
Shen et al. 
European Journal of Medical Research          (2023) 28:352  
https://doi.org/10.1186/s40001-023-01346-6

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

European Journal
of Medical Research

Prediction of survival and immunotherapy 
response by the combined classifier of G 
protein-coupled receptors and tumor 
microenvironment in melanoma
Kangjie Shen1†, Qiangcheng Wang2†, Lu Wang1†, Yang Yang1†, Min Ren1, Yanlin Li1, Zixu Gao1, 
Shaoluan Zheng3,4, Yiteng Ding1, Jiani Ji5, Chenlu Wei1, Tianyi Zhang1, Yu Zhu1, Jia Feng1, Feng Qin1, 
Yanwen Yang1, Chuanyuan Wei1* and Jianying Gu1,3,4* 

Abstract 

Background Melanoma is the deadliest form of skin tumor, and G protein-coupled receptors (GPCRs) play cru-
cial roles in its carcinogenesis. Furthermore, the tumor microenvironment (TME) affects the overall survival (OS) 
and the response to immunotherapy. The combination of GPCRs and TME from a multi-omics perspective may help 
to predict the survival of the melanoma patients and their response to immunotherapy.

Methods Bulk-seq, single-cell RNA sequencing (scRNA-seq), gene mutations, immunotherapy responses, and clin-
icopathologic feature data were downloaded from public databases, and prognostic GPCRs and immune cells were 
screened using multiple machine learning algorithms. The expression levels of GPCRs were detected using real-time 
quantitative polymerase chain reaction (qPCR) in A375 and HaCaT cell lines. The GPCR–TME classifier was constructed 
and verified using different cohorts and multi-omics. Gene set enrichment analysis (GSEA), weighted gene co-expres-
sion network analysis (WGCNA), and tracking tumor immunophenotype (TIP) were used to identify the key biological 
pathways among the GPCR–TME subgroups. Then, tumor mutational burden (TMB), vital mutant genes, antigen pres-
entation genes, and immune checkpoints were compared among the subgroups. Finally, the differences in immuno-
therapy response rates among the GPCR–TME subgroups were investigated.

Results A total of 12 GPCRs and five immune cell types were screened to establish the GPCR–TME classifier. No sig-
nificant differences in the expression levels of the 12 GPCRs were found in the two cell lines. Patients with high GPCR 
score or low TME score had a poor OS; thus, the  GPCRlow/TMEhigh subgroup had the most favorable OS. The scRNA-seq 
result revealed that immune cells had a higher GPCR score than tumor and stromal cells. The GPCR–TME classifier 
acted as an independent prognostic factor for melanoma. GSEA, WGCNA, and TIP demonstrated that the  GPCRlow/
TMEhigh subgroup was related to the activation and recruitment of anti-tumor immune cells and the positive 
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regulation of the immune response. From a genomic perspective, the  GPCRlow/TMEhigh subgroup had higher TMB, 
and different mutant genes. Ultimately, higher expression levels of antigen presentation genes and immune check-
points were observed in the  GPCRlow/TMEhigh subgroup, and the melanoma immunotherapy cohorts confirmed 
that the response rate was highest in the  GPCRlow/TMEhigh cohort.

Conclusions We have developed a GPCR–TME classifier that could predict the OS and immunotherapy response 
of patients with melanoma highly effectively based on multi-omics analysis.

Keywords Melanoma, G protein-coupled receptors, Tumor microenvironment, Immunotherapy, Multi-omics, scRNA-
seq, Pan-cancer

Background
Melanoma is the primary cause of skin tumor-related 
death with increasing annual cases of morbidity and 
mortality [1, 2]. While patients with melanoma undergo 
a combination of surgery, chemotherapeutic drugs, and 
molecular-targeted therapeutic drugs, the effective-
ness of current therapies varies among individuals [3, 4]. 
The emergence of immunotherapy has offered hope to 
patients with advanced melanoma, but its benefits are 
limited [5–7]. Due to the inconsistent treatment out-
comes and varying response rates, considerable effort has 
been devoted to identifying prognostic and therapeutic 
biomarkers for melanoma, particularly those capable of 
predicting the efficacy of immunotherapy [8–10].

