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Abstract 

Background Ferroptosis is closely associated with the pathophysiological processes of many diseases, such as infec-
tion, and is characterized by the accumulation of excess lipid peroxides on the cell membranes. However, studies 
on the ferroptosis-related diagnostic markers in tuberculosis (TB) is still lacking. Our study aimed to explore the role 
of ferroptosis-related biomarkers and molecular subtypes in TB.

Methods GSE83456 dataset was applied to identify ferroptosis-related genes (FRGs) associated with TB, 
and GSE42826, GSE28623, and GSE34608 datasets for external validation of core biomarkers. Core FRGs were identi-
fied using weighted gene co-expression network analysis (WGCNA). Subsequently, two ferroptosis-related subtypes 
were constructed based on ferroptosis score, and differently expressed analysis, GSEA, GSEA, immune cell infiltration 
analysis between the two subtypes were performed.

Results A total of 22 FRGs were identified, of which three genes (CHMP5, SAT1, ZFP36) were identified as diagnostic 
biomarkers that were enriched in pathways related to immune-inflammatory response. In addition, TB patients were 
divided into high- and low-ferroptosis subtypes (HF and LF) based on ferroptosis score. HF patients had activated 
immune- and inflammation-related pathways and higher immune cell infiltration levels than LF patients.

Conclusion Three potential diagnostic biomarkers and two ferroptosis-related subtypes were identified in TB 
patients, which would help to understand the pathogenesis of TB.
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Introduction
Tuberculosis (TB) is a chronic infectious disease that 
poses a serious threat to human health and is consid-
ered one of the world’s three major infectious diseases, 
along with malaria and acquired immunodeficiency syn-
drome [1]. According to the World Health Organization, 
China had the third highest number of new cases of TB 
in the world with about 833,000 cases in 2019 [2]. TB is 
mainly caused by infection with Mycobacterium tubercu-
losis (M.tb). It is currently one of the ten leading causes 
of death worldwide and the leading cause of death from 
a single infectious disease [3, 4]. M.tb can cause infec-
tion in almost any part of the body, and the spectrum of 
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clinical disease following M.tb infection is diverse, rang-
ing from asymptomatic to life-threatening acute infec-
tious disease [5, 6]. Although the utilization of various 
methods for diagnosing TB, the process remains chal-
lenging, especially in the absence of a clear focus of infec-
tion [7–9]. Therefore, developing new biomarkers to help 
diagnose active TB is urgently needed.

Ferroptosis is a non-apoptotic form of cell death, char-
acterized by the accumulation of iron-dependent lipid 
peroxides to the point of cell death [10, 11]. In several 
diseases, including sepsis, neurodegenerative disease, 
diabetes, and cancer, ferroptosis has been implicated in 
a variety of physiological and pathological processes [12, 
13]. In addition, ferroptosis has also been shown to play 
an important role in the pathogenesis of pulmonary dis-
ease including lung cancer, pulmonary fibrosis, chronic 
obstructive pulmonary disease, and pneumonia [14–16]. 
A recent study revealed that inhibition of ferroptosis sup-
pressed M.tb-induced bacterial load and tissue necrosis 
[17]. Additionally, the exploration of ferroptosis inhibi-
tors that target the interaction between M.tb PtpA and 
Ran-GDP could be pursued as a potential treatment for 
TB [18, 19]. Thus, ferroptosis may have a vital role in the 
pathogenesis of TB and that the ferroptosis-related genes 
(FRGs) may be involved in the occurrence of TB.

In recent years, some researchers have combined tran-
scriptome sequencing with bioinformatics analysis to 
identify differentially expressed genes (DEGs) and func-
tional pathways involved in the pathological process of 
pulmonary disease [20, 21]. In the present research, gene 
expression profiles of TB patients from the Gene Expres-
sion Omnibus (GEO) database were comprehensively 
analysed using bioinformatics. We aimed to gain insight 
into the potential pathological mechanisms of TB and to 
identify ferroptosis-related targets and biomarkers for 
the early diagnosis of TB.

