM
The interaction of compounds with critical genes in the 
PubChem database (https:// pubch em. ncbi. nlm. nih. gov/) 
was pretested by implementing "drug–gene interactions" 
(default values were selected for parameters). In conjunc-
tion with the expression trend of critical genes in T2DM 
(relative to the non-diabetic group), compounds that 
could override this expression trend were suggested as 
the potential compounds for targeting the critical genes.

Expression patterns of critical genes in single‑cell‑related 
datasets
Considering the significance of gene expressions in 
different cell types in T2MD and non-diabetic indi-
viduals, cells in GSE81608 and external E-MTAB-5061 
datasets were further annotated with the help of islet 
tissue marker genes in the Single Cell Expression Atlas 
(https:// www. ebi. ac. uk/ gxa/ sc/ home) database to analy-
sis the expressed difference of critical genes between 
T2DM group and non-diabetic group, including pan-
creatic A cell: TTR, GCG, CFC1, PCSK2, SLC38A4; 
pancreatic D cell: SST, LEPR, RBP4, SEC11C, HHEX; 
pancreatic PP cell: PPY, PPY2P, MEIS2, ETV1, ABCC9; 
pancreatic ductal cell: KRT19, CFTR, ANXA4, CLDN1, 
KRT8; pancreatic stellate cell: COL1A1, CALD1, SPARC, 
BGN, SERPINH1; type B pancreatic cell: INS, INS-IGF2, 
HADH, ADCYAP1, IAPP.

Statistical analysis
The differences in the critical gene expression between 
samples (non-diabetic and T2DM samples) were detected 
by the Wilcoxon rank-sum test at P < 0.05, as were the 
detection methods and thresholds between different clin-
ical characteristic subtypes (race and gender). The corre-
lations between critical genes and patients’ BMI and age 
were illuminated by Pearson correlation analysis, with 
remarkable correlations defined by | correlation coef-
ficient (r)|> 0.3 and P < 0.05. The software packages and 

http://www.broadinstitute.org/msigdb
http://www.broadinstitute.org/msigdb
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/gxa/sc/home
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statistical analyses addressed in this study were exhaus-
tively described in the corresponding positions. The dif-
ference of western blotting analysis was detected by t-test 
under the help of GraphPad Prism software (GraphPad 
Software, version 7.0). P value lower than 0.05 (p < 0.05) 
was considered as significant differences.
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Additional file 1: Figure S1. Visualization of cells distribution in GSE81608 
and GSE86469 among clusters at different resolutions through K-means 
clustering algorithm. A GSE81608, the resolution is 0.7 was considered 
as a cutoff. B GSE86469, the resolution is 0.8 was considered as a cutoff. 
Figure S2. Expressions of the five DEMGs in the three cell types over 
trajectory time. Trend in expressions of five DEMGs during differentiation 
of three cell types over trajectory time. Figure S3. Expression of CDKN1C 
and DLK1 in different cell clusters of non-diabetic and T2DM samples. A 
Expression of CDKN1C in different cell clusters of non-diabetic and T2DM 
samples. B Expression of DLK1 in different cell clusters of non-diabetic and 
T2DM samples. Figure S4. Expression of CDKN1C and DLK1 in the major 
endocrine clusters, acinar cell and ductal cell of non-diabetic and T2DM 
samples. A The expression level of CDKN1C and DLK1 in major pancreatic 
cells of non-diabetic and T2DM patients. B The t-SNE plot of CDKN1C 
and DLK1 expressed in endocrine cells and exocrine cells. Figure S5. 
Relevance analysis between DEMGs and patient age. A Relevance analysis 
between CDKN1C and patient age. B Relevance analysis between DLK1 
and patient age.
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