G protein-coupled receptors (GPCRs) are membrane 
protein receptors that bind chemicals in the cellular 
environment and activate a series of intracellular signal-
ing pathways that ultimately lead to changes in cellular 
state [11–13]. GPCRs have also been implicated in car-
cinogenesis and metastasis [14–17] and have emerged 
as important targets for drug therapy due to their wide 
distribution in the body [18]. In addition, they play a piv-
otal role in shaping the tumor microenvironment (TME). 
Santagata et  al. found that two GPCRs, CXCR4 and 
CXCR7, orchestrate the recruitment of immune and stro-
mal cells [19]. In the context of melanoma, Ridky et  al. 
demonstrated that a combination of anti-PD-1 and G-1, 
a G protein-coupled estrogen receptor-selective agonist, 
could effectively inhibit tumor growth [20]. Neverthe-
less, there is a noticeable absence of comprehensive and 
sophisticated studies delving into the role of GPCRs in 
melanoma. Furthermore, the precise mechanism through 
which GPCRs influence the TME and the response to 
immunotherapy in melanomas remain unknown.

The emergence of high-throughput sequencing 
techniques, particularly single-cell RNA sequencing 
(scRNA-seq), has propelled tumor research into the era 
of precision. The integration of scRNA-seq and bulk 
sequencing (bulk-seq) allows researchers to dissect the 
contribution of individual genes in tumorigenesis and 
progression, both at the tissue and single-cell levels [21–
23]. In the current study, we have harnessed the power 

of GPCRs in conjunction with the intricate cellular land-
scape of the TME to construct a GPCR–TME classifier 
for better clinical classification and therapeutic strategies. 
This innovative approach enhances clinical classification 
and informs the development of more effective therapeu-
tic strategies. To a significant extent, our findings address 
the limitations of current clinical staging methodologies 
and offer valuable insights for the precise management of 
melanoma.

Materials and methods
Sources of data
Gene expression and survival data of melanoma cohorts 
were obtained from two publicly available data sets (The 
Cancer Genome Atlas (TCGA)–SKCM and GSE65904). 
For scRNA-seq melanoma data, we utilized data from 
GSE189889 to visualize the GPCR score of different cell 
types within the TME. Pan-cancer data were downloaded 
from Xena [24]. Furthermore, we tested the utility of the 
GPCR–TME classifier as an immunotherapy predictor 
using data from three melanoma cohorts (GSE35640, 
GSE91061, and GSE145996) with available immunother-
apy response data.

Data preprocessing
For RNA-seq data, the normalization was performed 
using the R package ‘DESeq2’ based on the downloaded 
count data. For microarray data, ‘affy’ package was 
used for background correction and normalization. For 
scRNA-seq data, the ‘NormalizeData’ function of ‘Seurat’ 
package was used for normalization.

Quantification of GPCRs and TME cells
The list of GPCRs was downloaded from the Molecular 
Signatures Database (GOMF_G_PROTEIN_COUPLED_
RECEPTOR_ACTIVITY). Gene expression matrices of 
the melanoma cohorts were then extracted based on the 
870 GPCRs. CIBERSORT enables the calculation of 22 
immune cell types through a deconvolution algorithm 
using the bulk-seq data. Prior to applying CIBERSORT, 
we followed standard preprocessing steps of normali-
zation of RNA-seq and microarray data, to ensure the 
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comparability and reliability of our gene expression data. 
The enrichment scores calculated by CIBERSORT were 
utilized for developing the TME score [25].

Establishment and verification of the GPCR score at bulk 
and single‑cell level
Based on the survival data of the TCGA–SKCM cohort, we 
employed univariate Cox regression analysis with a boot-
strap algorithm (resampling = 1000) to screen for GPCRs 
related to overall survival (OS). A significance threshold of 
P < 0.001 was used as the cutoff. Subsequently, we per-
formed the least absolute shrinkage and selection operator 
(LASSO) regression analysis using the R package “glmnet,” 
to further refine the selection of prognostic GPCRs. Finally, 
we utilized multivariate Cox regression analysis with a 
bootstrap algorithm (resampling = 1000) to identify the 
GPCRs most correlated with OS. For comparative analysis 
of the included GPCRs across pan-cancers, we utilized 
Xiantao (www. xiant ao. love/). Survival analysis of individual 
GPCRs in the TCGA–SKCM cohort was conducted using 
GEPIA [26]. To experimentally validate the expression lev-
els of the included GPCRs, real-time quantitative polymer-
ase chain reaction (qPCR) was employed to assess their 
expression in A375 and HaCaT cell lines. For result stabil-
ity, we defined the bootstrap coefficient of each included 
GPCR as: bootstrap coefficient = coefficient

bootstrap standard deviation
 . 