Methods and materials
Collection of datasets
A total of four TB-related gene expression microar-
rays (GSE83456, GSE42826, GSE28623, and GSE34608) 
downloaded from the GEO database of the National 

Center for Biotechnology Information (NCBI, https:// 
www. ncbi. nlm. nih. gov/). The information of the GEO 
datasets was presented in Table 1. The selection criteria 
for the datasets are as follows: the experimental design 
of the gene expression profiling dataset must be a whole 
blood study of active TB patients and healthy controls 
(HC); the number of samples of both types of whole 
blood involved in each gene expression profiling dataset 
must be greater than 5; the samples for the gene expres-
sion profiling study must be RNA expressed at the level 
of the whole human genome. The GEOquery function of 
the R language Bioconductor package was used to down-
load gene expression profile data. FerrDb, the first data-
base of experimentally validated ferroptosis regulators 
and markers and ferroptosis-disease associations. Anno-
tations were generated from currently available ferrop-
tosis articles in PubMed [22]. From the FerrDb database 
(http:// www. zhoun an. org/ ferrdb), a total of 259 ferropto-
sis-related genes (FRGs) were downloaded.

Identification of FRGs
Limma, which is an R software package, offers a compre-
hensive solution for the analysis of gene expression data. 
It has gained significant popularity as a preferred tool 
for gene discovery through the examination of differen-
tial expression in microarray [23]. The “limma” package 
of R was used to screen the DEGs in the different groups 
based on the set cutoff criteria of p.adjust < 0.05 and | log 
fold change (FC)|≥ 1. The “ggplot2” was used to map the 
volcano plot and boxplot. Metascape is an online analy-
sis platform that offered biologists with a comprehensive 
annotation and analysis resource [24]. Functional enrich-
ment analyses were performed using Metascape to inves-
tigate the biological functions and pathways of the DEGs.

Gene set enrichment analysis (GSEA)
GSEA is a method employed to detect gene sets that 
exhibit differential expression and are enriched with 
known biological functions [25]. For GSEA, the Clus-
terProfiler package was applied. The “h.all.v7.4.symbols.
gmt” subset was downloaded from the Molecular 

Table 1 The GEO datasets information

GEO ID Platform Healthy control 
(HC)

Active pulmonary 
tuberculosis (TB)

Latent pulmonary 
tuberculosis (LTB)

Source Application

GSE83456 GPL10558 61 45 0 Blood Analysis

GSE42826 GPL10558 52 11 0 Blood Validation

GSE28623 GPL4133 37 46 25 Blood Validation

GSE34608 GPL6480 18 8 0 Blood Validation

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.zhounan.org/ferrdb
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Signatures Database for evaluation of the associ-
ated pathways. Statistical significance was defined as p 
value < 0.05.

Weighed gene co‑expression network analysis (WGCNA)
WGCNA can be used for the discovery of highly relevant 
gene modules, which can be used for the identification 
of therapeutic targets or candidate markers [26]. Based 
on the gene expression profile data, the median absolute 
deviation (MAD) was calculated for each gene separately. 
Then, the top 50% of genes with the lowest MAD were 
removed. Subsequently, goodSamplesGenes method of 
WGCNA package was used to remove abnormal genes 
and samples, and WGCNA was used to construct co-
expression network. Hub genes were screened based on 
the cut-off criteria Module membership > 0.8 and Gene 
significance > 0.3.

Immune microenvironment analysis
xCell is a powerful computational technique that trans-
forms gene expression profiles into enrichment scores 
for immune and stroma cell types across various samples 
[27]. The xCell algorithm was used to calculate the dif-
ference in the proportion of different infiltrating immune 
cells in the immune microenvironment between the TB 
and HC, and results were shown in a box plot. In addi-
tion, the correlation between the core FRGs expression 
and immune cell infiltration was performed using the 
“ggplot2” package, and the results were shown in lollipop 
chart.

Gene set variation analysis (GSVA)
The GSVA technique is characterized by its non-para-
metric and unsupervised nature, which eliminates the 
need to explicitly model phenotypes in the enrichment 
scoring algorithm. This approach enhances the ability to 
identify even subtle variations in pathway activity across 
different individuals [28]. In our study, the ferroptosis 
score was calculated using the GSVA algorithm based on 
the gene expression profile of FRGs. The score matrix of 
the ferroptosis was obtained and result was visualized by 
box plot.