The GPCR score was calculated using the formula: GPCR 
s c o r e  =  

∑

n

i=1bootstrap coefficient (included GPCRi)×

expression level (included GPCRi) . To categorize patients 
into low- or high-GPCR score groups, we utilized the 
median as the cutoff point. Differences in OS between 
these two GPCR score groups within the TCGA–SKCM 
cohort were investigated using the “survival” package. In 
addition, CIBERSORT was employed to analyze the differ-
ences in immune cell composition between the two groups. 
We extended the evaluation of the GPCR score’s prognostic 
impact to pan-cancer scenarios.

For the scRNA-seq data, we retained only those cells 
that exhibited more than 200 detected genes, less than 
20% of mitochondrial genes, and fewer than 3% of red 
blood cell genes. Subsequently, we employed the R pack-
age “Seurat” to identify highly variable genes, perform 
principal component analysis, conduct graph-based 
clustering, and execute t-distributed stochastic neigh-
bor embedding (t-SNE) analysis. The annotation of 
individual cells was based on classical marker genes. To 
validate the annotation of melanoma cells, we utilized 
the “inferCNV” package. To compute the GPCR score 
of each cell, we employed the “AddModuleScore” func-
tion, and the results were visualized by ‘FeaturePlot’ and 
‘VlnPlot’ functions.

Establishment of the TME score
For the TME score, we first calculated the abundance 
of immune cells in melanoma using CIBERSORT and 
obtained quantitative data from 22 immune cell types. 
Patients were divided into high- and low-infiltration groups 
based on the infiltration of each immune cell, and survival 
analysis was performed. Prognostic immune cells were 
defined as those exhibiting a different OS between the two 
groups. Furthermore, we utilized multivariate Cox regres-
sion analysis with a bootstrap algorithm (resampling = 1000) 
to calculate the bootstrap coefficient of the prognos-
tic immune cells. The TME score was defined as: TME 
score = 

∑

n

i=1bootstrap coefficient
(

prognostic immune celli
)

×

infiltration level (prognostic immune celli) . Patients were 
classified into low- or high-TME score groups based on the 
median, and a survival analysis was conducted to investigate 
the difference in OS between the two TME groups. Subse-
quently, we combined the GPCR score with the TME score 
to develop the GPCR–TME classifier. Melanoma patients 
were divided into four subgroups:  GPCRlow/TMElow, 
 GPCRhigh/TMElow,  GPCRlow/TMEhigh, and  GPCRhigh/TME-
high based on the median of GPCR and TME score. A sur-
vival analysis was performed to investigate the difference in 
OS between the four subgroups. Furthermore, we assessed 
the precision of the GPCR–TME classifier using the area 
under the curve (AUC) of 1-, 3-, and 5-year receiver operat-
ing characteristic curves (ROC) with the R packages “tim-
eROC” and “survivalROC.”

Robustness and independence of the GPCR–TME classifier
Survival analysis was utilized to investigate the differ-
ences in OS among the subgroups in the TCGA–SKCM 
cohort. In addition, Cox regression analyses were con-
ducted to assess whether the GPCR–TME classifier could 
function as an independent prognostic factor for mela-
noma in the TCGA–SKCM cohort. These findings were 
further validated using the GSE65904 cohort.

Enrichment analysis of the GPCR–TME classifier
Gene set enrichment analysis (GSEA) was conducted to 
elucidate potential pathways associated with the high-/
low-GPCR and high-/low-TME groups. Weighted gene 
co-expression network analysis (WGCNA) was employed 
to cluster genes with similar expression profiles using an 
unsupervised analysis method [27, 28]. Subsequently, 
Metascape was utilized to explore the enrichment results 
of the genes within the key modules identified through 
WGCNA [29]. Subsequently, we employed the R pack-
age “fgsea,” to perform GSEA among the subgroups. 
Ultimately, we applied the tracking tumor immunophe-
notype (TIP) to explore the anticancer immune status of 
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the subgroups based on the tumor immune cycle in seven 
stages [30].

Decoding the GPCR–TME classifier at the genome level
Tumor mutational burden (TMB) has the potential to 
drive effective anti-tumor immune responses, ultimately 
leading to sustained clinical responses to immunother-
apy [31]. We calculated the TMB of each patient in the 
TCGA–SKCM cohort using previously established meth-
ods [32] and compared TMB levels among the subgroups.

Genomic mutation data (mutect2) for the TCGA–
SKCM was retrieved using the R package “TCGAbi-
olinks.” We utilized the “maftools” package to investigate 
and visualize the top 20 genes with the highest gene fre-
quencies in both the  GPCRhigh/TMElow and  GPCRlow/
TMEhigh groups.

Prediction of the immunotherapy response rate 
among GPCR–TME subgroups
Furthermore, we conducted a comparative analysis of 
the expression levels of antigen presentation genes and 
immune checkpoints across the subgroups. Finally, we 
constructed the GPCR–TME classifier for the three 
melanoma immunotherapy cohorts and investigated the 
response rate to immunotherapy in each subgroup.

Statistical analysis
All statistical analyses were carried out using R 4.1.1, 
including the Student’s t test, Wilcoxon rank-sum test, 
Fisher’s’ exact test, log-rank test, and Cox regression 
analyses. For multiple groups comparison, the Bonferroni 
method was employed for multiple testing correction. 
The cutoff was set at P < 0.05 unless otherwise stated.

Results
Establishment of the GPCR score at the bulk‑seq level
A schematic diagram is presented in Fig.  1. Additional 
file  8: Table  S1 lists the detailed clinical information of 
each enrolled data set. The TCGA–SKCM cohort was 
utilized as the training set, and GSE65904 served as the 
testing set. Following univariate Cox regression analy-
sis with the bootstrap algorithm, we identified 49 prog-
nostic GPCRs (P < 0.001; Additional file  9: Table  S2). 
Subsequently, we conducted LASSO analysis and mul-
tivariate Cox regression analyses with a bootstrap algo-
rithm, resulting in the selection of 12 prognostic GPCRs 
(P < 0.001; Fig. 2A–C). The GPCRs’ primer sequences are 
provided in Additional file  10: Table  S3. Owing to the 
ubiquity of the GPCRs, we did not find different expres-
sion levels of the 12 GPCRs in the two cell lines (Addi-
tional file 1: Figure S1). We calculated the GPCR score for 
the TCGA–SKCM cohort using the formula mentioned 
above. Patients with high-GPCR score experienced worse 

OS (Fig. 2D; P < 0.001). The GPCR score exhibited clear 
cancer specificity, with high score observed in uveal mel-
anoma, prostate adenocarcinoma, and rectal adenocar-
cinoma, while lower score were evident in kidney renal 
clear cell carcinoma, thyroid carcinoma, and lymphoid 
neoplasm diffuse large B-cell lymphoma (Fig. 2E). Addi-
tional file 2: Figure S2 illustrates the expression levels of 
the 12 GPCRs across various cancer types. Additional 
file 3: Figure S3 shows that most of the 12 GPCRs (except 
GPR85 and TAPT1) were correlated with the outcomes 
of the melanoma. Given the potential impact of GPCRs 
on the TME, we employed CIBERSORT to distinguish 
immune infiltration levels in the TME melanoma of 
between the two groups (Fig.  2F; Additional file  11: 
Table  S4). The low-GPCR score group exhibited higher 
levels of infiltration by CD8 T cells (P < 0.01), activated 
CD4 memory T cells (P < 0.001), resting natural killer 
(NK) cells (P < 0.05), M1 macrophages (P < 0.01), and rest-
ing dendritic cells (P < 0.05), while the high-GPCR score 
group had a higher infiltration level of M0 macrophages 
(P < 0.01).

Verification of the GPCR scores at the single‑cell level
Furthermore, the GPCR score was validated at the sin-
gle-cell transcriptomic level. Following quality control, 
all cells from the nine samples were grouped into 11 
clusters (Fig.  3A, B). Subsequently, we identified seven 
cell types (T cells, melanoma, fibroblasts, macrophages, 
endothelial cells, B cells, and plasma cells) in the TME 
using established marker genes (Fig. 3C, D). The accuracy 
of melanoma annotation was further confirmed by the 
“inferCNV” method (Additional file 4: Figure S4). Feature 
plots were employed to visualize the expression levels of 
12 GPCRs at the single-cell level (Additional file  5: Fig-
ure S5). We calculated the GPCR score of each cell by the 
“AddModuleScore” function, revealing that immune cells 
(T cells, macrophages, B cells, and plasma cells) exhib-
ited higher GPCR score, thus confirming a relationship 
between immune cells and GPCRs (Fig. 3E, F).