Identification of ferroptosis‑related subtypes
TB patients were divided into the low ferroptosis score 
(LF) and high ferroptosis (HF) score subgroups based on 
the median value of the ferroptosis score. Subsequently, 
differential expression, GSEA, GSVA and immuno-infil-
tration analyses were performed between the two sub-
groups using the corresponding R software.

Validation of core genes by qRT‑PCR
Blood samples from 8 HC and 8 TB patients were col-
lected from the First Affiliated Hospital of Guang-
zhou Medical University. The study obtained 
written informed consent from all participants and 
was approved by the Ethics Committee of The First 
Affiliated Hospital of Guangzhou Medical University. 
Blood samples were subjected to RNA extraction using 
the TRIzol reagent (Invitrogen) following the manu-
facturer’s protocol. The total RNA obtained was then 
reverse transcribed into complementary DNA (cDNA) 
using the cDNA Synthesis Kit (Takara, China). qRT-
PCR was carried out with Taq Universal SYBR green 
Supermix (Bio-Rad, USA). The  2−ΔΔCt method was 
used to calculate gene expression relative to GAPDH 
expression. Primers used were presented in Additional 
file 2: Table S1.

Results
Expression landscape of FRGs in TB
The analysis flow for this study is shown in Fig. 1. A differ-
ential study comparing samples from HC and TB revealed 
1007 DEGs. Of these, 390 were found to be upregulated 
while 617 were downregulated (Additional file  1 Figure 
S1A, Additional file 2: Table S1). Functional enrichment 
analysis was performed using Metascape. The results, as 
shown in Additional file 1: Figures S1B–C, indicated that 
these DEGs were primarily enriched in immune-related 
pathways, such as response to virus, cytokine signaling in 
immune system, interferon signaling, adaptive immune 
system, alpha–beta T cell activation, etc. Additionally, 
according to the GSEA enrichment results, there was a 
significant enrichment of ferroptosis in the TB group (as 
shown in Fig.  2A, NES = 2.06, p.adj < 0.001). The results 
implied that ferroptosis plays an important role in TB 
development.

In this study, we examined the expression patterns of 
259 FRGs (Additional file  2: Table  S2) in both TB and 
HC samples. Our findings indicated that some of FRGs 
were significantly upregulated in TB samples compared 
to HC samples, including GCH1, CYBB, SOCS1, DUSP1, 
CHMP5, SLC40A1, SAT1, NFE2L2, ACSL3, TNFAIP3, 
WIPI1, ZFP36, ANO6, ACSL4, and HIF1A, while 
PEBP1, SNX4, ELAVL1, BNIP3, TUBE1, and OTUB1 
were expressed at low levels in TB group (Figs.  2B, D). 
To investigate the interactions of differentially expressed 
FRGs, a correlation analysis was conducted. The find-
ings revealed a significant correlation among these genes 
(Fig. 2C).
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Identification of core FRGs by WGCNA
We used WGCNA to identify 18 gene modules (Fig. 3A). 
Among these, the royalblue and brown modules showed 

a significant correlation with TB (r = 0.55, p = 4.2e−12 
and r = 0.41, p = 1.6e−76, respectively) as depicted in 
Additional file  1: Figure S2. To further investigate, we 

Fig. 1 Flow chart of the data analysis process. The GSE83456 dataset was used to find FRGs associated with TB. The core FRGs were identified using 
WGCNA, and validated using the GSE42826, GSE28623, GSE34608 datasets and qRT-PCR analysis. Two subtypes related to ferroptosis were then 
created based on the ferroptosis score. Differential expression analysis, GSEA, and immune cell infiltration analysis were performed between the two 
subtypes

Fig. 2 Expression profile of FRGs in TB. A The GSEA results suggested that ferroptosis is important in the pathogenesis of TB. B Volcano plot 
of the FRGs (the green dots represented the down-regulated FRGs and red dots represented the up-regulated FRGs). C The correlation plot 
represented the degree of correlation of the 22 FRGs. D Box plots depicted the differentially expressed FRGs between the HC and TB groups. 
*p < 0.05, **p < 0.01, ***p < 0.001
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identified 308 hub genes within these modules (Addi-
tional file 2: Table S3).

Our study identified three FRGs (CHMP5, SAT1 and 
ZFP36) from core modules based on the Venn result 
(Fig.  3B), which were found to be significantly up-regu-
lated in the TB group (p < 0.05). Additionally, the diag-
nostic AUC values of CHMP5, SAT1, and ZFP36 genes 
were found to be 0.896, 0.907, and 0.808, respectively as 
depicted in Fig. 3C.

To validate these genes expression, multiple microar-
ray datasets (GSE42826, GSE28623, and GSE34608 data-
sets) were utilized. The TB group exhibited a significantly 
higher expression level of CHMP5 and SAT1 genes as 
compared to the HC group (p < 0.01) (Fig.  4A–C). The 
expression of the ZFP36 gene was significantly up-regu-
lated in the GSE42826 and GSE28623 datasets (p < 0.05). 
However, no significant difference was observed in 
ZFP36 gene expression between the normal and disease 
groups (Fig. 4C). ROC analysis was used to confirm the 
diagnostic value of core genes. In the GSE42826 cohort, 
the AUC values for CHMP5, SAT1, and ZFP36 genes 

were 0.956, 0.995 and 0.82, respectively (Fig. 4D); in the 
GSE28623 cohort, the AUC values for CHMP5, SAT1, 
and ZFP36 genes were 0.711, 0.804 and 0.682, respec-
tively (Fig. 4E); in the GSE34608 cohort, the AUC values 
for CHMP5, SAT1, and ZFP36 genes were 0.979, 0.986 
and 0.688, respectively (Fig. 4F).

Investigating potential biological functions of core FRGs
We conducted a single gene GSEA to investigate the 
potential biological functions of core FRGs. Our find-
ings revealed that toll like receptor signaling pathway, 
chemokine signaling pathway, leukocyte transendothelial 
migration, natural killer cell mediated cytotoxicity, B cell 
receptor signaling pathway, JAK-STAT signaling path-
way, and cytokine-cytokine receptor interaction were 
enriched in the CHMP5 high-expressed phenotype, as 
depicted in Fig. 5A; toll like receptor signaling pathway, 
chemokine signaling pathway, leukocyte transendothelial 
migration, natural killer cell mediated cytotoxicity, B cell 
receptor signaling pathway, JAK-STAT signaling pathway, 
and MAPK signaling pathway were enriched in the SAT1 

Fig. 3 Identification of core FRGs by WGCNA. A Key modules identified by WGCNA. B The Venn diagram represented the genes that are shared 
between the FRGs and the WGCNA. C The ROC curves of CHMP5, SAT1, and ZFP36 genes in the GSE83456 dataset
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high-expressed phenotype, as depicted in Fig. 5B; endo-
cytosis, leishmania infection, leukocyte transendothelial 
migration, natural killer cell mediated cytotoxicity, B cell 
receptor signaling pathway, lysosome, and acute myeloid 
leukemia were enriched in the ZFP36 high-expressed 
phenotype, as depicted in Fig. 5C. The results suggested 
that the three FRGs may play a crucial role in regulating 
immune response.

Differences in immune characteristics between the HC 
and TB groups
The xCell analysis revealed significant differences in 
immune status between the HC and TB groups. The TB 
patients had significantly higher proportions of aDC, 
basophils, macrophages, macrophages M1, macrophages 
M2, monocytes, neutrophils, NKT, and plasma cells 
compared to the HC. However, the TB patients had sig-
nificantly lower proportions of B cells, CD4 + memory 
T cells, CD4 + naive T cells, CD4 + T cells, CD4 + Tcm, 
CD4 + Tem, CD8 + T cells, CD8 + Tcm, CD8 + Tem, cDC, 
class-switched memory B cells, iDC, mast cells, memory 
B cells, naive B cells, NK cells, pro B cells, and Th1 cells 
compared to the HC (Fig.  6A). Our study also explored 
the correlation between core FRGs expression and immu-
nological characteristics. The results depicted in Fig. 6B 
indicated that there was a negative correlation between 
CHMP5 expression and iDC, CD8 + T cells, CD4 + naive 
T cells, CD4 + T cells, CD8 + Tcm, CD4 + Tcm, pro B 