Establishment of the GPCR–TME classifier
As the results of bulk-seq and scRNA-seq indicated 
potential crosstalk between the GPCRs and the immune 
cells, we proceeded to construct the TME score. We 
identified five types of immune cells associated with OS 
of melanoma patients (P < 0.05; Additional file  6: Figure 
S6 and Fig.  4A) and incorporated them into the con-
struction of the TME score (Fig.  4A; Additional file  12: 
Table  S5). Patients with higher TME scores exhib-
ited more favorable OS (Fig.  4B; P < 0.001), providing 
a smoother transition to the subsequent analysis. We 
categorized patients into  GPCRlow/TMElow,  GPCRhigh/
TMElow,  GPCRlow/TMEhigh, and  GPCRhigh/TMEhigh. 
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Notably, patients in the  GPCRhigh/TMElow subgroup 
exhibited the least favorable OS, while patients in the 
 GPCRlow/TMEhigh group demonstrated the most optimal 

OS (Fig. 4C). The GPCR–TME classifier retained its sur-
vival prediction effectiveness under different clinical 
characteristics (Additional file  7: Figure S7). Figure  4D 

Fig. 1 Workflow displaying the establishment and validation of GPCR–TME classifier. GPCR G protein-coupled receptor; TME Tumor 
microenvironment
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demonstrates that the GPCR–TME classifier was capable 
of predicting 1-, 3-, and 5-year OS with a range of AUCs 
from 0.672 to 0.703. Considering that the OS of patients 
with  GPCRhigh/TMEhigh and  GPCRlow/TMElow were less 
distinct, we merged  GPCRhigh/TMEhigh and  GPCRlow/
TMElow as a mixed subgroup. Survival analysis in the 
TCGA–SKCM and GSE65904 cohorts demonstrated 
that different GPCR–TME subgroups have different OS 
(Fig. 5A, B). Meanwhile, independent prognostic analysis 
showed that the GPCR–TME classifier was an independ-
ent prognostic factor for melanoma in both the TCGA–
SKCM and GSE65904 cohorts (Fig. 5C, D).

Differences in functional pathways among different GPCR–
TME subgroups
To delve deeper into the underlying reasons for diverse 
prognoses among these subgroups, we conducted vari-
ous enrichment analyses. The GSEA results revealed 
enrichment of immune system-related pathways in the 
low-GPCR score and high-TME score groups, while the 
high-GPCR score group exhibited enrichment in path-
ways associated with “keratinization” and “developmental 
biology” (Fig.  6A, B). To compare the distinct pathways 
among the GPCR–TME subgroups, WGCNA was per-
formed. This analysis identified nine modules, with the 
blue module exhibiting a high positive correlation with 
the  GPCRlow/TMEhigh group and negatively related to 
the  GPCRhigh/TMElow; consequently, we chose it for fur-
ther analysis (Fig. 6C, D). Genes in the blue module were 
enriched in pathways related to the positive regulation of 
the immune response and tumor cytotoxicity (Fig.  6E). 
Furthermore, fgsea revealed the enrichment of “posi-
tive regulation of cytokine production” and “interleukin 
10 production” pathways within the  GPCRlow/TMEhigh 
subgroup (Fig.  6F). Finally, TIP analysis demonstrated 
that the  GPCRlow/TMEhigh subgroup was characterized 
by the recruitment of a majority of immune effector cells 
(Fig. 6G).

Differential patterns of TMB and genomic mutation 
among GPCR–TME subgroups
In comparison with the other subgroups,  GPCRlow/TME-
high exhibited the highest TMB (Fig.  7A; P < 0.01). With 
regard to genomic mutations, we screened the top 20 
variant mutations in the TCGA–SKCM cohort, and the 

oncoplots revealed that  GPCRlow/TMEhigh exhibited a 
relatively higher overall mutation rate (Fig.  7B, C). The 
top four mutated genes in both groups were TTN (65% 
vs. 75%), MUC16 (53% vs. 75%), BRAF (43% vs. 57%), 
and DNAH4 (43% vs. 48%). Regarding TTN and MUC16, 
multi-hit mutations were the most common mutations in 
both subgroups. Conversely, for BRAF, missense muta-
tions prevailed in both subgroups. In the case of DNAH4, 
missense mutations were the predominant mutation in 
the  GPCRhigh/TMElow subgroup, whereas multi-hit muta-
tion were the most common mutation in  GPCRlow/TME-
high subgroup.

Prediction of immunotherapy response based on GPCR–
TME subgroups
Given the varying immune statuses and TMB among dif-
ferent GPCR–TME subgroups, we hypothesized that the 
GPCR–TME classifier could serve as an immunother-
apy predictor. The  GPCRlow/TMEhigh subgroup exhib-
ited elevated expression levels of antigen presentation 
genes (Fig.  8A; all P < 0.001). Regarding immune check-
points, Fig.  8B shows that expression levels of CTLA-4 
(P < 0.001), CD274 (P < 0.001), PDCD1 (P < 0.001), 
TIGIT (P < 0.001), CD86 (P < 0.001), CD209 (P < 0.001), 
IDO1 (P < 0.001), and LAG3 (P < 0.001) were found to 
be elevated in the  GPCRlow/TMEhigh subgroup. Finally, 
we assessed the predictive capacity of the GPCR–TME 
classifier for immunotherapy response among patients 
treated with anti-CTLA-4, anti-PD1, or MAGE-A3 
immunotherapy. The  GPCRlow/TMEhigh subgroup exhib-
ited significantly higher immunotherapy response rate 
(P < 0.001) compared to others in the GSE91061 cohort. 
Though, the difference did not reach statistical signifi-
cance in the GSE145996 and GSE35640 cohorts, we 
still observed a higher immune therapy response rate in 
 GPCRlow/TMEhigh group compared to others (Fig. 8D–E).