cells, CD4 + T cells, NK cells, CD8 + Tem, CD4 + Tem, 
while there was a positive correlation between CHMP5 
expression and neutrophils, monocytes, macrophages, 
macrophages M1, macrophages M2, plasma cells; there 
was a negative correlation between SAT1 expression 
and iDC, CD8 + T cells, CD4 + naive T cells, CD4 + T 
cells, CD8 + Tcm, CD4 + Tcm, pro B cells, CD4 + T cells, 
NK cells, CD8 + Tem, CD4 + Tem, while there was a 
positive correlation between SAT1 expression and neu-
trophils, monocytes, macrophages, macrophages M1, 
macrophages M2, plasma cells, NKT (Fig.  6C); there 
was a negative correlation between ZFP36 expression 
and iDC, pro B cells, CD8 + T cells, CD4 + naive T cells, 
CD4 + T cells, CD8 + Tcm, CD4 + Tcm, CD4 + T cells, 
NK cells, mast cells, CD8 + Tem, CD4 + Tem, while there 
was a positive correlation between ZFP36 expression and 
neutrophils, monocytes, macrophages, macrophages M1, 
macrophages M2 (Fig. 6D).

Identification of ferroptosis‑related subtypes
The GSVA algorithm was used to calculate the ferropto-
sis score, revealing that the TB group had a significantly 
higher score than the HC group (p < 0.05) (Fig. 7A). The 
patients with TB were separated into two subgroups: 
those with a low ferroptosis score (LF) and those with a 
high ferroptosis score (HF). The median value of the fer-
roptosis score was used to divide the patients into these 
subgroups. A differential study comparing samples from 

Fig. 4 Validation of core FRGs using independent datasets. The gene expression levels A–C and ROC curves D–F of CHMP5, SAT1, and ZFP36 genes 
in the GSE42826, GSE28623, and GSE34608 datasets. *p < 0.05, **p < 0.01, ***p < 0.001
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LF and HF revealed 7786 DEGs. Of these, 7406 were 
found to be upregulated while 380 were downregulated 
(Fig. 7B).

Enrichment analysis between subtypes
GSEA results indicated that these DEGs were primar-
ily enriched in immune-inflammatory pathways, such 
as immune response to tuberculosis, interferon alpha 

Fig. 5 The core FRGs were analyzed using GSEA, which revealed potential signaling pathways. The immune-inflammatory pathways are 
significantly enriched in high expression of CHMP5 A, SAT1 B, and ZFP36 C 



Page 8 of 13Wufuer et al. European Journal of Medical Research          (2023) 28:445 

beta signaling, interleukin 15 signaling, diseases of 
immune system, pyroptosis, interferon gamma signal-
ing, IL6 siganling pathway, neutrophil degranulation, 
interleukin 10 signaling, toll like receptor cascades, 
TNF signaling, interleukin 1 family signaling, apopto-
sis, JAK-STAT singaling pathway, chemokine signaling 
pathway, IL18 signaling pathway, etc. (Fig. 7C).

Additionally, we utilized GSVA to investigate the vari-
ations in participating potential pathways between the 
two subtypes. Our findings revealed that HF subtype 
exhibited a greater number of immune response rele-
vant pathways than LF subtype, such as immune system 
development, leukocyte differentiation, T cell activation, 
leukocyte cell–cell adhesion, regulation of leukocyte dif-
ferentiation, T cell proliferation, B cell homeostasis, etc. 
(Fig. 8).

Immunological characteristics of both subtypes
Due to the intricate nature of the immune microenvi-
ronment, it is possible for two different immune sub-
types to emerge. In order to gain a better understanding 
of the biological behavior between these two subtypes, 
we utilized the xCell algorithm to analyze the propor-
tion of immune cells present in the immune infiltrative 
microenvironment in TB. As shown in Fig.  9A–B, the 

LF subtype had significantly higher proportions of baso-
phils, CD8 + naive T cells, DC, eosinophils, iDC, NKT, 
pro B cells, and Th2 cells compared to the HF subtype. 
However, the LF subtype had significantly lower pro-
portions of CD4 + memory T cells, CD4 + naive T cells, 
CD4 + T cells, CD8 + T cells, CD8 + Tem, macrophages, 
macrophages M1, mast cells, monocytes, neutrophils, 
NK cells, Tgd cells, and Th1 cells compared to the HF 
subtype.

Validation of core genes by clinical blood samples
Clinical blood samples were collected to verify the 
expression levels of key genes using qRT-PCR tech-
niques. As shown in Fig. 10, the TB group exhibited a sig-
nificantly higher expression level of CHMP5, SAT1, and 
ZFP36 genes as compared to the HC group (p < 0.01 or 
p < 0.001).

Discussion
TB, caused by M.tb, is an infectious disease that can 
affect various organs and tissues in the body. Currently, 
apart from HIV/AIDS, TB continues to be the leading 
cause of death in the world [4]. The diagnostic criterion 
for TB is a positive sputum smear. Unfortunately, the low 
rate of positive sputum smears results in a significant 

Fig. 6 Differences in immune characteristics between the HC and TB groups. A Box plots depicted the landscape of immune cells infiltration 
between the HC and TB groups. *p < 0.05, **p < 0.01, ***p < 0.001. B–D Correlation between three core FRGs and immune cell infiltration levels. 
*p < 0.05, **p < 0.01, ***p < 0.001
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number of patients with underlying TB being undiag-
nosed, leading to delays in treatment [7, 29, 30]. The 
molecular mechanisms underlying the pathologies of TB 
are difficult to elucidate. T cell-mediated adaptive immu-
nity is essential to combat M.tb infection in people [31]. 
The natural and trained innate immune system has an 
important role to play in the fight against Mycobacte-
rium TB [32]. Recent studies revealed that an imbalance 
in ferroptotic cell death can contribute to various physi-
ological and pathophysiological processes, which are fur-
ther exacerbated by an impaired immune response [33]. 
The discovery of the crucial role of ferroptosis in infec-
tious diseases has brought attention to its potential as 

a therapeutic target. Therefore, it is widely anticipated 
that it will be developed as a new therapeutic strategy for 
infectious diseases [34]. A recent study suggested that 
ferroptosis is an important necrotic mechanism in Mtb 
infection and a target for host-targeted treatment of TB 
[17]. Thus, identifying ferroptosis-related markers in TB 
patients is clinically important for developing new targets 
for diagnosis, treatment and prognosis.

High-throughput technique and microarray technology 
have become essential tools for studying gene expression 
levels and identifying the underlying molecular mecha-
nisms associated with complex diseases [35, 36]. In the 
present study, a total of 22 FRGs showed differential 

Fig. 7 Identification of ferroptosis-related subtypes. A Box plots depicted the ferroptosis score between the HC and TB groups. *p < 0.05. B Volcano 
plot exhibited the DEGs between the LF and HF subgroups. C GSEA was performed to explore the potential pathways between the two subgroups
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expression between the TB and HC groups using bioin-
formatics techniques to analyse the GSE83456 dataset. 
According to the WGCNA results, three of these FRGs 
were identified as core diagnostic biomarkers involved 
in regulating the immune and inflammatory response in 
TB. The CHMP5, SAT1, and ZFP36 genes were all closely 
correlated with immune cell infiltrations. Charged mul-
tivesicular body protein 5 (CHMP5) is an anti-apoptotic 
protein that is thought to play a role in leukaemogenesis 
[37, 38]. The protein CHMP5 plays a role in regulating 
NF-κB signaling after RANK activation in osteoclasts 
[39]. CHMP5 deficiency is likely to activate programmed 
cell death pathways [40]. Spermidine/Spermine 
N1-acetyltransferase 1 (SAT1) is a crucial enzyme in the 
global regulation of polyamine catabolism. Its primary 
function is to catalyze the acetylation of spermine and 
spermidine, resulting in the formation of N1-acetylsper-
mine and N1-acetylspermidine, respectively [41]. A pre-
vious study uncovered a metabolic target of p53, SAT1, 
which plays a role in the p53-mediated response to reac-
tive oxygen species and ferroptosis [42]. SAT1 expression 
significantly correlated with infiltrating macrophages and 