Discussion
In recent years, the increased number of studies dedi-
cated to GPCRs and their interaction with the TME has 
significantly enhanced our understanding of their criti-
cal roles in the prognosis and therapeutic approaches 
for cancer patients [33–36]. For instance, Zhang et  al. 
observed a substantial down-regulation of GPRASP1 in 
head and neck cancers, which was notably associated 

Fig. 2 Establishment of GPCR score for melanoma and pan-cancers at bulk level. A Validation of prognostic GPCRs using LASSO regression analysis. 
B LASSO coefficient profile plot of prognostic GPCRs. C Multivariate Cox regression analysis with a bootstrap algorithm screening of 12 prognostic 
GPCRs. D Kaplan–Meier survival curves of the TCGA–SKCM cohort in patients with melanoma with high-GPCR score vs. low-GPCR score. E Validation 
of role of GPCR score in pan-cancers. F Decoding the different immune microenvironments of two GPCR groups using CIBERSORT. GPCR G 
protein-coupled receptor; LASSO least absolute shrinkage and selection operator; TCGA  The Cancer Genome Atlas; SKCM Skin cutaneous melanoma

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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with the infiltration of CD8 T cells [37]. In a separate 
study, Yu et al. identified GNAI2 as a risk factor for gas-
tric cancer as it appeared to promote the accumulation 
of Tregs [38]. In addition, Yu et  al. found that P2RY12 
was downregulated in lung adenocarcinoma and exhib-
ited a significant correlation with M2 macrophage and 
dendritic cell infiltration [39]. Nevertheless, these inves-
tigations primarily focused on individual GPCR for 
other cancer types. Studies utilizing multi-omics data, 
coupled with GPCRs and the TME, to predict immuno-
therapy response rate and OS remain relatively scarce. In 
our comprehensive study, we systematically integrated 
extensive melanoma data sets, enabling us to thoroughly 
explore the crosstalk between the GPCRs and the TME. 
The outcomes of this effort, the GPCR–TME classifier, 
has proven to be an exceptionally effective predictor 
for both the OS and immunotherapy response rate of 
melanoma.

Using a variety of machine learning algorithms, we 
identified 12 prognostic GPCRs and constructed the 
GPCR score. Notably, a high GPCR score signifies a poor 
OS for melanoma; however, it may serve as a protective 
factor in other cancers. This discrepancy could be attrib-
uted to the distinct roles played by these 12 GPCRs in the 
tumorigenesis of various cancers. Furthermore, the wide-
spread distribution of GPCRs in vivo may account for our 
inability to detect differential expression levels between 
HaCaT and A375 cells. Considering prior research high-
lighting the varying impact of GPCRs on TME [40–42], 
we delved into the immune microenvironment of the 
high- and low-GPCR score groups using CIBERSORT. 
Our findings revealed that the low-GPCR group exhib-
its heightened infiltration levels of immunologic effector 
cells, including CD8 T cells and M1 macrophages, thus 
providing some insight into their improved OS.

Given that bulk-seq analysis treats all cells in the TME 
as homogeneous and may result in the loss of crucial 
information, we took a closer look at the GPCR score at 
the single-cell level. In the TME of melanoma, we iden-
tified seven distinct cell types, including T cells, mela-
noma, fibroblasts, macrophages, endothelial cells, B cells, 
and plasma cells. Notably, immune cells have exhib-
ited significantly higher GPCR scores when compared 
to tumor and stroma cells, further substantiating the 
intricate relationship between GPCR and TME. Con-
sequently, we proceeded to construct the TME score to 

provide a quantitative assessment of the TME in patients 
with melanoma. This score integrated the impact of five 
immune cell types that were found to be prognostically 
relevant in melanoma. As expected, a higher TME score 
demonstrated a favorable OS, and we combined the 
GPCR and TME scores to develop a GPCR–TME clas-
sifier. The  GPCRlow/TMEhigh subgroup had the best OS, 
whereas the  GPCRhigh/TMElow subgroup had the worst 
OS. To further underly reasons for diverse prognoses 
among these subgroups, we conducted various enrich-
ment analyses. The results shed light on the underlying 
mechanism of superior OS in the  GPCRlow/TMEhigh sub-
group, which included the activation and recruitment of 
immune effector cells and the positive regulation of the 
immune response.

Subsequently, we sought to unravel the GPCR–TME 
classifier at the genomic level. Since TMB has gained 
widespread acceptance as a fundamental biomarker influ-
encing responses to immunotherapy [43–45], we con-
ducted a comparative analysis of TMB across the various 
GPCR–TME subgroups. Intriguingly, the  GPCRlow/TME-
high subgroup, which had the best OS, had the highest 
TMB, whereas the  GPCRhigh/TMElow subgroup displayed 
a significantly lower TMB. This result indicated that dif-
ferent GPCR–TME subgroups may have different immu-
notherapy response rates. In addition, we found that the 
mutation rate of BRAF was higher in the  GPCRlow/TME-
high subgroup, implying the potential efficacy of BRAF 
inhibitors, such as vemurafenib and dabrafenib, for these 
patients [46, 47].

Having established that GPCRs exhibit crosstalk 
with the TME and that the  GPCRlow/TMEhigh subgroup 
exhibited higher TMB, we speculated that the GPCR–
TME classifier might serve as a predictor of immuno-
therapy response for melanoma. Initially, we compared 
the expression levels of antigen presentation genes 
among the GPCR–TME subgroups, which all displayed 
upregulation in the  GPCRlow/TMEhigh subgroup. This 
suggests that dendritic cells may more effectively recog-
nize tumor cells and initiate tumor eradication via CD8 
T cell activation [48]. Subsequently, we investigated the 
expression levels of classical immune checkpoints and 
observed elevated levels of CTLA-4, CD274, PDCD1, 
TIGIT, CD86, CD209, IDO1, and LAG3 in the  GPCRlow/
TMEhigh subgroup. Pul et  al. found that the local deliv-
ery of anti-CTLA-4 could reduce the systemic Treg 

(See figure on next page.)
Fig. 3 Validation of GPCR score using single-cell transcriptome analysis. A, B t-SNE plots displaying 11 clusters A and 9 samples B of melanoma. 
C t-SNE plot annotating seven cell types (T cells, melanoma, fibroblasts, macrophages, endothelial cells, B cells, and plasma cells) using classical 
marker genes. D Heatmap of marker genes used for cell type annotation. E, F Visualization of GPCR score at single-cell level using feature plot E 
and violin plot (F). GPCR G protein-coupled receptor
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Fig. 3 (See legend on previous page.)
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populations and activate effector T cells in melanoma 
[49]. CD274, also known as PD-L1, has been implicated 
in inducing immune evasion by tumor cells. Research 
by Ribas et al. demonstrated that a combination of anti-
PD-L1 and dabrafenib can enhance immune infiltration 
and elicit a durable response in advanced melanoma 

[50]. Anti-PDCD1 (PD-1) therapy is a well-established 
immunotherapy approach for melanoma. Tjulandin et al. 
found that the novel PD-1 inhibitor prolgolimab could 
mediate significant anti-tumor effects and an endur-
able safety profile in advanced melanoma [51]. TIGIT is 
an inhibitory receptor expressed by Tregs [52]; research 

Fig. 4 Establishment of GPCR–TME classifier. A Multivariate Cox regression analysis with a bootstrap algorithm screening of five types of prognostic 
immune cells for establishing the TME score. B Kaplan–Meier survival curves of TCGA–SKCM cohort in patients with melanoma high-TME vs. 
low-TME score. C Kaplan–Meier survival curves of TCGA–SKCM cohort in melanoma among the four GPCR–TME subgroups. D ROC curves reveal 
one-, three-, and five-AUC value of GPCR–TME classifier. GPCR G protein-coupled receptor; TME Tumor microenvironment; ROC Receiver operating 
characteristic curves; AUC  Area under the curve; TCGA  The Cancer Genome Atlas; SKCM Skin cutaneous melanoma
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by Shusuke et  al. suggests that the TIGIT/CD155 axis 
mediates resistance to ICIs in melanoma [53]. CD86 is 
expressed on the cell membrane of melanoma and acti-
vates the T cells, which enhances the anti-tumor effect 