CD8 + T cells in low-grade glioma [43]. The knockout of 
the zinc finger protein 36 (ZFP36) gene demonstrated the 
essential function of tristetraprolin in regulating inflam-
mation [44]. A recent research has uncovered that mem-
bers of ZFP36 contribute to the inflammatory features of 
dermal fibroblasts [45]. Previous studies have revealed 
the significant role of ZFP36 RNA-binding proteins 
in controlling T cell expansion and effector functions. 
Consequently, inhibiting ZFP36 could be a promising 
approach to improve immune-based therapies [46]. In 
the present study, the results of GSEA and immune cell 
infiltration suggested that these genes may play a crucial 
role in regulating the immune response in TB.

In our study, we extracted the expression matrix of 22 
FRGs and calculated ferroptosis score for TB patients 
using the GSVA method to identify heterogeneity among 
TB patients. The patients with TB were separated into 
two ferroptosis-related subgroups (HF and LF). Based on 
the GSVA results, it was observed that the HF subgroup 
exhibited activation of immune and inflammation-related 
pathways, including immune system development and 
TNFA signaling via NFKB. To gain a better understanding 

Fig. 8 GSVA was carried out to investigate the potential pathways between the two subgroups
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Fig. 9 Differences in immune characteristics between the two subgroups. Heatmap A and box B plots depicted the landscape of immune cells 
infiltration between the LF and HF groups. *p < 0.05, **p < 0.01, ***p < 0.001

Fig. 10 Validation of core genes by qRT-PCR. The gene expression levels of CHMP5 A, SAT1 B, and ZFP36 C genes in the clinical blood samples. 
**p < 0.01, ***p < 0.001
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of the relationship between TB subgroups and immu-
nity, the immune landscape between subgroups was 
further investigated. We observed the CD4 + memory T 
cells, CD4 + naive T cells, CD4 + T cells, CD8 + T cells, 
CD8 + Tem, macrophages, macrophages M1, mast cells, 
monocytes, neutrophils, NK cells, Tgd cells, and Th1 cells 
were significantly up-regulated in the HF subgroup com-
pared with the LF subgroup. Macrophages are the pri-
mary host cells for Mycobacterium tuberculosis during 
its intracellular survival in the human body [47]. Numer-
ous studies have demonstrated that the phenotype of 
macrophages involved in the early stages of TB infection 
and granuloma formation plays a crucial role in disease 
progression and infection outcome [48–50]. The activity 
of mast cells is involved in the maintenance of a healthy 
lung and helps to defend against a wide range of respira-
tory pathogens, including Mycobacterium tuberculosis 
[51]. Neutrophils have been identified as a potential early 
indicator of TB severity, making them a promising tar-
get for host-directed therapy in TB [52]. Th1 cells have 
been demonstrated to aid in the protection against TB by 
producing IFN-γ and stimulating the antimycobacterial 
response in macrophages [53]. In humans, the control of 
Mycobacterium TB infection relies heavily on the adap-
tive immune response facilitated by T cells [31]. These 
phenomena suggested that inflammation and immunity 
may be involved in contributing to ferroptosis in TB 
patients.

Conclusion
Our research emphasized the significant impact of fer-
roptosis in the development of TB. We have identi-
fied three FRGs that may act as potential biomarkers 
and treatment targets for TB patients. Additionally, 
two molecular subtypes of TB were identified based on 
FRGs. Further analysis showed that dysregulation of 
the immune microenvironment may induce ferroptosis, 
thereby accelerating the progression of TB. These find-
ings have the potential to improve diagnosis and treat-
ment outcomes for individuals suffering from TB.
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