[54]. CD209 can regulate dendritic cell trafficking and 
transient T-cell binding [55]; however, its role in mela-
noma remains unexplored. IDO1, was initially observed 
in plasmacytoid-shaped cells within melanoma. Kevin 

Fig. 5 Validation of the robustness and independence of GPCR–TME classifier. A, B Kaplan–Meier survival curves of the TCGA–SKCM (A) 
and GSE65904 cohorts (B) in melanoma among the three GPCR–TME subgroups. C, D Independent prognostic analysis of GPCR–TME classifier 
in the TCGA–SKCM C and GSE65904 (D) cohorts. GPCR: G protein-coupled receptor; TME Tumor microenvironment; TCGA  The Cancer Genome Atlas; 
SKCM Skin cutaneous melanoma

Fig. 6 Enrichment analysis of GPCR–TME classifier. A, B GSEA of the high-/low-GPCR score groups A and the high-/low-TME score groups (B). C 
Dendrogram of clusters in which similar genes are classified into the same module. D Module–trait heatmap showing the blue module highly 
positively related to  GPCRlow/TMEhigh subgroup and negatively related to  GPCRhigh/TMElow subgroup. E Enriched pathways of the blue module using 
Metascape. F fgsea showing the enriched pathways among the three GPCR–TME subgroups. G Analysis of anticancer immune status of the three 
GPCR–TME subgroups using TIP. GSEA Gene set enrichment analysis; GPCR: G protein-coupled receptor; TME: tumor microenvironment; TIP tracking 
tumor immunophenotype

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Fig. 7 Decoding the GPCR–TME classifier at genomic level. A Differences of TMB in the three GPCR–TME subgroups. B, C Oncoplots showing top 20 
mutant genes in the  GPCRhigh/TMElow (B) and  GPCRlow/TMEhigh (C) subgroups in TCGA–SKCM cohort. GPCR G protein-coupled receptor; TME tumor 
microenvironment; TMB tumor mutational burden; TCGA  the Cancer Genome Atlas; SKCM skin cutaneous melanoma

Fig. 8 Prediction of response rate to immunotherapy using GPCR–TME classifier. A, B Expression level of antigen presentation genes (A) 
and immune checkpoints (B) among GPCR–TME subgroups. C–E Predicted response rate to immunotherapy in GSE91061 (C), GSE145996 (D), 
and GSE35640 (E) cohorts. GPCR G protein-coupled receptor; TME Tumor microenvironment
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et al. found that IDO1 was correlated with intra-tumoral 
CD8 T cells and Th1-related genes, suggesting that IDO1 
could act as a biomarker of immunologic tumor control 
[56]. LAG3 is expressed on the surface of activated CD4 
and CD8 T cells [57], and Nicolas et  al. found that the 
combination of anti-LAG-3 and anti-PD-1 enhances the 
cytotoxic capacity of CD8 T cells and leads to the anti-
tumor effect [58]. Combining this information above, we 
constructed a GPCR–TME classifier for three melanoma 
immunotherapy cohorts. The outcomes demonstrated 
that the  GPCRlow/TMEhigh subgroup exhibited signifi-
cantly higher immunotherapy response rate compared 
to others in the GSE91061 cohort. In the GSE145996 
and GSE35640 cohorts, these differences did not reach 
statistical significance, potentially due to the bias intro-
duced by the limited sample sizes under stringent filter-
ing criteria. Nevertheless, it was noteworthy that we 
still observed a higher immune therapy response rate in 
 GPCRlow/TMEhigh subgroup compared to others in these 
two cohorts.

In a clinical application, the GPCR–TME classifier 
holds the potential to enhance the refinement of molec-
ular subtyping and treatment strategies for melanoma. 
Specifically, following the surgical removal of a patient’s 
melanoma specimen, bulk-seq can be employed. Based 
on the gene expression data, calculations can be made 
to determine both the GPCR score and TME score. 
These scores aid in categorizing the patient into a spe-
cific GPCR–TME subgroup, enabling the prediction 
of the patient’s OS and their potential response rate to 
immunotherapy.

We acknowledge several limitations in our study. 
First, due to constraints related to tumor specimens, our 
research primarily relies on bioinformatics. We antici-
pate that future experiments, such as flow cytometry and 
immunohistochemistry, will help validate our findings. 
Second, to enhance the robustness of our conclusions, 
we recommend utilizing an internal cohort that includes 
gene expression data, survival data, and immunotherapy 
response data to further assess the performance of the 
GPCR–TME classifier.

Conclusions
In summary, the multi-omics validation supports the 
GPCR–TME classifier as a highly effective predictor for 
melanoma OS and immunotherapy response rate.
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